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1 Introduction

This paper deals with the stability and boundedness of solution of the delay

differential equation

x ′′′(t)+ h(x ′(t))x ′′(t)+ g(x ′(t − r(t)))+ f (x(t − r(t)))

= p(t, x(t), x ′(t), x(t − r(t)), x ′(t − r(t)), x ′′(t))
(1.1)
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or its equivalent system

x ′ = y,

y′ = z,

z′ = −h(y)z − g(y)− f (x)+
∫ t

t−r(t)
g′(y(s))z(s)ds

+
∫ t

t−r(t)
f ′(x(s))y(s)ds + p(t, x, y, x(t − r(t)), y(t − r(t)), z),

(1.2)

where 0 ≤ r(t) ≤ γ, r ′(t) ≤ β, 0 < β < 1, β and γ are some positive

constants, γ will be determined later, f (x), g(y), h(y), p(t, x, y, x(t − r(t)),

y(t − r(t)), z) are continuous in their respective arguments. Besides, it is sup-

posed that the derivatives f ′(x), g′(y) are continuous for all x, y with f (0) =

g(0) = 0. In addition, it is also assumed that the functions f (x(t − r(t))),

g(y(t − r(t))) and p(t, x, y, x(t − r(t)), y(t − r(t)), z) satisfy a Lipschitz con-

dition in x, y, x(t − r(t)), y(t − r(t)) and z; throughout the paper x(t), y(t)

and z(t) are, respectively, abbreviated as x, y and z. Then the solution is unique.

(See [5, pp. 14]).

In recent year, many books and papers dealt with the delay differential equa-

tion and obtained many good results, for example, [1, 2, 3, 18, 19, 21], etc. In

many references, the authors dealt with the problems by considering Lyapunov

functions or functionals and obtained the criteria for the stability and bounded-

ness. (See [1-21]).

In particular, recently, Tunç [15], obtained sufficient conditions which ensure

the stability and the boundedness of systems

x ′′′ + a1x ′′ + f2(x
′(t − r(t)))+ a3x = 0

and

x ′′′ + a1x ′′ + f2(x
′(t − r(t)))+ a3x = p(t, x, x ′, x(t − r(t)), x ′(t − r(t)), x ′′),

where r(t) is as defined above, a1 and a3 are some positive constants.

Our objective in this paper is to establish some sufficient conditions for the

stability and for the boundedness of solutions of (1.1) in the cases p ≡ 0,

p 6≡ 0, respectively.
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2 Stability

First, we will give the stability criteria for the general autonomous delay differ-

ential system. We consider

x ′ = f (xt), xt = x(t + θ), −r ≤ θ ≤ 0, t ≥ 0, (2.1)

where f : CH −→ Rn is a continuous mapping, f (0) = 0, CH := {φ ∈

(C[−r, 0],Rn) : ‖φ‖ ≤ H} and for H1 < H , there exists L(H1) > 0, with

| f (φ)| ≤ L(H1) when ‖φ‖ ≤ H1.

Definition 2.1. An element ψ ∈ C is in the ω-limit set of φ, say �(φ), if

x(t, 0, φ) is defined on [0,∞) and there is a sequence {tn}, tn −→ ∞, as n −→

∞, with ‖xtn (φ) − ψ‖ −→ 0 as n −→ ∞ where xtn (φ) = x(tn + θ, 0, φ) for

−r ≤ θ ≤ 0.

Definition 2.2 (See [17]). A set Q ⊂ CH is an invariant set if for any

φ ∈ Q, the solution of (2.1), x(t, 0, φ), is defined on [0,∞), and xt(φ) ∈ Q

for t ∈ [0,∞).

Lemma 2.1 (See [13]). If φ ∈ CH is such that the solution xt(θ) of (2.1)

with x0(φ) = φ is defined on [0,∞) and ‖xt(φ)‖ ≤ H1 < H for t ∈ [0,∞),

then �(φ) is a nonempty, compact, invariant set and

dist(xt(φ),�(φ)) −→ 0, as t −→ ∞

Lemma 2.2 (See [13]). Let V (φ) : CH −→ R be a continuous functional

satisfying a local Lipschitz condition. V (0) = 0 and such that

(i) W1(|φ(0)|) ≤ V (φ) ≤ W2(‖φ‖) where W1(r),W2(r) are wedges.

(ii) V ′
(2.1)(φ) ≤ 0, for φ ≤ CH .

The the zero solution of (2.1) is uniformly stable. If we define Z = {φ ∈

CH : V
′
(2.1)(φ) = 0}, then the zero solution of (2.1) is asymptotically stable,

provided that the largest invariant set in Z is Q = {0}.

The following will be our main stability result for (1.1).
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Theorem 2.1. Consider system (1.2) with

p(t, x, y, x(t − r(t)), y(t − r(t)), z) ≡ 0, f (x), f ′(x), g(y), g′(y), h(y)

continuous in their respective arguments. Suppose further that

(i) for some a > 0, ε0 > 0, h(y) ≥ a + ε0 for all y;

(ii) for some b > 0, g(y)
y ≥ b for all y 6= 0;

(iii) for some c0,
f (x)

x ≥ c0 for all x 6= 0;

(iv) for some c > 0, f ′(x) ≤ c for all x, where ab − c > 0;

(v) for some constants L ,M, | f ′(x)| ≤ L , |g′(y)| ≤ M, for all x, y.

Then the zero solution of (1.2) is asymptotically stable, provided that

γ < min
{

2ε0(1 − β)

(L + M)(1 − β)+ (1 + a)M
,

2(ab − c)(1 − β)

a[(L + M)(1 − β)+ (1 + a)L]

}
.

Proof. Using the equivalent system form (1.2), our main tool is the following

Lyapunov functional V (xt , yt , zt) defined as

V (xt , yt , zt) =
∫ x

0
f (ξ)dξ +

∫ y

0
vh(v)dv

+ a−1
∫ y

0
g(u)du +

1

2
a−1z2 + yz + a−1 f (x)y

+ λ

∫ 0

−r(t)

∫ t

t+s
y2(θ)dθds + δ

∫ 0

−r(t)

∫ t

t+s
z2(θ)dθds,

(2.2)

where λ and δ are positive constants which will be determined later.

The Lyapunov functional V = V (xt , yt , zt) defined in (2.2) can be arranged

in the form

V (xt , yt , zt) =
1

2a
(ay + z)2 +

1

2ab
( f (x)+ by)2 +

∫ y

0
[h(v)− a]vdv

+
1

a

∫ y

0

[
g(v)

v
− b

]
vdv +

1

ab

∫ x

0
[ab − f ′(s)] f (s)ds

+ λ

∫ 0

−r(t)

∫ t

t+s
y2(θ)dθds + δ

∫ 0

−r(t)

∫ t

t+s
z2(θ)dθds.
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On using (i), (ii), (iii) and (iv) of Theorem (2.1), we obtain

V (xt , yt , zt) ≥
1

2a
(ay + z)2 +

1

2ab
( f (x)+ by)2

+
1

2
ε0 y2 +

c0

2ab
(ab − c)x2 + λ

∫ 0

−r(t)

∫ t

t+s
y2(θ)dθds

+ δ

∫ 0

−r(t)

∫ t

t+s
z2(θ)dθds.

Since the integrals

λ

∫ 0

−r(t)

∫ t

t+s
y2(θ)dθds and δ

∫ 0

−r(t)

∫ t

t+s
z2(θ)dθds

are non-negative,

V (xt , yt , zt) ≥
1

2a
(ay + z)2 +

1

2ab
( f (x)+ by)2 +

1

2
ε0 y2 +

c0

2ab
(ab − c)x2.

Thus, we can find a positive constant D1, small enough such that

V (xt , yt , zt) ≥ D1(x
2 + y2 + z2). (2.3)

Next, our target is to show that V (xt , yt , zt) satisfies the conditions of Lem-

ma 2.2. First, by (1.2) and (2.2), we obtain

d

dt
V (xt , yt , zt) = −

1

a
(h(y)− a)z2 −

1

a

(
a

g(y)

y
− f ′(x)

)
y2

+
(

y +
1

a
z
){ ∫ t

t−r(t)
g′(y(s))z(s)ds

+
∫ t

t−r(t)
f ′(x(s))y(s)ds

}
+ λy2r(t)+ δz2r(t)

− λ(1 − r ′(t))
∫ t

t−r(t)
y2(θ)dθ − δ(1 − r ′(t))

×
∫ t

t−r(t)
z2(θ)dθ
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By (v) and using 2uv ≤ u2 + v2, we obtain

d

dt
V (xt , yt , zt) ≤ −

1

a
(h(y)− a)z2 −

1

a

(
a

g(y)

y
− f ′(x)

)
y2

+
1

2a
(L + M + 2aδ)z2r(t)+

1

2
(L + M + 2aλ)y2r(t)

+
L

2a

[
1 + a − 2

aλ

L
(1 − β)

] ∫ t

t−r(t)
y2(s)ds

+
M

2a

[
1 + a − 2

aδ

M
(1 − β)

] ∫ t

t−r(t)
z2(s)ds,

since r ′(t) ≤ β, 0 < β < 1.

If we choose λ = (1+a)L
2a(1−β) > 0, and δ = (1+a)M

2a(1−β) > 0, and using (i), (ii), (iv)
and r(t) ≤ γ, we obtain

d

dt
V (xt , yt , zt ) ≤ −

1

2a

{
2ε0 − γ

(
(L + M)(1 − β)+ (1 + a)M

(1 − β)

)}
z2

−
1

2a

{
2(ab − c)− γ

(
a[(L + M)(1 − β)+ (1 + a)L]

(1 − β)

)}
y2,

choosing

γ < min
[

2ε0(1 − β)

(L + M)(1 − β)+ (1 + a)M
,

2(1 − β)(ab − c)

a[(L + M)(1 − β)+ (1 + a)L]

]
,

we have
d

dt
V (xt , yt , zt) ≤ −K (y2 + z2) for some K > 0. (2.4)

Finally, it follows that d
dt V (xt , yt , zt) ≡ 0 if and only if yt = zt = 0,

d
dt V (φ) < 0 for φ 6= 0 and V (φ) ≥ u(|φ(0)|) ≥ 0. Thus, in view of (2.3),

(2.4) and the last discussion, it is seen that all the conditions of Lemma 2.2

are satisfied. This shows that the trivial solution of Eq. (1.1) is asymptotically

stable. Hence the proof of Theorem 2.1 is complete.

Remark 2.1. If h(x ′) = a in (1.1), then Theorem 2.1 reduces to Theorem 1 of

[13] and a result of [1].
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Remark 2.2. If h(x ′) = a, f (x(t − r(t))) = cx(t) in (1.1), then Theorem 2.1

reduces to Theorem 2 of [15].

Example 1.1. Consider the third order nonlinear delay differential equation

x ′′′(t)+
[
x ′2(t)+ x ′(t)+ 2

]
x ′′(t)+ 4x ′(t − r(t))

+ sin x ′(t − r(t))+
x(t − r(t))

1 + x2(t − r(t))
= 0

(2.5)

or its equivalent system form

x ′ = y,

y′ = z,

z′ = −
[
y2 + y + 2

]
z(t)− [4y + sin y] −

x

1 + x2

+
∫ t

t−r(t)
(4 + cos y(s))z(s)ds +

∫ t

t−r(t)

1 − x2(s)

(1 + x2(s))2
y(s)ds

(2.6)

where we suppose that 0 ≤ r(t) ≤ γ, r ′(t) ≤ β, β and γ are positive constants,

γ will be determined later, t ∈ [0,∞). It is obvious that

3 ≤ 4 +
sin y

y
for all y, (y 6= 0), 1 < y2 + y + 2 for all y.

Our main tool is the Lyapunov functional

V (xt , yt , zt) =
1

2
(y + z)2 +

1

6

(
x

1 + x2
+ 3y

)2

+
∫ y

0

[
(v2 + v + 2)− 1

]
vdv +

∫ y

0

(
1 +

sin v

v

)
vdv

+
1

3

∫ x

0

(
3 −

1 − ξ

(1 + ξ 2)2

)
ξ

1 + ξ 2
dξ

+ λ

∫ 0

−r(t)

∫ t

t+s
y2(θ)dθds + δ

∫ 0

−r(t)

∫ t

t+s
z2(θ)dθds

(2.7)

where λ and δ are some positive constants which will be determined later.
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It is clear that the functional V (xt , yt , zt) is positive definite. Hence it is

evident from the terms contained in (2.7), that there exist sufficiently small

positive constant δi , (i = 1, 2, 3) such that

V (xt , yt , zt) ≥ δ1x2 + δ2 y2 + δ3z2 + λ

∫ 0

−r(t)

∫ t

t+s
y2(θ)dθds

+δ
∫ 0

−r(t)

∫ t

t+s
z2(θ)dθds ≥ δ1x2 + δ2 y2 + δ3z2 ≥ δ4(x

2 + y2 + z2)

where δ4 = min{δ1, δ2, δ3}.

Now, the time derivative of the functional V (xt , yt , zt) in (2.7) with respect to

the system (2.6) can be calculated as follows:

d

dt
V (xt , yt , zt) = −

[
(1 + y + y2)− δr(t)

]
z2

−
[(

4 +
sin y

y

)
−

1 − x2

(1 + x2)2
− λr(t)

]
y2

+ (y + z)
[ ∫ t

t−r(t)
(4 + cos y(s))z(s)ds

+
∫ t

t−r(t)

1 − x2(s)

(1 + x2(s))2
y(s)ds

]
− λ(1 − r ′(t))

×
∫ t

t−r(t)
y2(s)ds − δ(1 − r ′(t))

∫ t

t−r(t)
z2(θ)dθ.

(2.8)

Making use of the fact that

|4 + cos y(s)| ≤ 5,

∣
∣
∣
∣
sin y

y

∣
∣
∣
∣ ≤ 1,

∣
∣
∣
∣

1 − x2

(1 + x2)2

∣
∣
∣
∣ ≤ 1,

0 ≤ r(t) ≤ γ, r ′(t) ≤ β, 0 < β < 1

and the inequality 2|uv| ≤ u2 + v2, we obtain the following inequalities for all

terms contained in the inequality (2.8), respectively:

− [(1 + y + y2)− δr(t)] z2 ≤ −(1 − δγ ) z2 ;

−
[(

4 +
sin y

y

)
−

1 − x2

(1 + x2)2
− λr(t)

]
y2 ≤ −(2 − λγ )y2 ;
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(y + z)
{∫ t

t−r(t)
(4 + cos y(s))z(s)+

∫ t

t−r(t)

1 − x2(s)

(1 + x2(s))2
y(s)ds

}

≤
(

5

2
+

1

2

)
r(t)y2(t)+

(
5

2
+

1

2

)
r(t)z2(t)

+
(

1

2
+

1

2

) ∫ t

t−r(t)
y2(s)ds +

(
5

2
+

5

2

) ∫ t

t−r(t)
z2(s)ds

≤ 3γ y2(t)+ 3γ z2(t)+
∫ t

t−r(t)
y2(s)ds + 5

∫ t

t−r(t)
z2(s)ds

and

− δ(1 − r ′(t))
∫ t

t−r(t)
z2(s)ds ≤ −δ(1 − β)

∫ t

t−r(t)
z2(s)ds.

Gathering all these inequalities into (2.8), we have

d

dt
V (xt , yt , zt) ≤ −(1 − (δ + 3)γ )z2 − (2 − (λ+ 3)γ )y2

−(δ(1 − β)− 5)
∫ t

t−r(t)
z2(s)ds

−(λ(1 − β)− 1)
∫ t

t−r(t)
y2(θ)dθ.

Let us choose δ = 5
1−β and λ = 1

1−β . Then, it is easy to see that

d

dt
V (xt , yt , zt) ≤ −

(
1 −

(
8 − 3β

1 − β

)
γ

)
z2 −

(
2 −

(
4 − 3β

1 − β

)
γ

)
y2. (2.9)

Now, in view of (2.9), one can conclude for some positive constants ν and ρ that

d

dt
V (xt , yt , zt) ≤ −νy2 − ρz2 (2.10)

provided

γ < min
{

1 − β

8 − 3β
,

2(1 − β)

4 − 3β

}
.

It is also easy to see that d
dt V (xt , yt , zt) ≡ 0 if and only if zt = yt = 0,

d
dt V (φ) < 0 for φ 6= 0 and V (φ) ≥ u(|φ(0)|) ≥ 0. Thus, all the conditions of

Lemma 2.2 are satisfied. This shows that the trivial solution of (2.5) is globally

asymptotically stable.
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3 The boundedness of solutions

Now, we shall state and prove our main result on boundedness of (1.1) with

p(t, x(t), x ′(t), x(t − r(t)), x ′(t − r(t)), x ′′(t)) 6= 0.

Theorem 3.1 Let all the conditions of Theorem 2.1 be satisfied, in addition

assume that there are positive constants H and H1 such that the following con-

ditions are satisfied for every x, y and z in

� :=
{
(x, y, z) ∈ R3 : |x | < H1, |y| < H1, |z| < H1, H1 < H

}
.

(i) |p(t, x(t), y(t), x(t − r(t)), y(t − r(t)), z(t))| ≤ q(t),

where max q(t) < ∞ and q ∈ L1(0,∞) the space of integrable Lebesgue

functions.

Then, there exists a finite positive constant K1 such that the solution x(t) of

(1.1) defined by the initial functions

x(t) = φ(t), x ′(t) = φ′(t), x ′′(t) = φ′′(t)

satisfies the inequalities

|x(t)| ≤ K1, |x ′(t)| ≤ K1, |x ′′(t)| ≤ K1

for all t ≥ t0, where φ ∈ C2([t0 − r, t0],R), provided that

γ < min
{

2ε0(1 − β)

(L + M)(1 − β)+ (1 + a)M
,

2(ab − c)(1 − β)

a[(L + M)(1 − β)+ (1 + a)L]

}
.

Proof. As in Theorem 2.1, the proof of this theorem also depends on the

scaler differentiable Lyapunov functional V = V (xt , yt , zt) defined in (2.2).

Now, since p(t, x(t), y(t), x(t − r(t)), y(t − r(t)), z(t)) 6= 0,in view of (2.2),

(1.2) and (2.4), it can be easily followed that the derivative of the functional

V (xt , yt , zt) along (1.2) satisfies the following inequality,

d

dt
V (xt , yt , zt) ≤ −K (y2 + z2)+ |y + a−1z|

× |p(t, x(t), y(t), x(t − r(t)), y(t − r(t)), z(t))|

≤ −K (y2 + z2)+ |y + a−1z|q(t).

Comp. Appl. Math., Vol. 29, N. 3, 2010



“main” — 2010/10/28 — 12:04 — page 339 — #11

A.U. AFUWAPE. and M.O. OMEIKE 339

Hence it follows that
d

dt
V (xt , yt , zt) ≤ −K (y2 + z2)+ D2(|y| + |z|)q(t)

≤ D2(|y| + |z|)q(t)

for a constant D2 > 0, where D2 = max{1, a−1}.

Making use of the inequalities |y| < 1 + y2 and |z| < 1 + z2, it is clear that

d

dt
V (xt , yt , zt) ≤ D2(2 + y2 + z2)q(t).

By (2.3), we have

(x2 + y2 + z2) ≤ D−1
1 V (xt , yt , zt)

hence
d

dt
V (xt , yt , zt) ≤ D2(2 + D−1

1 V (xt , yt , zt))q(t).

Now, integrating the last inequality from 0 to t, using the assumption q ∈

L(0,∞) and Gronwall-Reid-Bellman inequality, we obtain

V (xt , yt , zt) ≤ V (x0, y0, z0)+ 2D2 A + D2 D−1
1

∫ t

0
(V (xs, ys, zs))q(s)ds

≤ (V (x0, y0, z0)+ 2D2 A) exp
(

D2 D−1
1

∫ t

0
q(s)ds

)
(3.1)

≤ (V (x0, y0, z0)+ 2D2 A) exp
(
D2 D−1

1 A
)

= K2 < ∞,

where K2 > 0 is a constant, K2 = (V (x0, y0, z0)+ 2D2 A) exp
(
D2 D−1

1 A
)

and

A =
∫ ∞

0
q(s)ds.

Now, the inequalities (2.3) and (3.1) together yield that

x2 + y2 + z2 ≤ D−1
1 V (xt , yt , zt) ≤ K3,

where K3 = K2 D−1
1 . Thus, we conclude that

|x(t)| ≤ K3, |y(t)| ≤ K3, |z(t)| ≤ K3

for all t ≥ t0. That is

|x | ≤ K3, |x ′(t)| ≤ K3, |x ′′(t)| ≤ K3

for all t ≥ t0.

The proof of the theorem is now complete.
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Example 3.1. Consider the third order nonlinear delay differential equation

x ′′′(t)+ [x ′2(t)+ x ′(t)+ 2] x ′′(t)+ 4x ′(t − r(t))

+ sin x ′(t − r(t))+
x(t − r(t))

1 + x2(t − r(t))

=
2

1 + t2 + x2(t)+ x ′2(t)+ x2(t − r(t))+ x ′2(t − r(t))+ x ′′2(t)

(3.2)

or its equivalent system form

x ′ = y,

y′ = z,

z′ = − [y2 + y + 2]z − [4y + sin y] −
x

1 + x2

+
∫ t

t−r(t)
(4 + cos y(s))z(s)+

∫ t

t−r(t)

1 − x(s)

(1 + x2(s))2
y(s)ds

+
2

1 + t2 + x2 + y2 + x2(t − r(t))+ y2(t − r(t))+ z2(t)
.

(3.3)

Observe that

2

1 + t2 + x2 + y2 + x2(t − r(t))+ y2(t − r(t))+ z2
≤

2

1 + t2
= q(t)

for all t ∈ R+, x, y, x(t − r(t)), y(t − r(t)), z and
∫ ∞

0
q(s)ds =

∫ ∞

0

2

1 + s2
ds = π < ∞, that is q ∈ L1(0,∞).

To show the boundedness of solutions we use as a main tool the Lyapunov

functional (2.7). Now, in view of (2.10), the time derivative of the functional

V (xt , yt , zt) with respect to the system (3.3) can be revised as follows:

d

dt
V (xt , yt , zt) ≤

−νy2 − ρz2 +
y + a−1z

1 + t2 + x2 + y2 + x2(t − r(t))+ y2(t − r(t))+ z2
.
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Making use of the fact

1

1 + t2 + x2 + y2 + x2(t − r(t))+ y2(t − r(t))+ z2
≤

1

1 + t2

we get
d

dt
V (xt , yt , zt) ≤ −νy2 − ρz2 +

2|y + a−1z|

1 + t2
.

Hence it is obvious that

d

dt
V (xt , yt , zt) ≤

2|y + z|

1 + t2
≤

2|y| + |z|

1 + t2

≤
2(2 + y2 + z2)

1 + t2
=

4

1 + t2
+

2(y2 + z2)

1 + t2

≤
4

1 + t2
+

2D−1
1

1 + t2
V (xt , yt , zt).

(3.4)

Now, integrating (3.4) from 0 to t, using the fact
1

1 + t2
∈ L1(0,∞) and

Gronwall-Reid-Bellman inequality, it can be easily concluded the bounded-

ness of all solutions of (3.2).
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