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Abstract. In the present work the inverse problem of identification of radiative properties,

the total extinction and scattering coefficients, is analyzed and explicitly formulated based in an

elementary semi-group theory. The Chandrasekhar discrete ordinates finite dimensional approx-

imation of the angular variables is used for the direct problem representation with the stationary

Linear Transport (Boltzmann) Equation in absorbing and scattering media in matrix form. For the

inverse problem we suppose known the albedo operator from measured intensities at the bound-

aries of the medium. Here we analize the inverse problem for an N -dimensional medium and from

the solution of the transmission problem we present an explicit form for the matrix that contains

the total extinction and scattering coefficients.
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1 Introduction

The analysis of inverse radiative transfer and particle transport problems has

several relevant applications in different areas such as reactor theory [5, 34];

heat transfer [40, 42, 47, 48]; remote sensing [1, 38, 59]; global warming models

[23, 44]; natural waters radiative properties estimation [24, 31, 50, 57]; and

tomography [4, 33, 36]; among many others.

In the last years advances in optical tomography have mainly been driven by

applications in biomedical optics. Due to the existence of regions within the

participating medium where the absorption coefficient is not much smaller than

the scattering coefficient, or regions in which both are very low, both the dif-

fusion approximation or the standard back propagation technique in X-ray to-

mography may fail [4, 37] the focus is directed to the construction of transport

model-based image reconstruction, with a proper modelling of the absorption,

scattering, and sometimes emission, phenomena using the radiative transfer

equation and its equivalent Linear Transport (Boltzmann) equation.

Several methods have been developed for its solution, and more recently most

attention has been devoted to the discrete ordinates method [6, 43, 46, 49, 56];

finite element method [40, 45, 60]; finite volume method [11, 25, 27], and Monte

Carlo methods [13, 18, 26].

Fiveland and Jessee [21, 22] tackled the direct radiative transfer problem in

multidimensional media using a finite element formulation of the discrete ordi-

nates methods.

Working with the problem of image reconstruction in two-dimensional media

Reis and Roberty [54] proposed a domain partition consistent with a source-

detector system for parallel beams of radiation. Carita Montero et al. [9] con-

sidered a similar problem for divergent beams of radiation.

Roberty and Silva Neto have studied with co-workers the inverse problem for

radiative coefficients reconstruction [3, 8, 28, 55].

In the present work we introduce a new formalism for the radiative trans-

fer and linear transport problem. Such formulation based in an elementary

semi-group theory is very convenient for the treatment of the inverse prob-

lem in which we are seeking for estimates for the absorption and the scattering

coefficients.
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To the best of our knowledge, the ideas exploited in this paper are new. The

basic references for our development is a mix of fundamental references that

comes from engineering [10, 19, 52]; from applied mathematics [7, 17, 29, 30,

32, 35, 39, 51]; and from physics [12, 20, 53].

2 Mathematical formulation of the direct problem

Consider an absorbing and scattering N dimensional medium with no internal

radiation sources, subjected to externally generated parallel beams of radiation.

For the steady state situation, with no spectral dependency, the following math-

ematical formulation is obtained for the Linear Boltzmann equation [17, 29]

which is usual in the modelling of the interaction of radiation with a participat-

ing medium,

ω ∙ ∇φ(ω, x) + σt(x)φ(ω, x)

=
∫

SN−1
σs(x, ω′ ∙ ω)φ(ω′, x)dω′; (ω, x) ∈ S × �

(1)

where φ ∈ L2(S × �) is the constant velocity radiation intensity, SN−1 × �

is the domain of φ and (x, ω) ∈ � × SN−1, SN−1 ∼= [0, 2π) when N = 2;

σt ∈ L∞(�) is the total extinction coefficient (absorption + out scattering),

σs(x, ω′ ∙ ω) is the scattering coefficient.

Since ω′ ∙ ω = cos θ0, with θ0 the angle between the direction of incident

radiation ω′ and the emergent scattered radiation ω,

σs(∙, s) ∈ L∞(�), a.e. s ∈ [−1, +1]; σs(x, ∙) ∈ L1([−1, +1]), a.e. x ∈ �.

In order to complete the mathematical formulation of the direct problem of

radiative transfer in steady-state, i.e, to formulate the appropriate boundary value

problem, we present next some definitions.

Let 0 = ∂� be the smooth boundary of the convex region � ⊂ RN and

6± = {(ω, σ ) ∈ SN−1 × 0; ±ν(σ ) ∙ ω > 0} respectively the phase space

surface of the incident and emergent radiation at the physical surface ∂�; ν

represents the outward normal to ∂� and σ a location at this boundary.

We also define the distance from the position x to the boundary following

directions ±ω as

τ±(ω, x) = sup{t ∈ R | x ± tω ∈ ∂�}
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and

τ(ω, x) = τ+(ω, x) + τ−(ω, x)

as the effective thickness of the body � in the direction ω with support in x

and L2(6
± ; τ |ν(σ ) ∙ ω|dσdω) becomes the appropriate space for traces of

the operators in boundary values problems related to equation (1). For a more

detailed discussion see [16, 17, 29, 32, 35].

We are interested in two boundary value problems related to equation (1),

respectively, the direct problem in which the incident radiation is prescribed in

L2(6−; τ |ν(σ ) ∙ ω|dσdx).

φ(ω, σ) = φin(ω, σ ) for (ω, σ ) ∈ 6− (2)

and the adjoint problem for equation (1)

−ω ∙ ∇φ∗(ω, x) + σt(x)φ∗(ω, x)

=
∫

SN−1
σs(x, ω′ ∙ ω)φ∗(ω′, x) dω′; (ω, x) ∈ S × �

(3)

in which the emergent radiation

φ∗(ω, σ ) = φout(ω, σ ) for (ω, σ ) ∈ 6+ (4)

is prescribed in L2(6+ ; τ |ν(σ ) ∙ ω|dσdx).

We obviously note that for each adjoint problem there is a direct problem such

that

φ(−ω, σ) = φ∗(ω, σ ) for (ω, σ ) ∈ 6+ (5)

Observe that if (ω, σ ) ∈ 6+ then (−ω, σ) ∈ 6−, and these properties are a

consequence of the adjointness of the scattering kernel in equation (1).

No internal sources are taken into account in our analysis, and the boundary of

the medium is transparent, i.e., no reflections at the boundaries are considered.

For a more general discussion about these questions see [17].

In general the transport theory is formulated in L1, since the main physical

quantity in this theory, the reaction rate, is in L1 when the reaction coefficients

are in L∞ and the radiation flux is in L1. For our purpose of study, we will

restrict our approach to L2. More general results for L p, 1 ≤ p < +∞, can be

found in [16, 17, 29].
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The steady state transport equation (1), is composed with the following oper-

ators:

The operator

T0 : W2(SN−1 × �) −→ L2(SN−1 × �)

φ(ω, x) 7→ [T0φ](ω, x) = ω ∙ ∇φ(ω, x)
(6)

where derivatives are in the sense of distributions.

The space L2(SN−1 × �) is the closure of C(SN−1 × �) with respect to the

norm

‖φ‖L2 =
(∫

SN−1

∫

�

|φ(ω, x)|2 dxdω

)1/2

where dω denotes the measure on SN−1 associated with the Lebesgue measure

in RN .

The space W2(SN−1 × �) is defined from L2(SN−1 × �) as

W2 = {φ ∈ L2(SN−1 × �) ; T0φ ∈ L2(SN−1 × �)},

W2 is a Hilbert space for the norm

‖φ‖L2 =
(∫

SN−1

∫

�

[
|φ(ω, x)|2 + |T0φ(ω, x)|2

]
dxdω

)1/2

.

We note that

L2
(
SN−1; W 1,2(�)

)
⊂ W2 ⊂ L2

and W2 is dense in L2. The operator T0 is accretive in L2 and its maximal

domain is W2.

It is well known that T0 is the generator of the strongly continuous group

[U0(t)φ](ω, x) = φ(ω, x − tω) of isometries on L2(SN−1 × �) preserving the

nonnegative functions, see [16, 17, 29].

The second operator is

A1 : L2(SN−1 × �) −→ L2(SN−1 × �)

φ(ω, x) 7→ [A1φ](ω, x) = σt(x)φ(ω, x)
(7)

is a bounded operator which has continuous inverse for σt(x) > 0, x ∈ �.
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The composed operator T1 = (T0 + A1) is the generator of a strongly contin-

uous group U1(t) = etT1 .

[U1(t)φ](ω, x) = exp
[∫ t

0
σt(x − sω)ds

]
φ(ω, x − tω).

The third operator

A2 : L2(SN−1 × �) −→ L2(SN−1 × �)

φ(ω, x) 7→ [A2φ](ω, x)
(8)

where

[A2φ](ω, x) = −
∫

SN−1
σs(x, ω′ ∙ ω)φ(ω′, x) dω′,

is compact.

The composed transport operator

T = (T0 + A1 + A2) : W2(SN−1 × �) → L2(SN−1 × �)

generates a strongly continuous semigroup U (t) = e−tT , for which does not

exist an explicit formula.

3 Formulation of the inverse problem with the Discrete Ordinates

Method

The inverse problem for external detectors and sources related to equation (1),

can be stated in the following way:

We suppose the full knowledge of the incident boundary conditions

{
φin(ω, σ ); (ω, σ ) ∈ 6−

}

which is due to the control of external sources placed around the region � and

also that the exit boundary conditions {φout(ω, σ ); (ω, σ ) ∈ 6+} are known in

part, being determined from external detector measurements.

We assume that we know the albedo operator (3) in the case of transillumina-

tion of the region �. The other possible situation is when the optical thickness

of the medium is high, that is, the radiation is completely absorbed and scattered

near its point of incidence on the surface.
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Following mathematical proofs of existence, uniqueness and stability of the

inverse transport problem, see [58], we define the albedo operator as the influx

to outflux mapping:

3 : L2(6− ; τ |ν(σ ) ∙ ω| dσdω) −→ L2(6+ ; τ |ν(σ ) ∙ ω| dσdω)

φin(ω, x) 7→ [φ |6+](ω, x) = [φ |out ](ω, x)
(9)

The inverse problem of determining the functions σt and σs from the knowl-

edge of 3 has been partially responded in Refs. [14] and [15] for the transient

and steady state cases for dimension ≥ 2, since in the one dimensional case the

coefficients are expected to be reconstructed only for homogeneous media.

We here assume that the reconstruction is possible, that is, the albedo operator

is injective and we treat only those problems related to the range and different

orders of magnitude in the emergent flux (outflux).

The central hypotheses in this work lies in the relation between the albedo

supposed to be characterized by its graph

(φin, φout) ∈ L2(6− ; τ |ν(σ ) ∙ ω| dσdω) × L2(6+ ; τ |ν(σ ) ∙ ω| dσdω)

and the bounded operator

A1 + A2 ∈ L
(
L2(SN−1 × �)

)

In order to simplify the problem, we will use the Chandrasekhar discrete or-

dinates finite dimensional approximation of the angular variables [12]. This

procedure will give a matrix formulation for the angular problem.

The Chandrasekhar discrete ordinates method uses either one dimensional or

two dimensional quadrature formula to approximate the integral in the definition

of the operator A2.

For the one dimensional problem the quadrature uses the Legendre polynomials

approximation for the scattering kernel and its weights are determined in such a

way that the formula integrates correctly up to a polynomial of degree 2M − 1.

This generates the SM method (we use here M instead the more usual subscript

N used in nuclear reactor physics terminology [39]) for the one dimensional

transport equation.
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For multidimensional geometries there are different procedures for the deter-

mination of the quadratures sets and the corresponding weights. The reader can

find appropriated information in Refs. [10, 19, 39].

In this way, the function with angular dependence, φ ∈ L2(SN−1 × �) is

replaced by the vector field φ(M) ∈ L2(�)M , whose M components are

φ(M)i (x) = φ(ωi , x), i = 1, . . . , M.

The operator T0 is substituted in a straightforward manner by the following

matrix operator:

T M
0 : L2(�)M −→ L2(�)M

φM(x) 7→
[
T M

0 φM
]
(x)

(10)

where [T M
0 φM ](x) = ∇ ∙ (8T

MW ) and W is the matrix of vectors,

W =









Eω1 0 0 ∙ ∙ ∙ 0

0 Eω2 0 ∙ ∙ ∙ 0
...

...
... ∙ ∙ ∙ 0

0 0 0 ∙ ∙ ∙ EωM









whose diagonal entries are the discrete directions Eωi , i = 1, . . . , M .

Note that Eωi = ω1i Ee1 + ∙ ∙ ∙ + ωMi EeM , i = 1, . . . , M are the cartesian

representation of vectors Eωi . Obviously,

W = W1e1 + ∙ ∙ ∙ +WM eM

in a straightforward manner. The domain D(T M
0 ) of the new operator will be

the space
∏M

m=1 H 1
m,M(�), where

H 1
m,M(�) =

{
φm ∈ L2(�) | ωm ∙ ∇φ ∈ L2(�)

}

The operators A1 and A2 are replaced, respectively, by

AM
1 : L2(�)M −→ L2(�)M

φM 7→
[
σtφM

] (11)
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and
AM

2 : L2(�)M −→ L2(�)M

φM 7→
[
AM

2 φM
] (12)

Here, σ M
t = σt I M is a diagonal matrix, with IM the identity matrix in

RM×M and
(
σ M

s

)
i j = w

(
ωi ∙ ω j

)
σs

(
x, ωi ∙ ω j

)

is the i, j entry of the scattering matrix, with w the gaussian quadrature weight.

Here the parameters in the two matrix AM
1 and AM

2 are in L∞(�).

The scattering matrix will present different types of symmetry, depending

mainly on the dimension of the problem and on the geometry, but in all the

situations, the matrix AM
2 will be symmetric. To simplify the notation, we will

continue to denote the finite dimensional matrix operators as T0, A1 and A2.

The discrete ordinates form of equation (1) is

∇ ∙
[
φT EW

]
(x) = −

[
φT A

]
(x), x ∈ � (13)

where A = A1 + A2.

In order to treat the boundary conditions for influx and outflux radiation, see

equations (2) and (4), in the discrete ordinates form of the problem, we introduce

the following definitions:

0±
i (x) =

{
σ ∈ 0 ; x ± tωi = σ

}
,

τ±
i (x) = sup

{
t ∈ R | x ± tωi ∈ ∂�

}
and

τi (x) = τ+
i (x) + τ−

i (x);

the physical meaning of the boundary space is the same as in section 2.

Now L2(0±
i ; τi |ν(σ ) ∙ ω|dω) is the space for the component i of the flux in

the boundary. The signal ± will be chosen accordingly to the angle between the

outward normal ν(σ ) and the direction ωi and indicates whether the radiation is

incident or emergent.

This situation generates a complicated angular range in the direct problem,

because its boundary condition prescribes only the flux of incident radiation and

the emergent flux must be determined in the same physical position in which

the incident flux is prescribed, so the surface normal ν(σ ) at each position
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σ ∈ 0 divides SN−1 in two ranges that are σ dependent, and we can write

φ as composed of two parts φ = [φ−, φ+], which contains the two types of

information.

The same does occur in the inverse problem but with a fundamental difference:

the albedo is supposed to be prescribed in such way that it determines the coef-

ficients. Here we must answer a new question: What means in practice to know

the albedo?

One possible answer is that in several experiments the emergent flux from

different solutions of the transport equation for independent data at the incident

boundary is measured by controlling the exit boundary through perfect detectors.

This situation corresponds to a generalization of the transmission tomography

problem. So, we can suppose that we know the albedo through its graph in many

boundary value measurements.

As stated before, the graph of the albedo operator is

(φin, φout) ∈ L2(6− ; τ |ν(σ ) ∙ ω| dσdω) × L2(6+ ; τ |ν(σ ) ∙ ω| dσdω)

but in a real experiment only a finite set of problems, that is, source-detector

pairs will be determined.

The questions related to the instrumentation for this problem is out of the

scope of this paper and will not be discussed here. Obviously, according to the

type of the boundary 0 = ∂� for �, this may become a very complicated

problem. Meanwhile, assuming that this problem has been solved, we will

build our model by using the discrete ordinates sets from the Discrete Ordinates

Method.

Let {φi (x) ; i = 1, . . . , M} represent a set of experiments. We consider in

the discrete problem given by equation (13) a set of M fundamental boundary

value problems generated by a linearly independent set of boundary conditions

{
φi (σ ) =

[
φ−

i , φ+
i

]
(σ ) =

[
φin, φout

]
(σ ) ; i = 1, . . . , M, σ ∈ 0

}
(14)

where the positive range components have been determined by using the

albedo operator.

Since the discrete problem given by equation (13) has a unique solution for a

prescribed incident radiation, the set of M vectors φi (x) are linearly indepen-
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dent and can be used to form the columns of a matrix 8, that is

8 =






| | |

φ1 φ2 ∙ ∙ ∙ φM

| | |






which is prescribed on the boundary σ ∈ 0 and denoted by 8b(σ ).

These solutions of the problem given by equation (13) for the linearly inde-

pendent set of boundary conditions can be grouped in a unique matrix equation

∇ ∙ [8T EW ](x) = −[8T A](x), x ∈ �

8(σ) = 8b(σ ), σ ∈ 0
(15)

By construction, the matrix 8(σ) has full rank, for each σ ∈ 0. So

Lemma 3.1. If 8(x) satisfies equation (13) and 8(σ) = 8b(σ ) has full rank

for every σ ∈ 0, then 8(x) has full rank for every x ∈ �.

Proof. We know that for every column φi (σ ) of 8(σ), σ ∈ 0 the solution

of equation (13) is unique, and that, by the linearity of the equation, if 8(x) is

a solution of (15) for the boundary data 8b(σ ), then for every constant vector

cT ∈ R1×M , cT 8T (x) satisfies equation (15) for the data cT 8T (σ ).

Suppose that there exists a x ∈ � such that cT 8T (x) = 0. In such situation

8T
c = cT 8T is the unique solution of the problem given by equation (15) for

the boundary data 8c(σ ) = cT 8(σ) which is by hypothesis 6= 0.

We face here a contradiction based on the uniqueness and on the nature of

the solution for this kind of transport equation. In presence of scattering, every

stationary non trivial solution can not have all angular components null inside

the domain �. So the contradiction establishes that no such point exists.

We can use this property to invert 8 and obtain for 8 ∈ C(�)m×M that

∇ ∙ [log(8T ) EW ](x) = −A(x), x ∈ � (16)

Equation (16) may be interpreted as a generalization of the transmission

tomography equation since when we neglect the scattering, it can be integrated

to produce the usual transmission tomography system for the discrete set of

directions {ωi , i = 1, . . . , M}.
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In case of scattering these equations must be integrated in the whole domain

� and by the divergence theorem the trace of the logarithm of matrix 8T ∈

C(�)M×M is related with the matrix of coefficients A, that is
∫

0

log(8T ) EW ∙ ν(σ ) dσ = −
∫

�

A(x) dx (17)

These last equations give an explicit inversion formula for the operator A.

Depending on the dimension of the domain, that is, one, two or three dimen-

sions, we will define different strategies for the implementation of the problem

of coefficients reconstruction, all using equations (16) and (17).

For a one-dimensional homogeneous media with slab geometry and bound-

aries in x = 0 and x = τ1 we obtain:

A = −T ln
[
8(τ1)8

−1(0)
] 1

t
(18)

where t is the slab thickness, T corresponds to T0, and 8(0) and 8(τ1) the

incident and emergent radiative flux in the boundaries at x = 0 and x = τ1,

respectively.

As an example of the new methodology application we present the study of

the one-dimensional stationary problem in an accompanying article [2].

4 Conclusions

In this article we derived a new explicit formulation for an inverse radiative

transfer problem for identification of the extinction and scattering coefficients in

an N -dimensional participating media using only external detectors.

Here we analyze the albedo operator and present an explicit expression for the

matrix A that contains the total extinction and scattering coefficients.

In an accompanying article [2] we apply this formulation for a one-dimen-

sional inverse radiative transfer problem. We will show the derivation of the

explicit equation for matrix A and the strategy developed to extract the total

extinction and scattering coefficients contained in it from albedo operator infor-

mation.
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[31] A. Kaşkaş, C. Tezcan and M.Ç. Güeçyüz, An application of transport theory for optical
oceanography: the isotropic point source. J. Opt. A: Pure Appl. Opt., 8(8) (2006), 683–688.

[32] O. Kavian, Four lectures on parameter identification in elliptic partial differential equa-
tions. Three courses on Partial Differential Equations, IRMA Lect. Math. Theor. Phys., de
Gruyter(ed.), Berlin, 4 (2003), 125–162.

[33] F.E. Khettabi and M.A. Hussein, An inverse problem for three-dimensional x-ray scat-
ter/Transmission imaging. Inverse Probl., 19 (2003), 477–495.

[34] V.G. Kinelev, P.M. Shkapov and V.D. Sulimov, Application of global optimization to
VVER-1000 reactor diagnostics. Prog. Nucl. Energ., 43(1-4) (2003), 51–56.

[35] A. Kirsch, An introduction to the mathematical theory of inverse problems. Appl. Math.
Sci., Springer Verlag, Berlin, 120 (1996).

[36] A.D. Klose and A.H. Hielscher, Optical tomography using the time-independent equation of
radiative transfer – Part 2: Inverse model. J. Quant. Spectrosc. Radiat. Transfer, 72 (2002),
715–732.

[37] A.D. Klose, U. Netz, J. Beuthan and A.H. Hielscher, Optical tomography using the time-
independent equation of radiative transfer – Part 1: Forward model. J. Quant. Spectrosc.
Radiat. Transfer, 72 (2002), 691–713.

[38] B. Koetz, F. Baret, H. Poilvé and J. Hill, Use of coupled canopy structure dynamic and
radiative transfer models to estimate biophysical canopy characteristics. Remote Sens.
Environ., 95(1) (2005), 115–124.

[39] E.E. Lewis and W.F. Miller, Jr., Computational Methods of Neutron Transport. John Wiley
and Sons, Inc. USA (1984).

[40] L.H. Liu and B.X. Li, Inverse radiation problem of axisymmetric turbulent sooting free
flame. J. Quant. Spectrosc. Radiat. Transfer, 75 (2002), 481–491.

[41] L.H.Liu and L.J. Liu, Discontinuous finite element approach for transient radiative transfer
equation. J. Heat Trans., 129(8) (2007), 1069–1074.

[42] L.H. Liu and G.L. Man, Reconstruction of time-averaged temperature of non-axisym-
metric turbulent unconfined sooting flame by inverse radiation analysis. J. Quant. Spectrosc.
Radiat. Transfer, 78 (2003), 139–149.

[43] L.H. Liu and L.M. Ruan, Numerical approach for reflections and transmittance of finite
plane-parallel absorbing and scattering medium subjected to a normal and diffuse inci-
dence. J. Quant. Spectrosc. Radiat. Transfer, 75 (2002), 637–646.

[44] J. Liu, X. Xia, P. Wang, Z. Li, Y. Zheng, M. Cribb and H. Chen. Significant aerosol
direct radiative effects during a pollution episode in northern China. Geophys. Res. Lett.,
34(23) (2007), L23808.

[45] T.A. Manteuffel and K.J. Ressel, Least-squares finite-element solution of the neutron
transport equation in diffusive regimes. SIAM J. Numer. Anal., 35(2) (2002), 806–835.

[46] V.A. Markel, G.Y.Panasyuk and J.C. Schotland, New approach to solution the radiative

Comp. Appl. Math., Vol. 29, N. 3, 2010



“main” — 2010/10/28 — 12:14 — page 358 — #16

358 AN EXPLICIT FORMULATION INVERSE TRANSPORT PROBLEM – PART I

transport equation. Biomedical Optics 2006 Technical Digest, (CD) OSA, Washington
DC. (2006).

[47] M.P. Mengüç and P. Dutta, Scattering tomography and its application to sooting diffusion
flames. J. Heat Transfer, 116 (1994), 144–151.

[48] A. Milandri, F. Asllanaj and G. Jeandel, Determination of radiative properties of fibrous
media by an inverse method – comparison with the Mie Theory. J. Quant. Spectrosc. Radiat.
Transfer, 74 (2002), 637–653.

[49] C. Muresan, R. Vaillon, Ch. Menezo and R. Morlot, Discrete ordinates solution of coupled
conductive radiative heat transfer in a two-layer slab with Fresnel interfaces subject to diffuse
and obliquelly collimated irradiation. J. Quant. Spectrosc. Radiat. Transfer, 84 (2004),
551–562.

[50] A.H. Nasr, B.M. El Leithy and A.K. Helmy, Assessment of some water quality parameters
using MODIS data along the Red Sea Coast, Egypt. ICGST Int. J. on Graphics, Vision and
Image Processing, GVIP 7(3) (2007), 25–30.

[51] F. Natterer, The Mathematics of Computarised Tomography. John Wiley and Sons, Inc.,
New York (1986).

[52] M.N. Özisik, Radiative Transfer and Interactions with Conduction and Convection. John
Wiley and Sons, Inc., USA. (1973).

[53] M. Reed and B. Simon, Scattering theory. Methods of Modern Mathematical Physics,
Academic Press, New York, 3 (1979).

[54] M.L. Reis and N.C. Roberty, Maximum entropy algorithms for image reconstruction from
projections. Inverse Prob., 8 (1992), 623–644.

[55] N.C. Roberty, On the influx to the outflux mapping to the transport equation. 4th Interna-
tional Conference on Inverse Problems in Engineering: Theory and Practice, Proc., Angra
dos Reis, Brazil (2002).

[56] C. Siewert, A discrete-ordinates solution for radiative-transfer models that include polar-
ization effects. J. Quant. Spectrosc. Radiat. Transfer, 64 (2000), 227–254.

[57] R.P. Souto, H.F. Campos Velho and S. Stephany, Reconstruction of vertical profiles of
the absorption and scattering coefficients from multispectral radiance. Math. Comput.
Simulat., Elsevier Science Publ., Amsterdam, 73(1) (2006), 255–267.

[58] P. Stefanov, Inverse problem in transport theory. Inside Out: Inverse Problems and
Applications, MSRI Publications, 47 (2003).

[59] L.L. Strow, S.E. Hannon, S. de Souza-Machado, H.E. Motteler and D. Tobin, An overview
of the AIRS radiative transfer model. IEEE Trans. Geosci. Remote Sens., 41(2) (2003),
303–343.

[60] T. Tarvainen, M. Vauhkonen, V. Kolehmainen and J.P. Kaipio, Finite-element approxi-
mations for the radiative transfer equation. Int. J. Numer. Meth. Eng., 65(3) (2005),
383–405.

Comp. Appl. Math., Vol. 29, N. 3, 2010


