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Abstract. The steady state inverse radiative transfer problem in one-dimensional participating

media is studied as an example of application of the new methodology presented in a accompanying

paper by the authors [2]. Spectral methods are used for the appropriate analysis of the direct

transport problem. For the inverse problem, we present a matrix that involves only values of the flux

intensities at the boundary of the medium. Its columns are built with a set of linearly independent

solutions for the system, which is formed when angular half-range prescribed boundary values

and the complementary measured half-range boundary values are coupled. The final inverse

albedo problem is treated as a full range two point boundary value problem. Test cases results are

presented.
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1 Introduction

An important inverse problem with many relevant applications that has been
attracting the attention of a growing number of researchers is the one related
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to the determination of radiative properties in participating media such as the
absorption and scattering coefficients. These properties may depend on a number
variables: time, position, angle, and energy or wavelength.

This type of inverse problem is applied in non-destructive testing of materials
in the field of engineering [7], in biomedicine including the diagnosis of bio-
logical tissues and physiologic measurements, in the pharmaceutical industry
for on-line measurements of active substance concentration in pharmaceutical
formulations, in the food industry to test the quality of the products [1], in remote
sensing of marine parameters as chlorophyll concentrations, backscattering co-
efficient and aerosol parameters such as optical depth [3, 11, 12] or atmospheric
pollution research [4], among many other fields of interest.

Inverse radiative transfer problems can be formulated either explicitly or im-
plicitly [10]. We developed an explicit formulation for the inverse radiative
transfer problem for estimating the total extinction and scattering coefficients in
an absorbing and anisotropic scattering medium only using external detectors,
which is presented in an accompanying article [2]. This formulation uses con-
cepts of the discrete ordinates method and matrix operators for modelling the
direct problem. The inverse problem is formulated using the relation between
the albedo and the collision operator.

In this paper this new formulation is applied to one-dimensional homogeneous
and heterogeneous participating media in steady state. The finite dimensional
version of the problem is obtained with the discretization of the angular domain
using the concepts of the discrete ordinates method, and the expansion of the
phase function of anisotropic scattering in a series of Legendre polynomials.

Two matrices are constructed, one for each boundary of the one dimensional
domain. Such matrices are built using a proper arrangement of the boundary
conditions imposed to the radiative transfer problem, and the experimental data
on the radiation that leaves the medium under analysis.

A computational routine was developed and implemented in order to show the
feasibility of the formulation, and test cases results are presented.

2 Mathematical formulation of the one dimensional discrete problem

The Linear Boltzmann Equation for the steady state situation, with no spectral
dependency [5], usually applied in the modelling of the interaction of radiation
with a participating medium is

ω ∙ ∇φ(ω, x) = −σt(x)φ(ω, x)

+
∫

SN−1
σs(x, ω

′ ∙ ω)φ(ω′, x) dω′; (ω, x) ∈ S ×�
(1)
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where φ ∈ L2(S × �) is the constant velocity radiation intensity, SN−1 × � is
the domain of φ and (x, ω) ∈ � × SN−1, SN−1 ∼= [0, 2π) when N = 2;
σt ∈ L∞(�) is the total extinction coefficient (absorption + out scattering);
σs(x, ω′ ∙ ω) is the scattering coefficient; and ω′ ∙ ω = cos θ0, with θ0 the an-
gle between the direction of incident radiation ω′ and the emergent scattered
radiation ω,

σs(∙, s) ∈ L∞(�), a.e. s ∈ [−1, 1]; σs(x, ∙) ∈ L1([−1, 1]), a.e. x ∈ �.

The one dimensional steady state problem for equation (1) corresponds to the
slab problem in the transport theory, and in this situation we expect to recon-
struct only spatially homogeneous coefficients considering only experimental
data acquired with external detectors. This is, therefore, an important test for the
formalism we proposed in the accompanying paper [2].

The one dimensional version of equation (1) is written as

μ
∂φ(μ, x)

∂x
= −σt(x)φ(μ, x)+

L∑

l=0

σsl(x)pl(μ)

×
∫ +1

−1
φ(μ′, x)pl(μ

′)dμ′; (μ, x) ∈ (0, τ1)× [−1, 1]

(2)

in which we identify
Eω ∙ ∇ = Eω ∙ Eex

∂
∂x = μ ∂

∂x , that is, φ(ω, x) ≡ φ(μ, x);
[A1φ](μ, x) = σt(x)φ(μ, x) is the extinction operator; and
[A2φ](μ, x) =

∫ +1
−1

[ ∑L
l=0 σsl(x)pl(μ)pl(μ

′)φ(μ′, x)
]

dμ′ is the scattering
operator. Here {pl(μ) ; l = 0, . . . , L} are the normalized Legendre polynomi-
als up to order L .

We introduce here the Hilbert spaces L2((−1,+1) × (0, τ1)) of square inte-
grable functions in the phase space (−1,+1) × (0, τ1). Note that τ1 = τ(1)
means the thickness in the direction μ = 1 and that μ = 0 is a singular value
for equation (2).

The direct problem for equation (2) has half range boundary value conditions
in the two point boundary {0, τ1}

φ(μ, 0) = φin
− (μ) − 1 ≤ μ = Eω ∙ Eν(0) < 0 (3)

φ(μ, τ1) = φin
− (μ) − 1 ≤ μ = Eω ∙ Eν(τ1) < 0 (4)

The parameters to be reconstructed in this case are the vectors of scattering
kernel coefficients σs = {σsl ≥ 0, l = 0, . . . , L ,∈ RL+1} and σt ∈ R1. We
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may suppose σsl ; l = 0, . . . , L , to be real, since these has been built from a
truncated Legendre polynomials series of the scattering kernel.

Since we are interested in an absorbing non multiplicative media, we also
have σt > σs0 > σs1 > σs(l+1); l = 1, . . . , L . For a better description of this
particular subject see Ref. [5].

The multiplicative operator

μ(.) : L2
(
[−1,+1] × (0, τ1)

)
−→ L2

(
[−1,+1] × (0, τ1)

)

φ(μ, x) 7→ μφ(μ, x)
(5)

is bounded, but have unbounded inverse due to its behavior near μ = 0. Its
spectra is continuous in the entire interval [−1,+1] by obvious reasons. It is
also self-adjoint.

The operator A1, here named extinction operator,

A1(∙) : L2
(
[−1,+1] × (0, τ1)

)
−→ L2

(
(−1,+1)× (0, τ1)

)

φ(μ, x) 7→ [A1φ] = σtφ(μ, x)
(6)

is bounded and invertible since σt > 0. Also for the two variables μ and x it
behaves like the identity operator. It is self-adjoint.

The operator A2, here named scattering operator

A2(∙) : L2
(
[−1,+1] × (0, τ1)

)
−→ L2

(
(−1,+1)× (0, τ1)

)

φ(μ, x) 7→ [A2φ]
(7)

where

[A2φ] = −
L∑

l=0

σsl pl(μ)

∫ +1

−1
pl(μ

′)φ(μ′, x) dμ′,

is finite rank, and therefore compact. Its set of eigenvalues and eigenfunctions
is {(σsl, pl(μ)), for l = 0, . . . , L}.

The sum of operators A1 and A2 is the collision operator A. This operator

A(∙) : L2
(
[−1,+1] × (0, τ1)

)
−→ L2

(
[−1,+1] × (0, τ1)

)

φ(μ, x) 7→ [Aφ](μ, x)
(8)

where

[Aφ](μ, x) = σtφ(μ, x)+
L∑

l=0

σsl pl(μ)

∫ +1

−1
pl(μ

′)φ(ω′, x) dμ′

is bounded, strictly positive, self-adjoint and has inverse

A−1(∙) : L2
(
[−1,+1] × (0, τ1)

)
−→ L2

(
[−1,+1] × (0, τ1)

)

f (μ, x) 7→ [A−1 f ](μ, x)
(9)
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where [A−1 f ](μ, x) = (1/σt) f (μ, x)+ [K1 f ](μ, x), and

[K1 f ](μ, x) =
L∑

l=0

σsl/(σt − σsl)pl(μ)

∫ +1

−1
pl(μ

′)φ(μ′, x) dμ′

3 Spectral analysis of the one dimensional problem

In a formal operator notation the equation (2) can be written as
[

T
∂φ

∂x

]
(μ, x) = −[Aφ](μ, x) (10)

and
∂φ

∂x
(μ, x) = −[T −1 Aφ](μ, x) (11)

or, by defining the current ψ = μφ

∂ψ

∂x
(μ, x) = −[AT −1ψ](μ, x) (12)

In the two situations we obtain an operator, that for Eq. (11) is defined as

B(∙) = A−1T (∙) : L2([−1, 1] × (0, τ1)) −→ L2([−1, 1] × (0, τ1)) (13)

which is the multiplication of two self-adjoint operators A−1 and T .
They do not commute, so, B is not expected to be itself a self-adjoint op-

erator. But it is not difficult to see that B is similar to a self-adjoint operator,
that is

B = A−1/2
(

A−1/2T A−1/2
)

A1/2

and that the characteristic function in the interval [−1,+1] is a cyclic vector
for B, see [5]. So, the spectra of B is simple and there exists a Hilbert space
which is equivalent to L2(SN−1 × �) and has the appropriate internal product
with respect to which the operator B is self-adjoint.

Under this situation there exists a unitary transformation F that diagonalizes
A by mapping the original Hilbert space (in which the Legendre polynomials
are), in another Hilbert space with a Borel measure (in which the Chandrasekhar
polynomials are).

In this transformed space the operator of multiplication by the eigenvalues
(the union of a continuous part of spectra that comes from T and a discrete part
that comes from operator A) plays the role of the operator B. The semigroup
generated by the operator B is holomorphic. For details see [5, 6].
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Formally, for
A = T FTλF−1 (14)

where Tλg = {λg | λ eigenvalue of T −1 A}.
The solution of equation (10) becomes

φ(x) = exp
[
− (x − x0)T

−1 A
]
φ(x0) (15)

where
U (x − x0) = exp

[
− (x − x0)T

−1 A
]

is the representation of the semigroup generated by T −1 A.
We will now use a set of fundamental solutions of the transport equation (2) and

equations (3) and (4) in order to establish the connection between the transport
problem with scattering and the equation (15).

4 Chandrasekhar discrete ordinates approximation

This analysis can be done with a distribution approach, but we preferred to adopt
the discrete ordinates approximation to work in a finite dimensional phase space
and with a matrix operator.

So, let {wi ; i = 1, . . . , M} such that wi = wM+1−i , i = 1, . . . , M/2; M
even, are the appropriate weights to be used in the discrete problem. In this case
the radiation intensity (or particle flux) φ is substituted by the vector-valued
function,

φT = [φ1, . . . , φM ]

with φi ∈ H 1(0, τ1), i = 1, . . . , M .
It is important, due to range related questions, to establish an order in a such

way that the first M/2 components correspond to the finite sequence of quadra-
ture weights {wi } ∈ (−1, 0). We call this first part of φ by φ−. The remaining
sequence {wi } ∈ (0,+1) will be called φ+ and the vectorial flux will be written

φT = [φ−, φ+] (16)

This decomposition is consistent with the half range two point boundary
value prescribed in the slab problem and also with the outflux measurement, see
Figure (1).

φ+(0) = φin,0 (17)

φ−(τ1) = φin,τ1 (18)

φ−(0) = φout,0 (19)
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Figure 1 – One-dimensional participant medium model.

φ+(τ1) = φout,τ1 (20)

If we denote W the diagonal matrix composed with the quadrature weights,
equations (2) and (10) can be written as

T
dφ

dx
= −AWφ (21)

where we are using the fact that A is symmetric and commutes with W .
The matrix form of the direct problem is: To find

φi ∈ H 1(0, τ1), i = 1, . . . , M;

such that equations (21), (17) and (18) hold.
In order to solve this problem we determine the discrete spectra of the matrix

T −1 AW and use the spectral representation of the semi group solution, equa-
tion (15), to propagate the two point boundary values throughout the other slab
points.

Note that here we have to partition the matrices in order to be consistent with
the fact that we only know half range of the angular variable in each boundary
position 0 and τ1.

Note also that the discrete calculated numerical spectra is adherent to the
compact union of the continuous and the discrete spectra and that we must be
aware of the singularity introduced in the problem by μ = 0. This singularity
is avoided with the way the quadrature points are calculated, but this natural
regularization is not sufficient when the number of points grows.
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Since we are dealing with exponential functions, for very large M will be
necessary to filter the smaller values that appear when operator A−1T is being
calculated. The numerical implementation and test cases results are presented
in the next section.

In this simplified situation we can derive an explicit formula for the albedo
operator, 3. For this we use the exponential formula (15) and the factorization
equation (14) to deduce an explicit expression for the transmission problem.

Let {φi (x), i = 1, . . . , M; 0 < x ≤ τ1} a set of M linearly independent
solutions. Then

8 =




| | |
φ1 φ2 ∙ ∙ ∙ φM

| | |



 (22)

satisfy
8(x) = F exp(−x1)F−18(0); 0 ≤ x ≤ τ1 (23)

were 1 is a diagonal matrix containing the eigenvalues of [T −1 A].

We now adopt the two range decomposition

8 =













| | |
φ−

1 φ−
2 ∙ ∙ ∙ φ−

M
| | |

− − − − −− − − − − −− − − − − − − − −−
| | |
φ+

1 φ+
2 ∙ ∙ ∙ φ+

M
| | |













(24)

decompose the matrix 8(x) in four parts, 8mm(x), 8mp(x), 8pm(x) and
8pp(x) as shown

8(x) =













| | |
φmm(x) | φmp(x)

| | |
− − − − −− − − − − − − − −−

| | |
φpm(x) | φpp(x)

| | |













(25)

and prescribe partially the flux in the two surfaces x = 0 and x = τ1 in the
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following way

8(0) =













| | |
φmm(0) | φmp(0)

| | |
− − − − −− − − − − − − − −−

| | |
I | 0
| | |













(26)

and

8(τ1) =













| | |
0 | I
| | |

− − − − −− − − − − − − − −−
| | |

φpm(τ1) | φpp(τ1)

| | |













(27)

where φpm(0) = I and φmp(τ1) = I are the prescribed intensities for the
external sources, φpp(0) = 0 and φmm(τ1) = 0 are the respective boundary
conditions of zero flux in the other side of the domain; and φmm(0), φmp(0),
φpm(τ1), and φpp(τ1) are the unknown emergent fluxes (or radiation intensi-
ties) to be calculated with the albedo operator, or if this is not directly known,
measured experimentally.

The transmission operator is

T r(x, x0) = U (x − x0) = exp[−(x − x0)T
−1 A] (28)

Introducing Eqs. (25) and (26) into Eq. (15) we write



0 | I

− − −− | − − −−
φpm(τ1) | φpp(τ1)



 = T r




φmm(0) | φmp(0)
− − −− | − − −−

I | 0



 (29)

where T r can also be partitioned in combinations of the two ranges as

T r =




T rmm | T rmp

− − −− | − − −−
T r pm | T r pp



 (30)

Using the definition of the albedo operator one obtains



φmm(0) | φmp(0)
− − −− | − − −−
φpm(τ1) | φpp(τ1)



 = 3




0 | I

− − − | − − −
I | 0



 (31)
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where

3 =




3mm | 3mp

− − −− | − − −−
3pm | 3pp



 (32)

The explicit formula of the albedo that maps the half range influx in the posi-
tions {0, τ1} to the half range outflux in the same positions is then derived.

3 =




T r−1

mm | −T r−1
mm T rmp

− − − − − − − − − − −− | − − − − − − − − − − −−
T r pm T r−1

mm | T r pp − T r pm T r−1
mm T rmp



 (33)

As we have previously derived, the albedo operator establishes an explicit
relation between the influx and the outflux in both sides of the slab. Since in
the inverse problem we cannot suppose to know the parameters in the transmis-
sion operator used to compose the albedo, we assume the knowledge of some
information about its graph. In the ideal case we can suppose that we know com-
pletely the albedo’s graph. In a real situation, otherwise, we can only suppose
we know a linearly independent set of solutions 8 to the problem, derived from
some finite set of experiments.

When we have M experiments to generate the columns of the matrix flux in
the two sides x = 0 and x = τ1 of the slab, that is, to form the matrix equation

8(τ1) = exp
[
− τ1T −1 A

]
8(0)

we obtain the explicit formula for A

A = −T log
[
8(τ1)8

−1(0)
]
/τ1 (34)

and inside A we find information about the absorption and the scattering co-
efficients. Note the resemblance that this equation has with the equation of
transmission tomography [8].

In the case of multilayered slab, with transparent contiguous interfaces at
positions x = τ1 < τ2 < ∙ ∙ ∙ < τN−1 and boundary surfaces at x = 0 and
x = τN , we have

8(τn) = exp
[
− τn−1T −1 A

]
8(τn−1) ; n = 1, ∙ ∙ ∙ , N

and

8(τN )8
−1(0) = exp

[

−T −1
N∑

n=1

τn An

]

(35)

Comp. Appl. Math., Vol. 29, N. 3, 2010
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If inside each layer the operator function x 7→ A(x) is continuous in the
uniform operator topology and the families {An(x), x ∈ [τn−1, τn]} are stable
[9], the formalism for integrals in the measure for x will be preserved,

8(τN )8
−1(τ0) = exp

[
−T −1

∫ τN

0
A(x) dx

]
(36)

The quantity inside the integral is the matrix optical thickness of the slab,
and the logarithmic expression

∫ τN

0
A(x) dx = −T log

[
8(τN )8

−1(0)
]
/τ1 (37)

is finally obtained.
The question here is about how much information can be extracted from the

knowledge of the finite dimensional approximation of the albedo, and conse-
quently in the operator A. Note that in general the number of parameters in A is
less than M(M + 1)/2, and since in the slab problem the scattering kernel has
the symmetry σs(x, ω′ ∙ω) = σs(x, cos(θ − θ ′)) which presents a convolutional
property, the maximum number in the discrete ordinates method of order M will
be L + 1, where L is the number of Legendre polynomials in the kernel expan-
sion. Obviously, M > L + 1 and we have an excess of M(M + 1)/2 − (L + 1)
degrees of freedom in the data matrix − log[8(τn)8

−1(0)].
Apart from the sensitivity of the data on the coefficients, we expect to have

information to treat a number of layers at least equal the integer quotient of
(M(M + 1)/(2(L + 1))) − 1. Moreover, noise and the extension of data files
will probably reduce even more the number of layers that can be estimated.

Also we note that the unitary transformation F is dependent on the magnitude
of the scattering and absorption coefficients, and will highly increase the com-
putational cost of non homogeneous problems. Finally, equation (34) is also
appropriated for the transient problem but this question will not be discussed in
this work.

5 Numerical results

A computer program has been developed and implemented in order to test the
ideas that we presented here. In this program the quadrature set and the Legendre
polynomials are calculated in real time. When this quadrature set includes very
small μ values it is necessary to make a spectral regularization by cutting off the
angular directions with small absolute cosine values μ.

Comp. Appl. Math., Vol. 29, N. 3, 2010
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In order to establish a very simple reconstruction model we note that by using
the Fourier-Legendre series for the Dirichlet kernel approximation in the first
part of the operator A we obtain

[A8](μ, x) ∼=
L∑

l=0

(σt(x)− σsl(x))pl(μ)

∫ +1

−1
pl(μ

′)φ(ω′, x) dx

which is good for a sufficient large L .
In Figure 2 we show a solution for the direct problem with M = 14 discrete

ordinate points.
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Figure 2 – Typical radiation flux distribution inside a slab illuminated in one of its

boundaries.

The slab is illuminated in its side x = τ1 for all ordinates. The values used for
properties of this media were: σt = .5; σsl = [.4, .3, .2, .1, .0]; and τ1 = 1/2.

Next we present the results obtained for a inverse problem considering a set
of M = 14 experiments and a slab with properties σt = .5; σsl = [.4, .3, .2,
.05, .01, .00]; and τ1 = 1/2. Figure 3 presents the fluxes matrices whose
columns are the incident flux and the emergent flux in each one of M exper-
iments, which are respectively imposed and measured for the complete set of
these, as explained in section 4, i.e. Eqs. (25) and (26), respectively. Here,
“FLUX MATRIX (A)” corresponding to 8(0) and “FLUX MATRIX (B)” to
8(τ1).
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Figure 3 – Flux matrix at the slab boundaries.

In order to minimize the occurrence of negative fluxes we use a flux of uni-
form intensity as basis for each incident flux, i.e. the incident flux total has values
non negative in all directions, but with a higher value in only one direction.

Figure 4 presents the eigenvalues of these fourteen problems, the exact and the
reconstructed values, respectively, for various gaussian noise levels controlled
by the variance. We note the good agreement between the exact and the con-
structed values when the noise level is small.

Figure 5 shows the reconstructed scattering coefficients for several gaussian
noise levels and we easily deduce from the results the high sensitivity of the
problem with this kind of noise, mainly for the higher order coefficients which
has already been reported by Silva Neto and Özisik [11] using an implicit for-
mulation for the inverse problem.

In Figure 6 we show the error in the reconstructed extinction coefficients.

6 Conclusions

In the present work and in the accompanying paper [2] we derive and show
the feasibility of a new explicit formulation for the inverse radiative transfer
problem. From the knowledge of the imposed incident and measured emergent
radiation intensities in a one dimensional homogeneous slab we were able to
estimate the anisotropic scattering coefficients, using only external detectors.

We have used both noiseless and noisy synthetic data in our numerical simu-
lations. It was observed that the higher order coefficients are more sensitive to
the noise present in the experimental data.
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Figure 4 – Reconstructed eigenvalues for different levels of gaussian noise.

Figure 5 – Reconstructed scattering coefficients for different levels of gaussian noise.
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Figure 6 – Errors in the extinction coefficients reconstruction for different levels of

gaussian noise.

We propose the application of this development for multilayer media and also
the possibility of its use in the solution of the inverse problem of radiative trans-
fer in the transient state.
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