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Abstract. In this paper, we produce shuffle relations from multiple zeta values of the form
g“({l}’”_1 ,n+1). Here {1} is k repetitions of 1, and for a string of positive integers oy, o2,
.., with o > 2
f(ay,ap, ..., 0p) = Z ny My
1<ni<njy<...<n,

As applications of the sum formula and a newly developed weighted sum formula, we shall
prove for even integers k, » > 0 that

k r
DD EDE YT o ans e+ B Bt Bl Brgl + 1)
j=0¢=0 lat|=j+r—+1
|Bl=k—j+t+2

+ Z Z C(ag, oy s,y —€+3) = ¢k+r+4).

0<l<r |a|=k+l+1
£:even
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376 SOME ALTERNATING DOUBLE SUM FORMULAE OF MULTIPLE ZETA VALUES

1 Introduction

For a pair of positive integers p and g with ¢ > 2, the classical Euler sum §, ,
is defined as [2, 3, 8, 10]

The number p + ¢ is the weight of S, ,. When p = 1, or (p,q) = (2,4), or
(p.q) =(4,2),0orp=gq,0r p+gqisodd, S, , can be expressed in terms of the
special values of Riemann zeta function at positive integers. See [12, 13, 14] for
the details of evaluations.

Multiple zeta values are multidimensional version of the Euler sums [1, 6, 9,

13, 14, 15]. For a string of positive integers & = (a1, &3, . .., &) with o, > 2,
the multiple zeta value or »-fold Euler sum ¢ (a1, a0y, . . ., o) is defined as
k3—1 k-1
C(Ol) :é‘(al,ab---sar) = Zka, Zkaz Zkoq’
k=1 k=1"2 k=1

or equivalently as

—a)_ —o —0y
E /P P

1<ni<ny<---<n,
Here the numbers r and |o| = 1 + o + - - - + «, are the depth and the weight
of ¢ (a1, g, ..., o), respectively.
For convenience, we let {1}* be k repetitions of 1. For example,

c{1¥,4 =c(1,1,1,4 and c{1}*,3)=2¢(1,1,1,1,3).

There is an integral representation, due to Kontsevich [4, 5, 13], to express
multiple zeta values in terms of iterated integrals (or Drinfeld integrals) over
simplices of weight-dimension, namely,

é‘(al$a2""$a}’):/ QIQZQM,
O<ti<tr<--<tig <1
where

Qi=dt;/(1 —¢t;) if je{l,oy+L, a1+ +1,...,01+--+o_+ 1}
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and Q; = dt;/t;, otherwise. For our convenience, we rewrite the above integral

1
/ Q192+ Qg
0

An elementary consideration yields a depth-dimensional integral representation

representation as

as

]
" = Dy — Do, — 1)!

dt %) -l dt, 13 -l
X log = log —
O<ti<tr<---<tr<l 1 - I 1 1— L) 1)
dt, | 1\ !
o 0 —_ .
11— \ 8,

In particular, for positive integers m and n, we have

C(al’ a27 M) al‘)

m m+n
dt_/' 1—[ dty

1- tj k=m+1

l‘k’

Cy n 4 1) =/

O<ti<tr<-<tpmin<l =1

from which the so-called Drinfeld duality theorem
cqy"toa+ D=y m+ 1)

follows easily.

The above Drinfeld integral representation for multiple zeta values also enables
us to express the product of two multiple zeta values as a linear combination of
multiple zeta values through the shuffle product formula of two multiple zeta

values. The shuffle product formula of two multiple zeta values is defined as

1 1 1
/ Q- Qm/ Qi 1Qmi2 - Qipgn = Z/ $261)82@) * Somtn)s
0 0 — Jo

m-+n

where the sum is taken over all ( ”

) permutations o oftheset {1, 2, ..., m + n},
which preserve the orders of strings of differential forms €€, .-, and

Qun+12m+2 - - - Quman. More precisely, the permutation o satisfies the condition
1, 1,
o (i) <o ())
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378 SOME ALTERNATING DOUBLE SUM FORMULAE OF MULTIPLE ZETA VALUES

foralll<i<j<mandm+1<i<j<m+n.

We restrict our attention to shuffle product formulae obtained from a group of
multiple zeta values of the form ¢ ({1 1"=1 n+1), which can be further expressed
as integrals in one variable or double integrals in two variables. The following

propositions are main tools for our exploration.

Proposition 1. [7] For a pair of positive integers m and n, we have

cduymtn+1)

1 1\ 1\""" dundn
= log log — —_—
(m —D!n—=1D! Joct <r<1 -1 [5) (I —-t)n

1 1—¢ m=1 1 n-l dtidt,
_ log log — ) 2heR
(m —D!n— D! Jocyy<t<1 l—n b (I =ttt

Proposition 2. [7] For an integer p > 0 and positive integers q, m and n with

m > q, we have

3t o, )

lee|=m

1 1\ 1—0\"!
= log log
piq — Dim —)!(n — D! Jocy <1 1 -1 -0

15} m=a 1 =l dtidt
x | log = log — —_—
t 15} (I =t)n

In particular, for integers k, r > 0, one has

Z é‘(Olo,Oll,...,Olk—i‘l)

lot|=k+r+1
1 1—1 k t " d[ldtz
= — log log—) —.
k! Jo<t <tr< l-1n ) (I—=t)n
Proposition 3. [13] For positive integers ay, by, az, by, . . ., a,, b,, let

p=({1""" b+ L {1} b+ 1, {1} b+ 1)
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and p’ be the dual of p,
pP={0"" e+ L a1 + 1)

Then for any integer £ > 0, we have

Y otp+oy =) (' +d.

le=¢ ld|=¢

In this paper, we shall consider integrals of the form

1 f / (1 -1 )" (1 2 uz)r
I 0g 0g — 0g —
klr! 0<ti<tr<l JO<uy<uz<l 1 —uy 4 uj

dudt, dudu,
=6 (= uwu
which can be expressed as a finite sum of products of multiple zeta values of
the form ¢({1}”~', n + 1). All possible interlacing of the variables ¢, #, and

uy, uy then produce 6 simplices. Integrations over each simplex give another
expression in terms of 6 sums of multiple zeta values. Our alternating double

sum of multiple zeta values is just one among them.
Theorem 4. For a pair of even integers k,r > 0, we have

k r
2:2:(—1)(Z Z C(ag, a5 vy 0+ By Bivts o5 Brs 2)

j=0 ¢=0 lot|=j+r—£+1
|Bl=k—j+l+1

= Z C(ag, a1, ..., O, 2).

lot|=k+r+2

Theorem 5. For a pair of even integers k,r > 0, we have

DYDY YT favans e+ By Bits s Bro Brerr 1)
j=0 £=0 lot|=j+r—C+1
|Bl=k—j+e+2

+ Z Z (g, ayy ey, ¥ — L+ 3) = C(k+7 +4).

0<t=r |o|=k+E+1
L:even

Some extensions of these theorems would be discussed in section 4.
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2 Shuffle relations and the sum formula

In 1997, A. Granville proved the sum formula

>t e+ ) =Cm+ 1)

la|=m
which was originally conjectured independently by C. Moen and M. Schmidt
around 1990 [11, 12, 13]. Also he mentioned that it was proved independently
by Zagier in one of his unpublished papers. Here we show that the sum formula is
equivalent to the evaluations of multiple zeta values of the form ¢ ({1} ™!, n+1).

Proposition 6. For a pair of integers k,r > 0, we have

{1+ D) Y e, ek o + 1)

let|=k+r+3

+{=DF + =D e +3)

(=) (1Y r — e+ 2)c ({1 0+ 2).
=0

Il
W

J

Il
S

In particular, when k + r is even

Yot o, @ ek + D A (DRI +3)
|at|=k+r+3

-3

k r
=0 =0

(=D ey r— e+ 2c(1¥ £ 42).

Proof. We begin with the integral

1 1—1 k Uy ! dtidt, duduy
— log —— log — .
k! Jocty<t<1 Jo<uy <up<1 1 —u ) (1=t (1 —upu

Rewriting the integrand of the above integral as

Xk:i(—l)’” kir!
ik = Do — o)

j=0 £=0

1 ] 1 r—=t 1 k*j 1 L
| log — I log — | ,
X<Og1—f1> <0g12) (Ogl—ul> <Oguz)
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we see immediately the integral is separable, and by Proposition 1, its value is
equal to

k r
DD DY o — e+ 201 e+ 2).

j=0 £=0
As a replacement of shuffle process, we decompose the region of integration
into 6 simplices produced from all possible interlacing of variables #;, #, and

uy, uy. They are
(1) Dy : (ty, 5, uy, uz) € [0, 11,0<ti<th <u; <up < 1,
(2) Dy : (1, ty, uy, uz) € [0, 11 0<u;<ur <t <t <1,
() D3 :(t1,th,up,uz) €[0,114,0 <t; <uy <tr <up < 1,
(4) Dy :(t1,to,ur,ur) €[0,114,0 <t; <uy <ur <t, <1,
(5) Ds: (t1,th,uy,uz) €[0,11*,0 <u; <t; <t, <up < 1and
(6) Dg: (t1,tr,ur,uz) €[0,114,0 <u; <t <upr <t, < 1.

The integration over Ds, D4, Ds and Dg are easily to get. For the simplex
D;:0 <t <uy <t <uy < 1, we rewrite the integral as

1 di 11—\ duy dt us\ dus
— log — |log— ) —.
k'r! D; 1—1 1 —u 1—u; b 15} 7p)

It comes from the Drinfeld integral

1 k+2

[T

11—t
j=1 J t=k+3

k+r+4

dl‘j dt,

ty

}k—H

and hence its value is ¢ ({1 ,7¥ + 3). A similar consideration leads to the

values of the integrations over Dy, D5 and Dg are
=D cq* r+3), DfedY* r43) and (=D +3),

respectively.
For the simplex D; : 0 < ] <, < u; < up < 1, we substitute the factor

1—1 k Uy g
log 7 and log —
—u 1)
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382 SOME ALTERNATING DOUBLE SUM FORMULAE OF MULTIPLE ZETA VALUES

r 4 r—{
r Uui Uy
and log — log — .
KX_(; (5) ( * % ) ( s Ml)

Consequently, in terms of multiple zeta values, the value of the integration over
D1 is

k r
N3 T ao+ Lo, .oy — £+ 2). 2.1)

=0 £=0 |ot|=j+L+1

For 1 < j <k, we have

Yt Lo+ L,y — £+ 2)

lo|=j+£+1
= Z f({l}k_j,ao,al,...,aj,r—£+2)
loe|=j+0+2
— Y T ey - E42),
loe|=j+¢+1

so that the sum in (2.1) is equal to

Z Z C(ag, a1y .. o, r — L+ 2).

€=0 |a|=k—+0+2
Identifying » — £ + 1 as a new dummy variable, the above sum is
D e o, e+ 1) — {4 3).
lot|=k+r+3

Exchanging the roles of #1, ¢, and u1, u,, the value of the integration over D, is
D1 Y (g e o + D = ST +3)

le|=k+r+3

Adding all the values we get from the integrations over D, ..., Dg, our
assertion follows. O
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Remark 7. When & + r is even, the sum formula
Z C(ag, a1, .. a1+ 1) =Ck+7r+4)
lae|=k+r+3
is equivalent to the evaluation
A e +3) = (D ek 4+ 4+ 4)

k r

SO DY o — e+ 2 (1 L e+ 2).

j=0 £=0

(=DF

T

To obtain the relation when the weight is odd, we consider the integral

oL (o) (02 ()
—_— 0 og — og —
k'r! O<ti<tr<l JO<uj<up<l1 g 1 - up g 1) g U

dtdt, duduy
X
(I =t)ty (1 —uyuy

instead. Finally, we get the following relation

D e+ D e o ey + 1)

loe|=k+r+4
+H{1+ D) Y e e +2)
lot|=k—+r+3
+{=D + D)+ {1 e+ 4)
k r
=D Y VU DAY = e+ A1 e+ 3).
j=0 £=0

In particular, when k + r is even, we have

r+1) Z C(og, op, oo, 0, 0py + 1)
lot|=k+r+4

2D Ll o,k agt +2) + (—DF DA+ 4)
|| =k+r+3

k r
= D+ DeAY e — e+ 901 e+ 3).

j=0 ¢=0
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384 SOME ALTERNATING DOUBLE SUM FORMULAE OF MULTIPLE ZETA VALUES

Note that the second sum of multiple zeta values is equal to

r+1
2 b+ L k+r—t+4)
=0

by Ohno’s generalization of the sum formula and the duality theorem.
The following proposition plays an important role in our proof of Theorem 4
and 5.

Proposition 8. For a pair of integers k, r > 0 with k even, we have

D 2 g(ag o, ok kg 1) = S+ 4+ 4) + A+ 3)
lo|=k+r+3

k r
+ % YD ey e — e+ 901 e +2).

j=0 £=0

Proof. Consider the integral

L o (o) (e e )
og — og —
k'}" O<ti<tr<l JO<uj<upr<l 1 —Uu g 1) g [2%)

dtidt, duduy
X .
(I =)t (1 —upuy
The above integral is separable and its value is given by

k r
DY =0y r— e+ 201 e +2).

j=0 £=0
Let D; (j =1,2,3,4,5,6) be simplices obtained from all possible interlacing
of variables ¢, t, and u, u,. Note that the integrand of the integral is invariant
if we exchange the roles of #1, #, and u1, u,. Therefore, it suffices to evaluate the
integrationover D; : 0 < t) <th <uy <uy <1, D3:0<t) <uy <t <
Uy <land Dy :0 <ty <uy <up <t <1.

For the simplex D;, we rewrite the integral as

dt, 1—4\*
ZZ / log
Jl(k — J)‘f'(” -O!'Jp, 1 =1 [}

=0 =0/
dt 1—56\ td 1\ “d

x—= log 2 logﬂ d logﬂ + 2log — ﬁ.
15} 1 —uy 1) 1 —u; U us (7p)
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In terms of multiple zeta values, it is equal to

k

Y@ - Y s et Lar. .. — £+ 2).

=0 =0 loe|=j+1+¢

Sum over k leads to

r

Z(2F_ZJrl -1 Z C(ag, ay, ..., 0p,r —L+2).

£=0 lot|=k+L+2

Identifying » — £ + 1 as a new variable a1, it is

@ = Do, ok @k + 1) — Q7 = DA 43).
|ot|=k+r+3

Both the integrations over D3 and D4 have the same value
Q=D r +3).
Including the integrations over D,, Ds and Dg, we get the identity

2 Y@ = i, ans ek kg + 1) = 201 4 3)
loe|=k+r+3

k r
=YY (=Y r—e+2c{1f e +2).

j=0 ¢=0

Thus our assertion follows from the sum formula. O

3 The proof of Theorem 4

In our previous considerations, the integrands are so simple that it is easy to
evaluate the integrations over all the simplices D; (j = 1,2, 3,4,5,6). It will
be a different story for our next consideration. For our convenience, we shall

use the notation

(e, m) = ¢ (ag, Ay, ..., Q, H1).

Now we are ready to prove Theorem 4.
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Proof of Theorem 4. For a pair of integers k£, » > 0, we consider the integral

1 / / (1 1—1 )k (1 7p) 4l u2>r
— og og — og —
klr! O<ti<tr<l JO<uy<ur<l 1— uj h s Ui

dtdt, duduy
X .
(I =)t (1 —uuz
Rewrite the second factor in the integrand as
Also we have

" (r 1\ Uy 1\*
Z ( ) <log —) <log — —log —> .
¥4 h U us
=0
1

(1 1 )f (1 1)”—‘Z dndt
TV 0og og — P
JIT = O Joct<tr<1 1 -1 h (I —-1)n

1 1 J t P 1\ dtidty
= Z ﬁ IOg IOg— IOg— P E———
JIPla! Jocr << 1 -1 A L) (I—-t)h

prg=r—t

= Y (W .ptq+=0—L+ D1y . r—€+2)

prq=r—{

and

1 / (1 1 )"—f (1 wm 1)5 duydu,
L — og og— —log— | ——
(k= DY Jocuy<up<1 1 —u s uy s uy) (I —upuy

e R C T A T R T
= (0] og — 0g —
k= NP Jouy s LB T =y S &

pt+q=t

duiduy
(1 —uuy
1+ (=1
2
Consequently, the integral is separable and its value is given by

= > =DId T  p+q+2)

pHrq=t

{17 e+ 2).

k r
%ZZ(—DW — e+ DAY r— e+ 2c({1¥ £+ 2)

j=0 £=0

k r
+% YD DT — e+ DedlY e — £+ £ +2).

j=0 £=0
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When both & and r are even, the above sum is equal to

kr
- :2 DD =Y e — e+ e (1 e +2)
Jj=0 ¢=0
kr
+- :2 DD =Y o — e+ (1Y L e+ 2).

=0 £=0

The sum of the second summation, by Proposition 6, is equal to

r+2
g+ r + 4 + ey r +3)
and hence the total is
2
Tt Z 2% (g, 0y 2oy O, Oy + 1)
lot|=k+r43

by Proposition 8.
Next we evaluate the integrations over D; (j = 1,2,3,4,5,6). For the
simplex D} : 0 < #; <t < u; <u; < 1, we rewrite the integral as

k r

1 dt 1—1 J 1) a dty
222 g log log =) ==
Jlk — Dalbl(r — 0! Jp, 1 —1 1—1t h t

j=0 =0 a+b=t

1 -6\ u\? du, wr \" ¢ duy
X Iog1 log — 2log — —,
— U %) 1 —u U 753

so it can be expressed as

k r
Zzzr_z Z Z g(a()aal,---aaj+ﬁj’13j+19"'5ﬂk7r_£+2)
j=0 £=0 atb=t |a|=j+1+a
|Bl=k—j+1+b
or
k r

DX T (= Dl r — £42).

Jj=0 £=0 lot|=k+€+2
For fixed £, by counting the number of ¢ («g, a1, ..., o, ¥ — £ + 2) appeared in

the summation, we conclude that the sum is equal to

dDorTte+ 1 Y tler—E+2).

£=0 loe|=k+£+2
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Extending the above sum to £ = —1 and then set £ + 1 as a new dummy variable,
the sum is
G+ D @+ 27 Y (e — L+ 3).
lot|=k+r+2 =0 lot|=k-++1

The integration over D, is just the alternating double sum

YD DY YT e+ By Bt B 2)

j=0 £=0 lot|=j+r—+1
|Bl=k—j+e+1

which would be denoted by G in the after.

The integrations over D3, D4, Ds and Dy yield the following multiple zeta
values

izr—@(r—ul) > e r—t+3), Zz’@ >t r—+3),

(=0 lot|=k+0+1 loe|=k+E+1

iZ’_Z(r—E—H) Z z(a, r—€+3) and Xr:z’—é Z c(o, r—E+3).

=0 loe|=k+E+1 =0 lee|=k+E+1
Adding together all the values obtained from the integrations over the simplices
D; (j=1,2,3,4,5,6), we get the identity

F+D > @+ 42y 27 Yt —t+3)

o|=k+r+2 £=0 loe|=k+E+1
k r
l
+3 3D DTt e+ By Bt B 2)
Jj=0 ¢=0 lot|=j+r—L+1
|Bl=k—j++1
r+2
= Z 291 (g, @y -y Oy Qg1 + 1)
|ot|=k+r+3

Our assertion follows from

Z 2ak+1§(a0, ap, ..., g, Qg + 1)

la|=k+r+3

=2 Y ¢ 2)+222r N f(er = +3). O

loe|=k+r+2 lot|=k+€+1
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On the other hand, if we consider the integral

1 / / (1 1—1 )k (1 7p) I le)r
o 0g 0g — T log —
k!r! O<ti<tr<l JO<uj<usz<l 1 - uj 1) Ui

dtidt duduy
X 9
(I =ttty (1 —upus

it has the value

1 . . .
52 2 A+ DAY r — e+ e e +2).

j=0 £=0

The assertion in Theorem 5 follows after a similar procedure.

4 A final remark

Through the double generating function

oo o0 o .
YOS ey nxy = 1—exp {3 (¢ 4y — (4 )b % ,
m=0 n=0 —2

we are able to express ¢ ({1}, n 4+ 2) in terms of the special values of Riemann
zeta function at positive integers. The shuffle relations in Proposition 6 provide
us to evaluate ¢ ({1}, n 4 2) recursively in terms of special values of Riemann
zeta function.

Another way to prove Theorem 4 is to count the number of appearances of
each ¢ (a, a1, ..., ok, 2) in the complicated double alternating sum. Therefore
the identity is just a problem of counting and can be extended. For example, for
a pair of even integers k, » > 0, we have

k r
YN =D Y (avian o+ B Bt B+ D
j=0 £=0 lot|=j+r—€+1

|Bl=k—j+E+1

= Y oo+ 1) = clh+r+3)

lot|=k+r+2
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or for any positive integer m > 2,

k r
¢

YN DY e o+ By B Bram)
j=0 =0 lo|=j+r—t+1

Bl=k—j+t+1

= Z {(ag, a1y ..., O, M)
|| =k+r+2
or for a string of nonnegative integers po, p1, - , Pr

k r
YYD DY ot poar+pri o B+ Py

j=0 £=0 o=+ —C+1
|Bl=k—j+E+1
B+ = Z S(oo + po, oy + piy oo+ pe+ 1.
ol =k+r+2

All these identities are difficult to be proved otherwise.
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