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1 Introduction and preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by
(-,-) and || - ||, respectively. Let C be a nonempty closed and convex subset of
H and P¢ be the projection of H onto C.

Let £, S, A, T be nonlinear mappings. Recall the following definitions:

(1) f:C — C issaid to be a-contractive if there exists a constant o € (0, 1)
such that

Ifx = fyl <elx —yll, Vx,yeC.
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S : C — C is said to be nonexpansive if
[Sx =Syl < llx =yll. Vx,yeC.

Throughout this paper, we use F(S) to denote the set of fixed points
of the mapping S.

A : C — H is said to be monotone if

(Ax — Ay, x —y) >0, Vx,yeC.

A : C — H is said to be inverse-strongly monotone if there exists § > 0
such that

(x —y, Ax — Ay) > 8]|Ax — Ay|I>, Vx,y e C.

Such a mapping 4 is also called é-inverse-strongly monotone. We know
that if S: C — C is nonexpansive, then 4 = [ — S is %—inverse—
strongly monotone; see [1, 21] for more details.

A set-valued mapping T: H — 2% is said to be monotone if for all
x,y e H feTxandge Ty = (x —y, f —g) = 0. A mono-
tone mapping 7: H — 2% is maximal if the graph of G(T) of T is not
properly contained in the graph of any other monotone mapping. It is
known that a monotone mapping 7" is maximal if and only if for (x, f) €
HxH,(x—y, f—g) > 0forevery (y,g) € G(T) implies that / € Tx.
Let 4 be a monotone mapping of C into H and let Ncv be the normal
conetoCatveC,ie, Nev={we H: (v—u,w) >0, Vu € C} and
define

Av+ Ncv, veC,

Tv= (A)

@, v ¢C.
Then T is maximal monotone and 0 € 7'v if and only if (4v, u —v) > 0,
Yu € C; see [16] for more details.

Recall that the classical variational inequality is to find an x € C such that

(Ax,y —x) >0, VyeC. (1.1)
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In this paper, we use V' I(C, A) to denote the solution set of the variational
inequality (1.1). For given z € H and u € C, we see that

u—z,v—u)y>0, YveC (1.2)
holds if and only if u = Pcz. It is known that projection operator P satisfies
(Pcx — Pcy,x —y) = ||Pcx — Pcy|®,  Vx,y € H.

One can see that the variational inequality (1.1) is equivalent to a fixed point
problem. An element u € C is a solution of the variational inequality (1.1) if
and only if u € C is a fixed point of the mapping Pc(/ — L A)u, where A > 0 is
a constant and / is the identity mapping. This can be seen from the following.
u € C is a solution of the variational inequality (1.1), this is,

(Au,y —u) >0, VyeC,
which is equivalent to
((u —Adu) —u,u—y) >0, VyeC,

where L > 0 is a constant. This implies from (1.2) that u = Pc({ — A A)u,
that is, u is a fixed point of the mapping Pc(I — A A). This alternative equiv-
alent formulation has played a significant role in the studies of the variational
inequalities and related optimization problems.

Let A : C — H be a §-inverse-strongly monotone mapping and F be a
bifunction of C x C into R, where R denotes the set of real numbers. We

consider the following generalized equilibrium problem:
Find x € C such that F(x,y)+ (4dx,y —x) >0, VyeC. (1.3)
In this paper, the set of such an x € C is denoted by £ P(F, 4), i.e.,
EP(F,A)={xeC:F(x,y)+(Ax,y —x) >0, Yy € C}.

Next, we give some special cases of the generalized equilibrium problem (1.3).

(D If 4 = 0, the zero mapping, then the problem (1.3) is reduced to the

following equilibrium problem:
Find x € C such that F(x,y) >0, VyeC. (1.4)
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In this paper, the set of such an x € C is denoted by E P(F), i.e.,
EP(F)={xeC:F(kx,y)>0, VyeC}.

(II) If F = 0, then the problem (1.3) is reduced to the classical variational
inequality (1.1).

In 2005, Tiduka and Takahashi [8] considered the classical variational inequal-
ity (1.1) and a single nonexpansive mapping. To be more precise, they obtained
the following results.

Theorem IT. Let C be a closed convex subset of a real Hilbert space H.
Let A be an wa-inverse-strongly monotone mapping of C into H and S be a
nonexpansive mapping of C into itself such that F(S)NVI(C, A) # . Suppose
that x, = x € C and {x,} is given by

X1 = X + (1 — ) SPc(xy — Ay Axy), Vo > 1, (1.5)

where {a,} is a sequence in [0, 1) and {)\,} is a sequence in [0, 2. If {o,} and
{A,} are chosen so that {\,} C la, b] for some a, b with0 < a < b < 2aq,

o0 o0 o0
lim «, =0, E o, = 00, E lotp1 — | < 00 and E (A1 — Ap| < 00,
n—>oo

n=1 n=I n=I1
then {x,} converges strongly to Pps)ny1(c.4)X-

On the other hand, we see that the problem (1.3) is very general in the sense
that it includes, as special cases, optimization problems, variational inequalities,
mini-max problems, the Nash equilibrium problem in noncooperative games and
others; see, for instance, [2, 5, 9]. Recently, many authors considered iterative
methods for the problems (1.3) and (1.4), see [3-7, 11-15, 18, 20, 22, 24] for
more details.

To study the equilibrium problems (1.3) and (1.4), we may assume that F
satisfies the following conditions:

(Al) F(x,x) =0 forall x € C;
(A2) F ismonotone, i.e., F(x,y)+ F(y,x) <0 forall x,y € C;
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(A3) foreach x,y,z € C,

limsup F(tz+ (1 —t)x,y) < F(x,y);
10
(A4) foreach x € C, y — F(x, y) is convex and weakly lower semi-con-

tinuous.

Put F(x,y) = F(x,y) 4+ (4x,y — x) for each x, y € C. It is not hard to
see that F also confirms (A1)-(A4).

In 2007, Takahashi and Takahashi [20] introduced the following iterative
method

1
Fp,u)+—Wu—yy,vn—x,) >0, YueC,
Tn (1.6)

Xn+1 :anf(xn) + (1 —o)Tyn, n= 1,

where f is a a-contraction, 7' is a nonexpansive mapping. They considered
the problem of approximating a common element of the set of fixed points
of a single nonexpansive mapping and the set of solutions of the equilibrium
problem (1.4). Strong convergence theorems of the iterative algorithm (1.6) are
established in a real Hilbert space.

Recently, Takahashi and Takahashi [22] further considered the generalized
equilibrium problem (1.3). They obtained the following result in a real Hilbert

space.

Theorem TT. Let C be a closed convex subset of a real Hilbert space H and
F : C x C — R be a bi-function satisfying (A1)-(A4). Let A be an «-inverse-
strongly monotone mapping of C into H and S be a non-expansive mapping of
C into itself such that F(S)NEP(F, A) # 0. Letu € C and x; € C and let
{z,} € C and {x,} C C be sequences generated by

1
F(Zn,)’)+(z4xn,y—2n)+—()’—Zn,2n—xn)20, VyGC,
r (1.7)
Xn+1 = ,ann + (1 - ,Bn)S[anu + (1 - an)Zn]’ Vn > ls
where {a,} C [0, 1], {8,} C [0, 1] and {r,} C [0, 2] satisfy

O<c=<B,<d<l1, O<a=<i,<b<2a,
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o
lim (A, — Aps1) =0, lim @, =0, and Y o, = oc.
n—>0oo n—>0oo =l

Then, {x,} converges strongly to z = Pps)ngp(F,4)U.

Very recently, Chang, Lee and Chan [5] introduced a new iterative method
for solving equilibrium problem (1.4), variational inequality (1.1) and the fixed
point problem of nonexpansive mappings in the framework of Hilbert spaces.
More precisely, they proved the following theorem.

Theorem CLC. Let H be areal Hilbert space, C be a nonempty closed convex
subset of H and F be a bifunction satisfying the conditions (A1)-(A4). Let
A : C — H be an a-inverse-strongly monotone mapping and {S; : C — C} be
a family of infinitely nonexpansive mappings with FN\VI(C, A)NEP(F) # §,
where F := N2 F(S;) and f : C — C be a §-contractive mapping. Let {x,},
{vu} {kn} and {u,} be sequences defined by

1
F(“nsy)'i‘—(y—un,un—xn)ZO, VyEC,
v

n

Xpp1 = 0y f (X)) + Buxy + v Wiky, VYn =1,
kn = PC(yn - )"nAyn)v
Yn = Pc(uy — Ay Auy),

(1.8)

where {W, : C — C} is the sequence defined by (1.9), {a,}, {8,} and {y,} are
sequences in [0, 1], {A,} is a sequence in [a, b] C (0, 2a) and {r,} is a sequence

in (0, 00). If the following conditions are satisfied:
(D) an+Bo+vn=1
(2) lim,0oa, =0; Y 07 @y = 00;
(3) 0 <liminf,, o B, <limsup,_, . B, < 1;
(4) minf,oory > 0; D 02| [Fpg1 — 1l < 00;
(5) limys o0 [Ans1 — Anl =0,

then {x,} and {u,} converge strongly toz € FNVI(C, A) N EP(F).

Comp. Appl. Math., Vol. 29, N. 3, 2010



XIAOLONG QIN, SUN YOUNG CHO and SHIN MIN KANG 399

In this paper, motivated and inspired by the research going on in this direc-
tion, we introduce a general iterative method for finding a common element of
the set of solutions of generalized equilibrium problems, the set of solutions
of variational inequalities, and the set of common fixed points of a family of
nonexpansive mappings in the framework of Hilbert spaces. The results pre-
sented in this paper improve and extend the corresponding results of Ceng and
Yao [3, 4], Chang Lee and Chan [5], liduka and Takahashi [8], Qin, Shang and
Zhou [12], Su, Shang and Qin [18], Takahashi and Takahashi [20, 22], Yao and
Yao [25] and many others.

In order to prove our main results, we need the following definitions and
lemmas.

A space X is said to satisfy Opial condition [10] if for each sequence {x,} in
X which converges weakly to point x € X, we have

liminf ||x, — x|| < liminf|x, — yl, Vye X,y #x.
n—oo n—o0
Lemma 1.1 ([2]). Let C be a nonempty closed convex subset of H and F

C x C — R be a bifunction satisfying (Al1)-(A4). Then, for any r > 0 and
x € H, there exists z € C such that

1
Fez,y)+-(y—z,z—x)>0, VyeC.
r

Lemma 1.2 ([2], [7]). Suppose that all the conditions in Lemma 1.1 are sat-
isfied. For any give r > 0 define a mapping T, : H — C as follows:

T, x = {zeC:F(z,y)-l—%(y—z,Z—x) >0, VyeC}, Vx € H,
then the following conclusions hold:
(1) T, is single-valued;
(2) T, is firmly nonexpansive, i.e., for any x,y € H,
ITx = Tyl < (Tox — Ty, x — )
() F(I,) = EP(F);
(4) EP(F) is closed and convex.
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Lemma 1.3 ([23]). Assume that {«,} is a sequence of nonnegative real num-
bers such that
Opt1 = (1 - Vn)an + Sn»

where {y,} is a sequence in (0, 1) and {3,} is a sequence such that

(1) 202, ¥ = 00;

(2) limsup, o 8,/vs <0 or 2, 18, < oo.

Then lim,_, o a, = 0.

Definition 1.4 ([19]). Let {S; : C — C} be a family of infinitely nonexpan-
sive mappings and {y;} be a nonnegative real sequence with0 < y; < 1,Vi > 1.
For n > 1 define a mapping W, : C — C as follows:

Un,n—l—l = I,
Un,n = VnSnUn,n-H + (1 - Vn)L
Un,nfl = yanSanUn,n + (1 - ynfl)l’

Uni = viSkUpjr1 + (1 — v, (1.9)
Unji-1 = Vi—1Si-1Un e + (1 — v 1,

Uiz = 28U, 3+ (1 — )1,
Wi=Us1=ySi1U2+ (1 —y)l
Such a mapping W, is nonexpansive from C to C and it is called a W -mapping

generated by S, S,—1, ..., St and ¥, Yu—1, -, V1.

Lemma 1.5 ([19]). Let C be a nonempty closed convex subset of a Hilbert
space H, {S; : C — C} be a family of infinitely nonexpansive mappings with
N2 F(S;) # ¥ and {y;} be a real sequence such that0 < y; <[ < 1,Vi > 1.
Then

(1) W, is nonexpansive and F(W,) = N2, F(S;), for eachn > 1;
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(2) for each x € C and for each positive integer k, the limit lim,_, o U,
exists.

(3) the mapping W : C — C defined by

Wx := lim W,x = lim U, 1x, x¢€C,

n—>0o0 n—0o0

is a nonexpansive mapping satisfying F'(W) = N2 | F(S;) and it is called
the W-mapping generated by Sy, S, ...and y1, s, .. ..

Lemma 1.6 ([5]). Let C be a nonempty closed convex subset of a Hilbert
space H, {S; : C — C} be a family of infinitely nonexpansive mappings with
N2 F(S;) # @ and {y;} be a real sequence such that0 < y; <1 <1, Vi > 1.
If K is any bounded subset of C, then

lim sup |[Wx — W,x| = 0.

}’l*)OOxEK

Throughout this paper, we always assume that 0 < y; </ < 1,Vi > 1.

Lemma 1.7 ([17]). Let{x,}and {y,} be bounded sequences in a Hilbert space
H and {B,} be a sequence in [0, 1] with

0 < liminf 8, < limsup 8, < 1.
n—00 n—00

Suppose that x,.1 = (1 — By)yn + Buxy for alln > 0 and

lim sup (||yn+1 — Vn ” - ||xn+1 — Xn ”) <0.
n— oo
Then lim,,_, » ||y, — x| = 0.

2 Main results

Theorem 2.1. Let C be a nonempty closed convex subset of a Hilbert space H
and F be a bifunction from C x C to R which satisfies (A1)-(A4). Let A, : C —
H be a §;-inverse-strongly monotone mapping, A, : C — H be a &,-inverse-
strongly monotone mapping, A; : C — H be a §3-inverse-strongly monotone

mapping and {S; : C — C} be a family of infinitely nonexpansive mappings.
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Assume that Q := FP N EP(F, A3) N VI # (), where FP = N2, F(S;) and
VI =VIC,A)NVI(C, Ay). Let f : C — C be an a-contraction. Let
x1 € C and {x,} be a sequence generated by

1
F(un’y)+<A3xn,y_un>+_<y_un:un_xn>207 VyEC,
v

n

zp = Po(uy — Ay Aru,), 2.1

Vn = Pc(z, — n,A412,),
Xnyl = anf(xn) + ,ann + Vn Wnyn, Vn > 17

where {W, : C — C} is the sequence generated in (1.9), {«,}, {8,} and {y,} are
sequences in (0, 1) such that a, + B, + v, = 1 foreachn > 1 and {r,}, {A,} and
{n,} are positive number sequences. Assume that the above control sequences
satisfy the following restrictions:

R O0O<a<n,<b<28,0<da <Xi,<b <28, 0<a<r,<b<28,
Vn > 1;

(R2) lim, oo, =0 and Y 2 oty = 00;
(R3) 0 < liminf,_, o B, <limsup,_, B < 1;
(R4) lim,, oo (A, — Angl) = hmn—)oo(nn — Nag1) = limy, o0 (ry — Tnt1) = 0.

Then the sequence {x,} converges strongly to z € 2, which solves uniquely the
following variational inequality:

(I = f)z,z—x) <0, VxeQ.

Proof. First, we show, for each n > 1, that the mappings / — n, 4, I — A, 4>
and / — r, 43 are nonexpansive. Indeed, for Vx, y € C, we obtain from the
restriction (R1) that

I = nadD)x — (I = na Ayl

=[x =) = mu(dix — )|

=[x = yI> = 2ma(x — y, A1x — A1y) + il dix — Ayy|?

< llx = yII> = 2na81 | 41x — Ay yI* + mpll dix — Ay |?

= llx = yI? + 1 (s — 28D [ 41x — Ary|)®

2
=< llx = »I%
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which implies that the mapping / — n,A4; is nonexpansive, so are I — A, A,

and / — r, A3 for each n > 1. Note that u,, can be re-written as u, = 7,, (I —
rnA3)x, for each n > 1. Take x* € Q. Noticing that x* = Pc({ — n,41)x* =

Pc(l — Xy Ax)x* =T,,(I —r,A3)x*, we have

luy = x* = I T,,(I = rud3)xy — T, (I —ry A3)x7|| < llx, — x7.

On the other hand, we have
lzn —x*| = 1 Pc(un — ApAauy) — Pe(x™ — Ay A2x™) ||
< Mn — A douy) — (6 = Ay Aox™) ||
< llup — x|
It follows from (2.2) and (2.3) that
Iz — X[ < llxn — x*[I,
which yields that
0 = x*Il = | Pc(zn — nnAd120) — Pc(xX™ =y A1x™) |l
< 1zw — mudizn) — (X" = 1 4179 |
< llzn, — x*|
< llxn — x7I.
From the algorithm (2.1) and (2.5), we arrive at

”xn+1 - X*“ = ”anf(xn) + Iann + Vn Wnyn - X*”

< ol f ) = X"+ Bullxn — X* M+ vl Woyn — x|

S ol fGen) = O+ o ll () — x™|
+ Bullx, _X*” + Vn”yn —X*H
< ady|lx, — x| + ol f () — x|

+ Bullxy —x*[l + vullxy, — x|

= [1 —ay(1 = )]llxy — x| + el /(™) — x|l
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By simple inductions, we obtain that

llx, —x*|| < max {[lx; —x™|,
1l -«

a IIf(x*)—X*II}

which gives that the sequence {x,} is bounded, so are {y,}, {z,} and {u,}. With-
out loss of generality, we can assume that there exists a bounded set K C C
such that

Xns Vns Znr Uy € K, VYn > 1. (2.6)

Notice that u,1 = T, (I — ryp143)X,41 and u, = T, (I — r,A3)x,, we
see from Lemma 1.2 that

F(un+l’y) + (y —Up41, Up+1 — ([ _rn+1A3)xn+l> = O, Vy € C’ (27)

Yn41
and
1
F(un,y)+_<y_“n’un_(]_rnAS)xn> Zoa VyGC (28)
rl‘l
Let y = u, in (2.7) and y = u,; in (2.8). By adding up these two inequalities
and using the assumption (R2), we obtain that

up — (I —rpds)x,  uppr — (I —rpp143) X041
Upy1l — Uy, - > 0.
I'n Ynt1

Hence, we have
<un+1 —Up, Uy — Upy1 + Up+1 — (1 - rnA3)xn

I'n

(Upp1 — U — rn+1A3)xn+l)> > 0.
Fn+1

This implies that

2
”un+l - un” = <un+l — Uy, (1 - rn+1A3)xn+l - (I - rnAS)xn

+ (1 _ I ) Upt1 — _rn+1A3)xn+1)>

41

< lupy1 — ”n“(”([ — Fup1A3) X1 — (L — 1y A3)x,||

I

+11—

Munsr — U — rn+1A3)xn+1)||>.
Y41
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It follows that

”un+1 - un”
SN = rpp1A3)xp1 — (U — 1y A3)x,||

|rn+1 - rn|
+ lunsr — U — rn+1A3)xn+l I
Y+l

= (I = rup143)Xn11 — (L — rp143)x, 2.9
+ (= rup1d3)xy — (I =1y d3)x,||

|rn+1 - rn|
+ ——Mupp1 — I = rpy143) X541l
Fpt1

< xp1 = X0l + [Fag1 — 70| My,

where M, is an appropriate constant such that

M, = sup {I|A3xnll +

n>1

lttps1 — (I — rpgp143) X041 }

From the nonexpansivity of Pc, we also have

lzps1 — zall
= || Pc(Upt1 — Anp1Aouny1) — Pe(uy, — Ay Asuy) ||
< ”un+1 - )“n+1A2un+1 - (l/l,, - }\nAZMn)” (210)

= (L = App1A)upp1 — (L — App1A2)uy + Ay — Ayg1) Aoy ||

< lltnr = unll + 1w = Angr [ A2ten |-

Substituting (2.9) into (2.10), we arrive at

Iznt1 = zall < Nxps1 — Xull + Fag1 — 1ol M1+ Ay — Ayl A2ug |l (2.11)

In a similar way, we can obtain that

Va1 = Yull < Nznsr = zall + 100 = Dugr 1 412 |- (2.12)

Combining (2.11) with (2.12), we see that
IVns1=Yull < xnp1=2Xnll+rps1 =7l + A0 = Apg 1 |+ 00 =M1 DM>, (2.13)
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where M, is an appropriate constant such that

M, = max iSUP{”AlZn”}, sup{ll Az2u,ll}, Ml} .
n>1

n>1
Letting
Xpt1 = (1 - IBn)vn + Iann’ Vn = ls (214)
we see that
v - _ an+1f(xn+l) + VYn+1 Wn+1yn+l . anf(xn) + VYn Wnyn
e [y - B,
_ an+1f(xn+l) (1— Uyl — Bur D Was1 Vg1
1 - IBn-H 1 - lgn-ﬁ—l
_ (anf(xn) + (1 — 0y — Ign)Wnyn)
1 - lgn 1 - ,3,,
Oyt
n }’l n n Wn n
1 — Bour (f(x +1) — Wapy +1) 1 —,Bn (f(x ) — Wy )
+ Wn+1yn+1 - Wnyn-
It follows that
n+1
lonst = vall < _; 1S i) = Wiy
" (2.15)
1 _ ,3 ”f(xn) nyn” + |l Wat1Yn+1 — Wnyn“
On the other hand, we have
” Wn+1yn+1 - VVn)/n”
= [ Was1Ynt1 = Wyn1 + Wynr — Wyn + Wyn — Wyl
(2.16)

S Was1Yner = Wynsrl + W yntr = Wyull + Wy — Wayall

< sup {[[Wo1x = Wx|| + [1Wx = Wox|I} + a1 — yall,
xekK

where K is the bounded subset of C defined by (2.6). Substituting (2.13) into
(2.16), we arrive at

I Wns1Yns1 = Waynll < Sup W1 = Wxll+ [Wx = Wox|l} + X001 — x4l
xe
+ (|rn+1 —Ful + Ay — &

nt |+ 1 — 77n+1|)M2»
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which combines with (2.15) yields that

Va1 = Vall = %01 — Xl
(e 7] (7%
< N fConr1) = Woir Vs + I f (n) = Wyl
1— Bt 1—B,
+ sup { | Wr1x — Wx|| + [|Wx — Wx |}
xeK

=+ (|rn+1 = Iul +An = Apr | + 00 — Nt |)M2
In view of the restriction (R2), (R3) and (R4), we obtain from Lemma 1.6 that

lim sup ([[v+1 — vall = %01 — x,1) < 0.
n—oo

Hence, we obtain from Lemma 1.7 that

lim [|v, — x,| = 0.
n—0o0
In view of (2.14), we have
1Xn+1 — xnll = (1 = B)llvw — xul-

Thanks to the restriction (R3), we see that
lim [[x,11 —x,[| = 0. (2.17)
n—00
For any x* € €2, we see that
%041 — X112 = llota (f (60) = x*) + Bu(xp — X*) + Yu Wy — x|
< ol fen) = x*1F 4 Bullxn — x* 112 + vl Woyn — x*|I* (2.18)
< ol fGen) = x¥I7 + Bullxn — x* 17 + yullyn — x*I1.
Note that
s — x*II* = | Pe(zn — nudiz,) — x*|?
<1 = npAd)z, — (I — 0, AD)x*|?
= 1(zn — x*) — 0a(A12, — A1) |2
= |lz, — x*|I* = 20, (2, — x*, A1z, — A1x*)
, . (2.19)
+ 02l iz, — Arx*¥||
< lzy — x*|1* = 20,811 412, — A1x*||?
+ 2l iz, — Arx*|?
= |1y — X* > 4+ 70 — 280) | A1z, — A1x*||.
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Substituting (2.19) into (2.18), we arrive at

36041 =% 12 < ot ll f (o) =X 1P 4 1% = XF 1% + Yt (0 — 281) | A1z, — 4

This implies that
Valln (281 — )| A1z, — A1x*|I?

2 2 2
< ol fCen) = xFI7 A+ lloen = X717 = x40 — x 7]

2
< ol fCen) = X117 A+ (lxy = x5 4 X1 = XF D lxn — Xt Il

By virtue of the restrictions (R1) and (R2), we obtain from (2.17) that

lim |41z, — A1x*|| = 0.
n—0o0

Next, we show that
lim ||4,u, — A>x*|| = 0.
n—0o0

Indeed, by using (2.18), we obtain that

a1 — X517 < el £ Cen) — x5 + Bullxw — X7 + yullza — x*)1.
On the other hand, we have

lza — x*[1> = | Pc(un — Ay Aouy) — x*|?

< I = rnduy — (I — hy A)x*|?

= [|(un — x*) — A (Aquty — Ayx™)|?

= lluy — x*I* = 24, (uy — X*, Aty — Apx*) + Aj || Aouy — Aox™|1?

< llun — x*|I> = 2082l Aguty, — Aox*||* + Aj || Aouy — Aox*|?

= Jluy — x*1* 4 An(hy — 282) | Aoy — Apx*||.

Substituting (2.23) into (2.22), we arrive at

2
1x*|| .

(2.20)

2.21)

(2.22)

(2.23)

36041 =17 < 0 [l F () =X 112 120 — X112 Vi (A —282) | Aota,, — Aox ™|

This in turn gives that
Vuhn(282 = M) | Aoy — Apx*||

2 2 2
< ol f(en) = XTI+ lloen = XF 7 = x40 — x|

2
< ol f(en) = X1 + (lxy = x5+ X0 = X D lloxn — Xna Il
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In view of the restrictions (R1) and (R2), we obtain from (2.17) that (2.21) holds.
On the other hand, we see from (2.22) that

s = 312 < ol fGon) = 517 + Bullvw — 317 + vallu — x*I7. (2.24)
It follows that
a1 =17 < ol f (o) = 17 + Bullw — x*11°
+ Vallxw = x* = ra(Asx, — A3x)|
< ol f o) = x* 117 + Bullxn — x*|
+ Vallxw = x*[1* 4 r2 | A3x, — Asx™||?
= 2ry (A3x, — A3x*, X, — X7))
< aull fen) = X517 + Bullxw — X*I1P 4 vallxa — x*|
— ruyn (283 — )| A3x, — A3x"|1%.
This implies that
Fn¥a (283 — 1) || Asx, — Asx*|?
< aull ) — X7 + lloew = X* 1P = (x40 — x*|1?
< aull £ ) = x*I7 + loew = XM+ X041 = X Dl1xn — X1l
In view of the restrictions (R1), (R2) and (R3), we see from (2.17) that
nlirgo | A3x, — A3x™|| = 0. (2.25)
On the other hand, we see from Lemma 1.2 that
luw — 517 = I T, (I = rud3)xn = T, (I = ryA3)x”|?
< AU —rpd3)xy — (I —rpA3)x" uy — x7)

1
U = ryda)x, = (I = FaA3)X* 2 + lluy, — x*|I
— (I =1y A3)x, — (I — 1y A3)X* — (uy — x*)|?)

2 2 2
< =(llxn _X*“ + lluy _x*“ — xp —up — 1y (Azx, — A3x*)” )

—_ N | =

2 2 2 2 2
= 5(”xn — XN A+ Ml — X7 = Xy — unll” = 7 | 4320 — A3x™||
+ Zrn(A}xn - A3X*axn - un))
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This in turn implies that
it — x*[17 < llxn — X117 = llxn — uall® = ry | d3x, — Asx*||?
+ 2r, (A3x, — A3x™, x, — u,)
o ) (2.26)
< lxn = X717 = llxn — unll
+ 21y | Azx, — A3x™|[|x, — uyll.
Combining (2.24) with (2.26), we arrive at
a1 = X117 < anll £ o) = x* 117 + [l — x*[17 = allxw — uall?
+ 21, || A3x, — A3x™||[1x, — u, |l
It follows that
Vallxw — wnll> < aull £Cen) — X* 12+ (Ixn — X* 1 4 (X010 — X* DI — X
+ 21, | A3x, — A3x||[lx, — upl.
Thanks to the restrictions (R2) and (R3), we see from (2.17) and (2.25) that
lim ||x, — u,|| = 0. (2.27)
n—>oo
In view of the firm nonexpansivity of Pc, we see that
lza — x*1* = IPc( — nA2)uy — Po(I — hyA2)x*|?

< (U = Aoty — (I = hp )", 2, = 37)
1 *112 %112

= 5 (10 = 2 A2ty = (= 2y )" I+ 123 =]

— I = Aty = (= dy A" = (2 = X))

1
= 5 (ltn = X1 + 1z = X1 =ty = 20— hn (At = Azx))

= 2 (ltw =1 4 Mz = "1 = ity — 2,1
o 2ty = 2, Astty — A" = 32 Aoty — Ao ),
which implies that
lza = x*1? < lluw = x> = g — 24>
+ 20 (U — Zu, Aoty — A2x*) — A || Aouy — Aox*|| (2.28)

2 2
= lloen = x*N° = lluy = zollI” + 240 lluy — zplll A2y — A2x7\.
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Substituting (2.28) into (2.22), we arrive at
X041 = x* 1> < anll £ Cen) = X1 + N1 = x* 1> = ¥alln — zal1?
20l — 2l Aoty = Aax*].
from which it follows that
Valltn = zall? < ull £ n) = x* 17 + llxn — x| = lloen — x*|1
+ 20 llun — zu || Aouy — A2x™||
< ol f@n) = x* 17 + (N = x* [ 4 13041 = x* D110 — x|
+ 20 llun =zl Aoty — A2x™|.
In view of the restrictions (R2) and (R3), we obtain from (2.17) and (2.21) that
lim |lu, —z,|| = 0. (2.29)
n—o0
In a similar way, we can obtain that
lim ||y, —z,l| = 0. (2.30)
n—>00
Note that
IWayn = Xnll < 10 = Xpgrll + [1Xng1 = Waynll
< xn = Xp1ll + el f(xn) = Waynll + Ballxn — Wyyull.
It follows that
(= BIWayn = Xull < %y — Xngr | + €nll £ (n) — Wyyull.
In view of the restrictions (R2) and (R3), we obtain from (2.17) that
lim ||W,y, — x|l = 0. (2.31)
n—>00
Notice that
IWnyn = yull < llyn = zall + 20 —unll + g — xull + 11x0 — Wayall.
From (2.27), (2.29), (2.30) and (2.31), we arrive at

nlingo | Wnyn — yull = 0. (2.32)
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Next, we prove that

limsup((f — Dz, x, —z) <0,

n—0o0

where z = Pq f(z). To see this, we choose a subsequence {x,,} of {x,} such
that
limsup((f — Iz, x, —z) = lim ((f — 1)z, x,, — z). (2.33)

n—o0
Since {x,,} is bounded, there exists a subsequence {xni/} of {x,,} which con-
verges weakly to w. Without loss of generality, we may assume that x,,, — w.

On the other hand, we have
X0 = Yull < llxn — tnll + Nty — zull + 122 — yull.
It follows from (2.27), (2.29) and (2.30) that
lim ||x, — y,|l = 0. (2.34)
n—oo

Therefore, we see that y,, — w. First, we prove that w € VI(C, 4;). For the

purpose, let T be the maximal monotone mapping defined by:

Aix + Ncx, x €C,
@, x ¢ C.

Tx =

For any given (x,y) € G(T), hence y — A;x € N¢. Since y, € C, by the
definition of N, we have

(x =yn,y— A1x) = 0. (2.35)
Notice that
Yn = Pc( — nnAl)Zn-

It follows that
(X — Vns Vn — - nnAl)Zn> >0

and hence

n

<x S < A12n> > 0.
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From the monotonicity of 4, we see that

(X = Vn;» ¥) = (X — yu,, A1X)

Yni = Zni +Alzn,.>

nj

Z (x _yn[’Alx> _<x _yn,‘a

= <x _ynl‘v Alx - Al}’n;) + (x - yn," Alyn,' - Alzni>

< y}’li _Zn,'>
—{x _yn[, -
nn,‘

Ynj = Zn;
= (x — Vn;» Alyn,- - Alzni> - <x — Vn;» n—n>

Since y,, — w and 4, is Lipschitz continuous, we obtain from (2.30) that
(x —w, y) > 0. Notice that T is maximal monotone, hence 0 € T'w. This shows
that w € VI(C, A;). It follows from (2.27) and (2.29), we also have

lim ||x, —z,|| = 0.
n—0o0

Therefore, we obtain z,, — w. Similarly, we can prove w € VI(C, 4,). That
is,weVI=VIC,A)NVIC, 4y).

Next, we show that w € FP = N2, F(S;). Suppose the contrary, w ¢ FP,
ie., Ww # w. Since y,, — w, we see from Opial condition that

liminf ||y,, — w| < liminf |y, — Ww||
i—00 1—00
< liinligf{llym = Wyu |+ 1 Wy, — Wwll}  (2.36)
< liminf {llyn, = Wy, |+ v, — i}
On the other hand, we have

Wyy —vull S NWyn — Wayull + 1Wayn — yull

<sup|[Wx — Wyx|| + | Wnyn — yull-
xekK

From Lemma 1.6, we obtain from (2.32) that lim,,_, o || Wy, — y,|| = 0, which
combines with (2.36) yields that that

liminf ||y,, — w| < liminf ||y,, — w].
11— 0 11—
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This derives a contradiction. Thus, we have w € FP.
Next, we show that w € EP(F, 43). It follows from (2.27) that u, — w.
Since u, = T,,(I —rA43)x,, forany y € C, we have

1
F(umy) + (A?axn’y - un) + r_<y — Up, Uy _xn> = 0.
From the assumption (A2), we see that
1
(A3xnay_un>+r_<y_un’un_xn>ZF(ya u,), VyeC.

Replacing n by n;, we arrive at
Up, — Xp,
(A3xni’y_uni>+<y_unia;> ZF(J’, un,-)’ Vy e C. (237)
Fn,

Putting y; =ty + (1 —t)w forany ¢ € (0, 1] and y € C, we see that y, € C. It
follows from (2.37) that

(yt - ui’l,’v A3J’t> 2 (yt _ul‘l,’7 A3y[> - <A3xn,'vyl _uni>
Uy, — Xy,
- <J/t - u}’l," u>+F(%’ u}’l,‘)
rn,-
= Ve — un;, Asye — Azup,) + (ye — un,, A3y, — Asxp,)

Up, — Xp,
= (31— T ) 4 F ).

In view of the monotonicity of A3, (2.27) and the restriction (R1), we obtain

from the assumption (A4) that
e —w, A3y;) = F(yr, w). (2.38)
From the assumptions (A1) and (A4), we see that

0=F,,y) <tF(y,y) +A-=0F(:, w)
StF(yo,y)+ 0 =y —w, A3y:)
=tF(,y) + U =Dty —w, A3y,),

from which it follows that

Comp. Appl. Math., Vol. 29, N. 3, 2010



XIAOLONG QIN, SUN YOUNG CHO and SHIN MIN KANG 415

It follows from the assumption (A3) that w € E P(F, 43). On the other hand,
we see from (2.33) that

limsup{(f — Dz, x, —z) ={((f — Dz, w —z) <0. (2.39)

n—oo

Finally, we show that x,, — z, as n — 00. Note that

11 — 201> = {tn f ) + BuXn + YaWaln — 2, Xyt — 2)

= (f () = 2, Xus1 — 2) + BulXn — 2, Xpp1 — 2)
+ Va(Wayn — 2, Xpg1 — 2)

< o, (f(n) = [ @)y Xt — 2) + 0 (f(2) = 2, Xp41 — 2)
+ Bullxn = 2l 1xas1 = 2l + Vullyw = 2l %1 — 21

< Sl = 2% + e = 210 + @u (£ @) = 2. 3051 = 2)
+ (1 = a)llxy — zll %041 — 2l

< Sl = 217 + e = 210 + @, (£ @) = 2. 3001 = 2)

(1 - Ol,,)

+ T(”xn —z|I” + X1 — zI1%)
l —a,(l —a) 1
=< f”xn - Z||2 + §||xn+1 —Z||2 + o, (f(2) — 2z, Xpq1 — 2),

which implies that
a1 — 21> < 11— an (1 = )]llxy = 201 + 20, (f(2) — 2, Xp41 — 2).

From the restriction (R2), we obtain from Lemma 1.3 that lim,_, o, ||x,—z| =
0. This completes the proof. O

Corollary 2.2. Let C be a nonempty closed convex subset of a Hilbert space
H and F be a bifunction from C x C to R which satisfies (A1)-(A4). Let A, :
C — H be a é-inverse-strongly monotone mapping, A, : C — H be a §,-
inverse-strongly monotone mapping and {S; : C — C} be a family of infinitely
nonexpansive mappings. Assume that Q := FP N EP(F)N VI # @, where
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FP =02 F(S)and VI = VI(C, 4)) N VI(C, A2). Let f: C — C be an
a-contraction. Let x| € C and {x,} be a sequence generated by

1
F(unay)+_<y_unvun_xn>20, VyGC,
v

n

Zy = PC(un - )\nAZMn)s
Yn = Pc(z, —npAdi1z,),
Xpn4+1 = Olnf(xn) + Buxn + VuWuyn, Vn=> 1,

where {W, : C — C} is the sequence generated in (1.9), {«,}, {B,} and {y,} are
sequences in (0, 1) such that o, + B, + y, = 1 foreachn > 1 and {r,}, {1,} and
{n,} are positive number sequences. Assume that the above control sequences

satisfy the following restrictions:

R O0O<a<n,<b<28,0<da <X, <b <28, 0<a<r,<b<25,
Vn > 1;

(RZ) hmn%oo o, = 0 and Z;; o, = O0;
(R3) 0 < liminf,_ o B, < limsup,_ . Bx < 1;

(R4) lim,,_, oo (A, — Ang1) = hmn—)oo(nn — Nng1) = limy, o0 (s — Fng1) = 0.

Then the sequence {x,} converges strongly to z € 2, which solves uniquely the

following variational inequality:

(I = fz,z—x) <0, VYxeQ.

Proof. Putting 43 = 0, we see that
(Asx — A3y, x —y) > 8||Asx — Asy|>, Vx,yeC

for all § € (0, o0). We can conclude from Theorem 2.1 the desired conclusion

easily. This completes the proof. O

Remark 2.3. If 4, = A4, and X, = 1,, then Corollary 2.2 is reduced to The-
orem 3.1 of Chang et al. [5]. If 4, = 0, f(x) = e € C a arbitrary fixed
point and S; = /, the identity mapping, then Corollary 2.2 is reduced to The-
orem 3.1 of Plubtieng and Punpaeng [11].
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Corollary 2.4. Let C be a nonempty closed convex subset of a Hilbert space H.
Let Ay : C — H be a 8,-inverse-strongly monotone mapping, A, : C — H be
a &;-inverse-strongly monotone mapping, As : C — H be a §3-inverse-strongly
monotone mapping and {S; : C — C} be a family of infinitely nonexpansive
mappings. Assume that Q := FP N EP(F, A3) N VI # (0, where FP =
N2 F(S) and VI = VI(C, A4) NVI(C, 4y). Let f : C — C be an a-
contraction. Let x; € C and {x,} be a sequence generated by

zn = Pc(xp —ryA3xy),

zy = Pc(uy — Ay A2uy),

Yn = Pe(zy — nndizy),

Xna1 = 0 f(Xn) + BuxXn + VaWayn, VYn =1,
where {W, : C — C}is the sequence generated in (1.9), {o,}, {B,} and {y,} are
sequences in (0, 1) such that o, + B, + v, = 1 foreachn > 1 and {r,}, {A,} and

{n.} are positive number sequences. Assume that the above control sequences

satisfy the following restrictions:

RI)O0O<a<n,<b<28,0<da <Xi,<b <28, 0<a<r,<b<25,
Vn > 1;

(R2) limyooa, =0 and Y 02 oty = 00;
(R3) 0 < liminf,_, o B, <limsup,_, B, < 1;
(R4) lim,, oo (A, — Ang1) = 1imn—>oo(77n — Nag1) = limy, o0 (s — Fug1) = 0.

Then the sequence {x,} converges strongly to z € Q, which solves uniquely the
following variational inequality:

(I = fz,z—x) <0, VYxeQ.

Proof. Putting F' = 0, we see that
1
<A3xnay_un>+_<y_un’un_xn>207 VyEC

I'n

is equivalent to
(¥ —up, xy, —ryAsx, —u,) <0, VyecC.
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This implies that

Up = PC(xn - 7',,A3x,,).

From the proof of Theorem 2.1, we can conclude the desired conclusion
immediately. This completes the proof. U

Remark 2.5. Corollary 2.4 includes Theorem 3.1 of Yao and Yao [25] as a
special case, see [25] for more details.

As some applications of our main results, we can obtain the following results.
Recall that a mapping 7: C — C is said to be a k-strict pseudo-contraction if
there exists a constant k£ € [0, 1) such that

ITx = Tyl? < llx = yI> + kI = T)x — (I = T)y|%, ¥x,y € C.

Note that the class of k-strict pseudo-contractions strictly includes the class of
nonexpansive mappings.

Put A =1 —T,where T: C — C is a k-strict pseudo-contraction. Then A4 is
lz;k—inverse—strongly monotone; see [1] for more details.
Corollary 2.6. Let C be a nonempty closed convex subset of a Hilbert space
H and F be a bifunction from C x C to R which satisfies (A1)-(A4). Let
Ti: C — C be a ki-inverse-strongly monotone mapping, T,: C — C be a
ky-inverse-strongly monotone mapping, T3: C — C be a kiz-inverse-strongly
monotone mapping and {S;: C — C} be a family of infinitely nonexpansive
mappings. Assume that Q@ == FPNEP(F,I — T3) N VI # ), where FP =
NXF(S) and VI = F(Ty) N F(T). Let f: C — C be an a-contraction. Let

x1 € C and {x,} be a sequence generated by

1
F(un’y) + ((I - T3)xnvy _un> + r_<y — Uy, Uy _xn) = 07 Vy € C,

n
Zp = (1 - )Vnun) + )‘nTZMna
Yo =1 = nuz,) + 0,12y,
Xngp1 = & f(X0) + BuXn + VuaWayn, V¥n =1,

where {W, : C — C}is the sequence generated in (1.9), {o,}, {B,} and {y,} are
sequences in (0, 1) such that o, + B, + vy, = 1 foreachn > 1 and {r,}, {1,} and
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{n,} are positive number sequences. Assume that the above control sequences

satisfy the following restrictions:

RDO<a=<n=<b<0-k),0<d <t =<b<(0-k),0<a=<r,=<
b<(—k),Vn>1,

(R2) lim,ooa, =0 and Y 02 o, = 00;

(R3) 0 < liminf,_, o B, <limsup,_, . B, < 1;

(R4) Timy— o (A — Apt1) = im0 (M — Npt1) = limy 06 (rn — Fn1) = 0.

Then the sequence {x,} converges strongly to z € 2, which solves uniquely the

following variational inequality:

(I = fz,z—x) <0, VYxeQ.

Proof. Taking A; = I — T;, wee see that 4; : C — H is a §;-strict pseudo-

l—zkj and F(T;) = VI(C, 4;) for j = 1,2. From

Theorem 2.1, we can obtain the desired conclusion easily. This completes the

contraction with §; =

proof. O

3 Conclusion

The iterative process (2.1) presented in this paper which can be employed to
approximate common elements in the solution set of the generalized equilibrium
problem (1.3), in the solution set of the classical variational inequality (1.1) and
in the common fixed point set of a family nonexpansive mappings is general.
It is of interest to improve the main results presented in this paper to the frame-
work of real Banach spaces.
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