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Abstract. Zeros of orthogonal polynomials associated with two different Sobolev inner prod-

ucts involving the Jacobi measure are studied. In particular, each of these Sobolev inner products

involves a pair of closely related Jacobi measures. The measures of the inner products considered

are beyond the concept of coherent pairs of measures. Existence, real character, location and

interlacing properties for the zeros of these Jacobi-Sobolev orthogonal polynomials are deduced.

Mathematical subject classification: 33C45, 33C47, 26C10.

Key words: Sobolev orthogonal polynomials, Jacobi orthogonal polynomials, Zeros of or-

thogonal polynomials.

1 Introduction

Consider the inner product

〈 f, g〉S =
k∑

j=0

∫

R
f ( j)(x) g( j)(x)dψ j (x), k ≥ 1, (1)
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where dψ j , for j = 0, 1, . . . , k, are positive measures supported on R. This

inner product is known as Sobolev inner product and the associated sequence

of monic orthogonal polynomials, {Sn}∞n=0, is known as a sequence of monic

Sobolev orthogonal polynomials.

This kind of inner product is non-standard in the sense that the shift operator,

i.e., the multiplication operator by x , is not self-adjoint

〈x f, g〉S 6= 〈 f, x g〉S,

where f and g are polynomials with real coefficients. Therefore, some of the

usual properties of standard orthogonal polynomials are not true. In fact, the

usual three term recurrence relation and the properties about the zeros (real and

simple characters, interlacing, etc.) are no longer valid.

In 1991, A. Iserles et al. [9] studied Sobolev inner products as (1) for k = 1

when the two measures dψ0 and dψ1 are related. If we denote by {Pψi
n }∞n=0

(i = 0, 1) the sequence of monic orthogonal polynomials with respect to the

standard inner product

〈 f, g〉ψi =
∫

R
f (x) g(x) dψi (x), i = 0, 1,

then {dψ0, dψ1} is a coherent pair of measures if

Pψ1
n (x) =

1

n + 1

[
P

′ψ0
n+1(x)+ σn P

′ψ0
n (x)

]
, for n ≥ 1,

where σn are non-zero constants. As a consequence (see [9]), the sequence

of monic Sobolev orthogonal polynomials {Sn}∞n=0 associated with the Sobolev

inner product

〈 f, g〉S = 〈 f, g〉ψ0 + 〈 f ′, g′〉ψ1 (2)

satisfies

Sn+1(x)+ an Sn(x) = Pψ0
n+1(x)+ σn Pψ0

n (x), n ≥ 1. (3)

H.G. Meijer [13] has shown that if {dψ0, dψ1} is a coherent pair of measures,

then both measures are closely related and at least one of them must be classical.

Sobolev orthogonal polynomials associated with coherent pairs have been ex-

haustively studied. Algebraic and differential properties, as well as properties
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about zeros, have been investigated. In particular, in [6], [8], and [11], several

results about existence, location and interlacing properties of the zeros of or-

thogonal polynomials with respect to Gegenbauer-Sobolev and Hermite-Sobolev

inner products are shown. Moreover, in [14], the authors considered special

Jacobi-Sobolev and Laguerre-Sobolev inner products, where the pair of mea-

sures forms a coherent pair and they proved interlacing properties of the zeros

of Sobolev orthogonal polynomials.

In [2] and [3] it has been introduced an alternative approach to study Sobolev

inner products such that the corresponding orthogonal polynomials still satisfy a

relation of the form (3). This kind of Sobolev inner products generalizes Sobolev

inner products defined from a coherent pair of measures and it allows to extend

the results about Sobolev orthogonal polynomials beyond the concept of coherent

pairs. In [7] the authors have considered the inverse problem: starting from the

relation (3) to obtain a pair of quasi-definite moment functionals such that (3)

holds. Their results show that the pair of measures involved being coherent is

not necessary for (3) to hold.

In the present paper, properties for the zeros of Sobolev orthogonal polynomi-

als associated with inner products of the form (2) have been investigated. The

measures of the inner products involve Jacobi measures and they are beyond the

concept of coherent pairs of measures.

For α, β > −1, let dψ(α,β) denotes the classical Jacobi measure on [−1, 1]

given by

dψ(α,β)(x) = (1 − x)α(1 + x)βdx,

{P (α,β)
n }∞n=0 be the sequence of classical monic Jacobi orthogonal polynomials

and ρ(α,β)n = 〈P (α,β)
n , P (α,β)

n 〉ψ(α,β) .

It is well known that the zeros of P (α,β)
n are all real, distinct and lie inside

(−1, 1). We denote the zeros of P (α,β)
n by p(α,β)n,i , i = 1, 2, . . . , n, in increasing

order. For more details about these polynomials see, for instance, [5] and [15].

In this paper we consider two Sobolev inner products given in [3], namely

Type I. For |κ1| ≤ 1, κ2 ≥ |κ3|,

dψ0 = (1 + κ1 x) dψ(α,β)(x),

dψ1 = (κ2 + κ3x) dψ(α+1,β+1)(x).
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Type II. For |κ3| ≥ 1, κ2, κ4 ≥ 0, κ1 ≥ −|κ3|κ2/(1 + |κ3|),

dψ0 = dψ(α,β)(x),

dψ1 =
(
κ1 +

κ2 κ3

κ3 − x

)
dψ(α+1,β+1)(x)+ κ2κ4δ(κ3).

When κ1 6= 0, κ2 > 0 and κ3 = 0, the measures involved in type I form a

coherent pair (see [13]). In [14], the authors have proved that the zeros of the

corresponding Sobolev orthogonal polynomials are real and simple, and they

have interlacing properties. When κ3 6= 0, the pair of measures no longer forms

a coherent pair and, in this case, we will show in Section 2 that, under some

conditions, the interlacing properties established in [14] for κ3 = 0 still hold

even when κ3 6= 0.

When κ1 = 0 the pair of measures of type II is also a coherent pair of mea-

sures (see [13]). In this case, properties about zeros for the corresponding

Sobolev orthogonal appear in [14]. In [10] the authors have studied the spe-

cial case when κ1 = κ4 = 0, κ2 > 0 and κ3 = −1. When κ1 6= 0, the pair of

measures of type II no longer forms a coherent pair. Section 3 is devoted to show

interlacing properties for the zeros of Jacobi-Sobolev orthogonal polynomials of

type II when κ1 6= 0. Indeed, our results generalize the interlacing properties

established in [14] for the particular case κ1 = 0.

In [1] it has been studied properties of the zeros of orthogonal polynomials

with respect to Gegenbauer-Sobolev inner product where the associated pair of

measures does not form a symmetrically coherent pair.

2 Jacobi-Sobolev inner product of type I

Let us consider the following modification of the Jacobi weight

dψ(α,β,κ1)(x) = (1 + κ1 x)dψ(α,β)(x) = (1 + κ1 x)(1 − x)α(1 + x)βdx,

defined on [−1, 1], where |κ1| ≤ 1. We denote by {P (α,β,κ1)
n }∞n=0 the sequence

of monic orthogonal polynomials associated with dψ(α,β,κ1), and

ρ(α,β,κ1)
n =

∫ 1

−1

(
P (α,β,κ1)

n (x)
)2
(1 + κ1 x)(1 − x)α(1 + x)βdx .

Comp. Appl. Math., Vol. 29, N. 3, 2010



“main” — 2010/10/28 — 18:13 — page 427 — #5

E.X.L. ANDRADE, C.F. BRACCIALI, M.V. MELLO and T.E. PÉREZ 427

The following result is known (see, for instance, [3])

P (α,β)
n (x) = P (α,β,κ1)

n (x)+ dn−1 P (α,β,κ1)

n−1 (x), n ≥ 1,

where

dn−1 =
κ1 ρ

(α,β)
n

ρ
(α,β,κ1)

n−1

, n ≥ 1. (4)

Observe that sgn(dn) = sgn(κ1) where, as usual,

sgn(a) =

{
|a|/a, if a 6= 0,

0, if a = 0.

For n ≥ 1, the zeros of P (α,β,κ1)
n are real, simple and all lie in the interval

(−1, 1). If we denote their zeros by p(α,β,κ1)

n,i , i = 1, 2, . . . , n, in increasing

order, then they interlace with the zeros of the classical Jacobi polynomials and

their position depends on the sign of κ1 (see [4]):

for −1 ≤ κ1 < 0 and 1 ≤ i ≤ n − 1,

−1 < p(α,β,κ1)

n,i < p(α,β)n,i < p(α,β,κ1)

n−1,i < p(α,β,κ1)

n,i+1 < p(α,β)n,i+1 < 1, (5)

and for 0 < κ1 ≤ 1 and 1 ≤ i ≤ n − 1,

−1 < p(α,β)n,i < p(α,β,κ1)

n,i < p(α,β,κ1)

n−1,i < p(α,β)n,i+1 < p(α,β,κ1)

n,i+1 < 1. (6)

Consider the following Sobolev inner product, introduced in [3],

〈 f, g〉J S1 =
∫ 1

−1
f (x) g(x)(1 + κ1 x)dψ(α,β)(x) (7)

+
∫ 1

−1
f ′(x) g′(x)(κ2 + κ3x)dψ(α+1,β+1)(x),

with |κ1| ≤ 1 andκ2 ≥ |κ3|. Then 〈∙, ∙〉J S1 is positive definite and we will refer

to it as Jacobi-Sobolev inner product of type I.

Let {S J1
n }∞n=0 denote the sequence of monic orthogonal polynomials with re-

spect to (7), we will refer to it as sequence of Jacobi-Sobolev orthogonal poly-

nomials of type I. In addition, we denote ρ J1
n = 〈S J1

n , S J1
n 〉J S1 .
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Furthermore, S J1
0 (x) = 1 and for n ≥ 0

S J1
n+1(x)+ a J1

n S J1
n (x) = P (α,β)

n+1 (x) = P (α,β,κ1)

n+1 (x)+ dn P (α,β,κ1)
n (x), (8)

where a J1
n is given by the expression ([3])

a J1
n =

(κ1 + n(n + α + β + 2)κ3)ρ
(α,β)

n+1

ρ
J1
n

.

Observe that, if κ1 = 0, then sgn(a J1
n ) = sgn(κ3). Otherwise, if sgn(κ1) =

sgn(κ3), then sgn(a J1
n ) = sgn(κ1) = sgn(κ3).

2.1 Zeros of S J1
n and P (α,β)

n

For n, i ≥ 0 we define

m J1
i,n =

∫ 1

−1
S J1

n (x)
[
x + sgn(κ3)

]i
dψ(α,β)(x), (9)

and

m̂ J1
i,n =

∫ 1

−1
S ′J1

n (x)
[
x + sgn(κ3)

]i
dψ(α+1,β+1)(x). (10)

Since 〈S J1
n , [x + sgn(κ3)]i 〉J S1 = 0 for n ≥ 1 and 0 ≤ i ≤ n − 1, we obtain

κ1 m J1
i+1,n +

(
1 − sgn(κ3) κ1

)
m J1

i,n = −i
(
κ3 m̂ J1

i,n + (κ2 − |κ3|) m̂ J1
i−1,n

)
. (11)

Using integration by parts in (10) we have for n ≥ 1 and i ≥ 0,

m̂ J1
i,n = (i + α + β + 2) m J1

i+1,n − (2sgn(κ3)i + η)m J1
i,n, (12)

where η = (β + 1)[1 + sgn(κ3)] − (α + 1)[1 − sgn(κ3)]. Since

η =

{
−2(α + 1), if κ3 < 0,

2(β + 1), if κ3 > 0,

then sgn(η) = sgn(κ3).

Substituting (12) in (11), the following three term recurrence relation holds

m J1
i+1,n = −

1

κ1 + i κ3(i + α + β + 2)

(
Ai m J1

i,n − Bi m J1
i−1,n

)
, (13)
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for n ≥ 2 and 1 ≤ i ≤ n − 1, where

Ai = (κ2 − 3|κ3|)i
2 +

[
(κ2 − |κ3|)(α + β + 1)− κ3η)

]
i + (1 − sgn(κ3)κ1),

Bi = (κ2 − |κ3|)
[
2sgn(κ3)(i − 1)+ η

]
i.

Since κ2 ≥ |κ3| and sgn(η) = sgn(κ3), we observe that sgn(Bi ) = sgn(κ3) for

i ≥ 1.

Moreover, in order to assure the positivity of Ai for i ≥ 1, we need some

additional conditions.

Lemma 2.1. Suppose α, β ≥ 0, κ2 ≥ 3|κ3| and sgn(κ1) = sgn(κ3) if κ1 6= 0.

Then Ai > 0 for i ≥ 1.

Proof. Observe that we can write

Ai =
[
κ2 − 3|κ3|

]
i2 +

[
(κ2 − 3|κ3|)(α + β + 1)− 2κ3β

]
i + (1 − |κ1|)

for κ3 < 0, and

Ai =
[
κ2 − 3|κ3|

]
i2 +

[
(κ2 − 3|κ3|)(α + β + 1)+ 2κ3α

]
i + (1 − |κ1|)

for κ3 > 0. Then, the result holds. �

Lemma 2.2. Assume that the conditions of Lemma 2.1 hold. For n ≥ 1, if

κ1 = 0, we get

m J1
0,n = 0, sgn(m J1

i,n) = (−1)n+i
[
sgn(κ3)

]n+i
, 1 ≤ i ≤ n,

and if κ1 6= 0

sgn(m J1
i,n) = (−1)n+i

[
sgn(κ3)

]n+i
, 0 ≤ i ≤ n.

Proof. Suppose κ1 = 0. From (11), we get m J1
0,n = 0, n ≥ 1. On the other

hand, using the well known property for the monic classical Jacobi polynomi-

als (see [15])

P ′ (α,β)
n (x) = n P (α+1,β+1)

n−1 (x), n ≥ 0,
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in relation (8), we have

m̂ J1
0,n = −a J1

n−1

∫ 1

−1
S ′J1

n−1(x)dψ
(α+1,β+1)(x).

Therefore

m̂ J1
0,n = (−1)n−1 a J1

n−1 a J1
n−2 . . . a

J1
2 a J1

1

∫ 1

−1
S ′J1

1 (x)dψ(α+1,β+1)(x).

Since sgn(a J1
n ) = sgn(κ3) and

∫ 1
−1 S ′J1

1 (x)dψ(α+1,β+1)(x) > 0, we deduce

sgn(m̂ J1
0,n) = (−1)n+1

[
sgn(κ3)

]n+1
, n ≥ 1.

By making i = 0 in (12), we get m̂ J1
0,n = (α + β + 2)m J1

1,n , and then

sgn(m J1
1,n) = sgn(m̂ J1

0,n) = (−1)n+1
[
sgn(κ3)

]n+1
, n ≥ 1.

Now, suppose that κ1 6= 0. Using (8), we obtain
∫ 1

−1
S J1

n+1(x)dψ
(α,β)(x)+ a J1

n

∫ 1

−1
S J1

n (x)dψ
(α,β)(x) = 0, n ≥ 0,

and then m J1
0,n+1 = −a J1

n m J1
0,n . Since m J1

0,0 =
∫ 1
−1 S J1

0 (x)dψ
(α,β)(x) > 0 for

n ≥ 0, we get

sgn(m J1
0,n) = (−1)n sgn(a J1

n−1 a J1
n−2 ∙ ∙ ∙ a J1

1 ) sgn(m J1
0,0) = (−1)n[sgn(κ3)]

n.

The substitution of i = 0 in (13) yields m J1
1,n = −(1 − sgn(κ3)κ1)m

J1
0,n/κ1, then

sgn(m J1
1,n) = (−1)n+1[sgn(κ3)]

nsgn(κ1) = (−1)n+1[sgn(κ3)]
n+1.

Therefore, using mathematical induction on i in (13), we get the result. �

Lemma 2.3. Under the hypotheses of Lemma 2.1, let πr (x) be a monic poly-

nomial of degree r , with 1 ≤ r ≤ n, such that all of its zeros are real and lie in

[−1, 1]. Let us define

Ir,n =
∫ 1

−1
S J1

n (x)πr (x)dψ
(α,β)(x).

Then sgn(Ir,n) = (−1)n+r
[
sgn(κ3)

]n+r
.

Comp. Appl. Math., Vol. 29, N. 3, 2010



“main” — 2010/10/28 — 18:13 — page 431 — #9

E.X.L. ANDRADE, C.F. BRACCIALI, M.V. MELLO and T.E. PÉREZ 431

Proof. Let −1 ≤ tr,1 ≤ tr,2 ≤ ∙ ∙ ∙ ≤ tr,r ≤ 1 be the zeros of πr (x). Then

πr (x) =
r∏

j=1

{x + sgn(κ3)− [tr, j + sgn(κ3)]} =
r∑

i=0

ci [x + sgn(κ3)]
i ,

where cr = 1 and, if ci 6= 0, then sgn(ci ) = (−1)r−i [sgn(κ3)]r−i , i =

0, 1, . . . , r . Using (9),

Ir,n =
r∑

i=0

ci m J1
i,n,

and the result holds from Lemma 2.2. �

Now we will show that, under the hypotheses of Lemma 2.1, the n-th Jacobi-

Sobolev orthogonal polynomial of type I, S J1
n , has n real and simple zeros and

they interlace with the zeros of the classical Jacobi polynomial P (α,β)
n .

Theorem 2.4. Suppose that the conditions of Lemma 2.1 hold. Then, for

n ≥ 2, S J1
n has n real and simple zeros. If we denote s J1

n,i for 1 ≤ i ≤ n,

the zeros of S J1
n in increasing order, then they satisfy

for κ3 < 0,

s J1
n,i < p(α,β)n,i < s J1

n,i+1 < p(α,β)n,i+1, 1 ≤ i ≤ n − 1, (14)

for κ3 > 0,

p(α,β)n,i < s J1
n,i < p(α,β)n,i+1 < s J1

n,i+1, 1 ≤ i ≤ n − 1. (15)

Proof. Define

π
j

n−1(x) =
P (α,β)

n (x)

x − p(α,β)n, j

=
n∏

i=1,i 6= j

(x − p(α,β)n,i ), 1 ≤ j ≤ n.

Then, degπ j
n−1 = n − 1 and, using Lemma 2.3, we get

sgn(I j
n−1,n) = (−1)2n−1[sgn(κ3)]

2n−1 = −sgn(κ3),

where

I j
n−1,n =

∫ 1

−1
S J1

n (x) π
j

n−1(x)dψ
(α,β)(x).
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Applying the Gaussian quadrature rule based on the n zeros of P (α,β)
n , we

obtain

I j
n−1,n =

n∑

i=1

wn,i S J1
n (p

(α,β)

n,i ) π
j

n−1(p
(α,β)

n,i )

= wn, j S J1
n (p

(α,β)

n, j ) P ′(α,β)
n (p(α,β)n, j )

for j = 1, 2, . . . , n.

Suppose κ3 < 0. In this case, for j = 1, 2, . . . , n, we get

S J1
n (p

(α,β)

n, j )P ′(α,β)
n (p(α,β)n, j ) > 0.

Therefore, there is just one zero of S J1
n in each interval (p(α,β)n,i−1, p(α,β)n,i ) for

i = 2, 3, . . . , n. Since P (α,β)
n and S J1

n are monic, there is one zero of S J1
n in

(−∞, p(α,β)n,1 ). Then, (14) holds.

For κ3 > 0, we observe that

S J1
n (p

(α,β)

n, j )P ′(α,β)
n (p(α,β)n, j ) < 0, for j = 1, 2, . . . , n,

and a similar argument as above shows (15). �

Moreover, it is possible to show interlacing properties between the zeros of

Jacobi-Sobolev orthogonal polynomials, S J1
n , and the zeros of the classical Ja-

cobi polynomials P (α,β+1)
n , P (α+1,β)

n and P (α+1,β+1)
n .

Theorem 2.5. Under the hypotheses of Lemma 2.1, for n ≥ 2 and 1 ≤ i ≤

n − 1, we get

i) the zeros of S J1
n interlace with the zeros of P (α,β+1)

n and P (α+1,β)
n as follows

s J1
n,i < p(α,β+1)

n,i < s J1
n,i+1 < p(α,β+1)

n,i+1 < 1,

−1 < p(α+1,β)
n,i < s J1

n,i < p(α+1,β)
n,i+1 < s J1

n,i+1,

ii) the zeros of P (α+1,β+1)
n−1 separate the zeros of S J1

n in the following way

s J1
n,i < p(α+1,β+1)

n−1,i < s J1
n,i+1.
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Proof. Defining

π j
n (x) = (x + 1)

P (α,β+1)
n (x)

x − p(α,β+1)
n, j

= (x + 1)
n∏

i=1,i 6= j

(x − p(α,β+1)
n,i ),

and

π̂ j
n (x) = (x − 1)

P (α+1,β)
n (x)

x − p(α+1,β)
n, j

= (x − 1)
n∏

i=1,i 6= j

(x − p(α+1,β)
n,i ),

a similar argument used for Theorem 2.4 shows the result i).

To get the result ii), take

π̃ j
n (x) =

(x2 − 1)P (α+1,β+1)
n−1 (x)

x − p(α+1,β+1)
n−1, j

= (x2 − 1)
n−1∏

i=1,i 6= j

(x − p(α+1,β+1)
n−1,i )

in Lemma 2.3. Then one obtains

wn−1, j S J1
n (p

(α+1,β+1)
n−1, j ) P ′(α+1,β+1)

n−1 (p(α+1,β+1)
n−1, j ) < 0,

for j = 1, 2, . . . , n − 1. �

As a consequence of this theorem, the following result is established.

Corollary 2.6. For n ≥ 1, Jacobi-Sobolev orthogonal polynomial S J1
n has n

real and simple zeros inside (−1, 1).

Finally, interlacing properties of the zeros of Jacobi-Sobolev orthogonal

polynomials of two consecutive degrees can be shown.

Theorem 2.7. Under conditions of Lemma 2.1, for n ≥ 2, the n − 1 zeros of

S J1
n−1 interlace with the zeros of S J1

n as follows

s J1
n,i < s J1

n−1,i < s J1
n,i+1, 1 ≤ i ≤ n − 1.

Proof. From (8) we get

a J1
n−1S J1

n−1(s
J1
n,i ) = P (α,β)

n (s J1
n,i ), for i = 1, 2, ∙ ∙ ∙ , n.
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On the other hand, Theorem 2.4 provides

sgn(S J1
n (p

(α,β)

n,i ) P ′(α,β)
n (p(α,β)n,i )) = −sgn(κ3),

and then

sgn(S J1′
n (s J1

n,i )P
(α,β)
n (s J1

n,i )) = sgn(κ3).

Since sgn(a J1
n−1) = sgn(κ3), we deduce S J1′

n (s J1
n,i )S

J1
n−1(s

J1
n,i ) > 0.

Therefore, S J1
n−1 has a zero in each interval (s J1

n,i−1, s J1
n,i ), for i = 2, 3, . . . ,

n. �

Remark 2.8. If we have sgn(κ1) 6= sgn(κ3) instead of sgn(κ1) = sgn(κ3) in

the hypotheses of Lemma 2.1, then sgn(a J1
0 ) = sgn(κ1) and there exists N ∈ N

such that

sgn(a J1
n ) = sgn(κ1+n(n+α+β+2)κ3) =

{
sgn(κ1), if n < N ,

sgn(κ3), if n ≥ N , or a J1
N = 0.

Numerical experiments allow us to conjecture that, also in this case, the zeros of

S J1
n interlace with the zeros of P (α,β)

n . Moreover, for 1 ≤ i ≤ n,

• if κ1 < 0 and κ3 > 0, then s J1
n,i < p(α,β)n,i for n ≤ N and p(α,β)n,i < s J1

n,i

for n > N ,

• if κ1 > 0 and κ3 < 0, then p(α,β)n,i < s J1
n,i for n ≤ N and s J1

n,i < p(α,β)n,i

for n > N .

Table 1 describes an example of this fact. Notice, from (8), that if a J1
N = 0

then S J1
N+1(x) = P (α,β)

N+1 (x).

2.2 Zeros of S J1
n and P (α,β,κ1)

n

In this section we relate the zeros of Jacobi-Sobolev orthogonal polynomial of

type I with the zeros of the polynomial P (α,β,κ1)
n , κ1 6= 0, orthogonal with respect

to the first measure in (7).

For n, i ≥ 0, we define

μ
J1
i,n =

∫ 1

−1
S J1

n (x)(1 + κ1 x)i dψ(α,β)(x),
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i s J1
4,i p(α,β)4,i

1 –0.4308679926 –0.4307826553

2 0.0148759928 0.0149809768

3 0.4375627876 0.4376478562

4 0.7781122439 0.7781538222

s J1
4,i < p(α,β)4,i , i = 1, 2, 3, 4.

i s J1
5,i p(α,β)5,i

1 –0.5449824458 –0.5449890822

2 –0.1698341048 –0.1698432787

3 0.2118047152 0.2117956865

4 0.5577706724 0.5577641564

5 0.8276284403 0.8276254591

p(α,β)5,i < s J1
5,i , i = 1, 2, 3, 4, 5.

Table 1 – Zeros of polynomials S J1
n and P(α,β)n for n = 4, 5, α = 2, β = 5, κ1 = −0.999,

κ2 = 5, and κ3 = 0.02. Here N = 4.

and

μ̂
J1
i,n =

∫ 1

−1
S ′J1

n (x)(1 + κ1 x)i dψ(α+1,β+1)(x).

Observe that, since 〈S J1
n , (1 + κ1 x)i 〉J S1 = 0, for n ≥ 1,

μ
J1
i+1,n = −i κ3 μ̂

J1
i,n + i(κ3 − κ1 κ2)μ̂

J1
i−1,n, i = 0, 1, . . . , n − 1. (16)

On the other hand, using integration by parts we get

κ1 μ̂
J1
i,n = (i + 2 + α + β)μ

J1
i+1,n

− [2 i + (α + 1)(1 − κ1)+ (β + 1)(1 + κ1)]μ
J1
i,n

+i(1 − κ2
1 )μ

J1
i−1,n,

for n ≥ 1 and i ≥ 0. Then, the following recurrence relation holds

μ
J1
i+1,n = −

κ1

κ1 + i κ3(i + 2 + α + β)

(
Aiμ

J1
i,n − Biμ

J1
i−1,n + Ciμ

J1
i−2,n

)
,

for n ≥ 1 and i = 1, 2, . . . , n − 1, where

Ai =
(
κ2 − 3

κ3

κ1

)
i2 +

(
κ2(α + β + 1)−

κ3

κ1
[α(2 − κ1)+ β(2 + κ1)+ 3]

)
i,

Bi =
(

2κ2 −
κ3

κ1
(3 − κ2)

)
i2 +

(
κ2 −

κ3

κ1

)

(α(1 − κ1)+ β(1 + κ1)) i,

Ci =
(
κ2 −

κ3

κ1

)
(1 − κ2

1 ) i (i − 1).
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In order to obtain Ai , Bi and Ci as non-negative coefficients, we need some

additional conditions. Observe that the conditions given in the next lemma are

sufficient.

Lemma 2.9. Suppose α, β ≥ 0, κ2 ≥ 3κ3/κ1 ≥ 0 and sgn(κ1) = sgn(κ3).

Then Ai , Bi and Ci are non-negative for i ≥ 1.

A similar argument used in Lemma 2.2 allows us to obtain the sign of μJ1
i,n and

μ̂
J1
i,n , using the hypotheses of Lemma 2.9.

Lemma 2.10. Assume that the conditions of Lemma 2.9 hold. For n ≥ 1, we

have

i) μJ1
1,n = 0, sgn(μJ1

i,n) = (−1)n+i [sgn(κ1)]n, i = 2, 3, . . . , n,

ii) sgn(μ̂J1
i,n) = (−1)n+i+1[sgn(κ1)]n+1, i = 0, 1, . . . , n − 1.

The next lemma is analogous to Lemma 2.3 and it can be proved using the

same technique. Again, we assume that the hypotheses of Lemma 2.9 are valid.

Lemma 2.11. Under conditions of Lemma 2.9, for n ≥ 2 it follows

i) Let πr be a monic polynomial of degree r , 1 ≤ r ≤ n − 1, such that all of

its zeros are real and lie in (−1, 1). Define

Ir,n =
1

κ1

∫ 1

−1
S J1

n (x)πr (x)dψ
(α,β,κ1)(x),

then sgn(Ir,n) = (−1)n+r+1[sgn(κ1)]n+r+1.

ii) Let πr be a monic polynomial of degree r , 1 ≤ r ≤ n, with all real zeros

in (−1, 1). If we define

Jr,n =
1

κ1

∫ 1

−1
S ′J1

n (x)πr (x)dψ
(α+1,β+1,κ1)(x),

then sgn(Jr,n) = (−1)n+r+1[sgn(κ1)]n+r .
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Proof. To prove i), let −1 < tr,1 ≤ tr,2 ≤ ∙ ∙ ∙ ≤ tr,r < 1 be the zeros of πr .

Then

πr (x) =
r∏

j=1

(x − tr, j ) =
r∏

j=1

(
x +

1

κ1
−

(
tr, j +

1

κ1

))
=

r∑

i=0

ci

(
x +

1

κ1

)i

,

with cr = 1. When −1 ≤ κ1 < 0 we have tr, j + 1
κ1
< 0 and when 0 < κ1 ≤ 1

we have tr, j + 1
κ1
> 0. Therefore

sgn(ci ) = (−1)r−i [sgn(κ1)]
r−i , i = 0, 1, . . . , r.

Hence,

Ir,n =
r∑

i=0

ci

κ i+1
1

∫ 1

−1
S J1

n (x) (1 + κ1 x)i+1 dψ(α,β)(x) =
r∑

i=0

ci

κ i+1
1

μ
J1
i+1,n,

and using Lemma 2.10 the result holds. A similar argument shows ii). �

Now, we have the necessary tools to get the announced interlacing property

between the zeros of S J1
n and the zeros of P (α,β,κ1)

n .

Theorem 2.12. Under the conditions of Lemma 2.9, for n ≥ 2 and 1 ≤ i ≤

n − 1, the zeros of S J1
n satisfy

i) If −1 ≤ κ1 < 0,

p(α,β,κ1)

n,i < s J1
n,i < p(α,β,κ1)

n,i+1 < s J1
n,i+1,

and, if 0 < κ1 ≤ 1,

s J1
n,i < p(α,β,κ1)

n,i < s J1
n,i+1 < p(α,β,κ1)

n,i+1 .

ii) The zeros of P (α,β,κ1)

n−1 separate the zeros of S J1
n . That is,

s J1
n,i < p(α,β,κ1)

n−1,i < s J1
n,i+1.

Collecting all the interlacing properties given in (5), (6) and Theorems 2.4 and

2.12, we have for −1 ≤ κ1 < 0,

p(α,β,κ1)

n,i < s J1
n,i < p(α,β)n,i < p(α,β,κ1)

n−1,i < p(α,β,κ1)

n,i+1 , 1 ≤ i ≤ n − 1,
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and, for 0 < κ1 ≤ 1,

p(α,β)n,i < s J1
n,i < p(α,β,κ1)

n,i < p(α,β,κ1)

n−1,i < p(α,β)n,i+1, 1 ≤ i ≤ n − 1.

To finish this section, the extremal points of S J1
n can be analyzed. Denote the

extremal points of S J1
n by ŝ J1

n,i , i = 1, 2, . . . , n − 1, in increasing order.

Theorem 2.13. Under the hypotheses of Lemma 2.9, for n ≥ 3 the polynomial

S J1
n has n − 1 extremal points in the interval (−1, 1) and they satisfy

p(α+1,β+1,κ1)

n,i < ŝ J1
n,i < p(α+1,β+1,κ1)

n,i+1 , 1 ≤ i ≤ n − 1.

3 Jacobi-Sobolev inner product of type II

Let dψ(x) be the measure defined on [−1, 1] by means of

〈 f, g〉ψ =
∫ 1

−1
f (x) g(x)

κ3

κ3 − x
(1−x)α+1(1+x)β+1dx+κ4 f (κ3) g(κ3), (17)

where |κ3| ≥ 1 and κ4 ≥ 0, and let {P (α,β,κ3,κ4)
n }∞n=0 be the corresponding se-

quence of monic orthogonal polynomials. In Maroni [12] (see also [3]), the

author has obtained the relation

P (α,β,κ3,κ4)
n (x) = P (α+1,β+1)

n (x)+ dn−1 P (α+1,β+1)
n−1 (x), n ≥ 1,

where

dn−1 = −
ρ
(α,β,κ3,κ4)
n

κ3 ρ
(α+1,β+1)
n−1

, ρ(α,β,κ3,κ4)
n = 〈P (α,β,κ3,κ4)

n , P (α,β,κ3,κ4)
n 〉ψ.

Note that sgn(dn−1) = −sgn(κ3).

In this section we consider Jacobi-Sobolev inner product of type II, intro-

duced in [3], given by the expression

〈 f, g〉J S2 =
∫ 1

−1
f (x) g(x)dψ(α,β)(x) (18)

+
∫ 1

−1
f ′(x) g′(x)

(
κ1 +

κ2 κ3

κ3 − x

)
dψ(α+1,β+1)(x)+ κ2 κ4 f ′(κ3) g′(κ3),

Comp. Appl. Math., Vol. 29, N. 3, 2010



“main” — 2010/10/28 — 18:13 — page 439 — #17

E.X.L. ANDRADE, C.F. BRACCIALI, M.V. MELLO and T.E. PÉREZ 439

where

|κ3| ≥ 1, κ2, κ4 ≥ 0 and κ1 ≥ −
|κ3|κ2

1 + |κ3|
.

We denote by {S J2
n }∞n=0 the sequence of monic orthogonal polynomials associ-

ated with 〈∙, ∙〉J S2 , and we call it sequence of monic Jacobi-Sobolev orthogo-

nal polynomials of type II. These polynomials satisfy S J2
0 (x) = 1, S J2

1 (x) =

P (α,β)

1 (x) and

S J2
n+1(x)+ a J2

n S J2
n (x) = P (α,β)

n+1 (x)+ bn P (α,β)
n (x), n ≥ 1, (19)

where

a J2
n =

(
ρ
(α,β)
n + κ1n2ρ

(α+1,β+1)
n−1

)
bn

ρ
J2
n

, n ≥ 1, (20)

ρ J2
n = 〈S J2

n , S J2
n 〉J S2 and

bn =
n + 1

n
dn−1 = −

n + 1

n

ρ
(α,β,κ3,κ4)
n

κ3 ρ
(α+1,β+1)
n−1

, n ≥ 1.

Since ρ(α+1,β+1)
n−1 = (n + α + β + 1)ρ(α,β)n /n, we can also write

a J2
n =

(
1 + κ1n(n + α + β + 1)

)
bnρ

(α,β)
n

ρ
J2
n

.

Observe that sgn(bn) = sgn(dn−1) = −sgn(κ3) and, if κ1 > 0, then sgn(a J2
n ) =

sgn(bn) = −sgn(κ3).

3.1 Zeros of S J2
n and P (α,β)

n

For n, i ≥ 0, we define

ν
J2
i,n =

∫ 1

−1
S J2

n (x)(x − κ3)
i dψ(α,β)(x) (21)

and

ν̂
J2
i,n =

∫ 1

−1
S ′J2

n (x)(x − κ3)
i κ3 − x

κ3
dψ(x) (22)

=
∫ 1

−1
S ′J2

n (x)(x − κ3)
i (1 − x)α+1(1 + x)β+1dx .
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Because of the orthogonality property, we have 〈S J2
n , (x − κ3)

i 〉J S2 = 0, for

n ≥ 1, and then

ν
J2
i,n = i

(
− κ1 ν̂

J2
i−1,n + κ3 κ2 ν̂

J2
i−2,n

)
, i ≥ 2. (23)

Integration by parts in (22) for n ≥ 1 and i ≥ 1 provides

ν̂
J2
i,n = (i + 2 + α + β)ν

J2
i+1,n

+
[
2κ3i + (α + 1)(1 + κ3)− (β + 1)(1 − κ3)

]
ν

J2
i,n

+i(κ2
3 − 1)ν J2

i−1,n,

and then, if we define ν J2
−1,n = 0, for n ≥ 1 and i = 2, 3, . . . , n−1, the following

three term recurrence relation can be deduced

ν
J2
i,n = −

i

1 + κ1(i + 1 + α + β)i

(
Ai ν

J2
i−1,n − Bi ν

J2
i−2,n + Ci ν

J2
i−3,n

)
, (24)

where

Ai = −κ3
(
κ2 − 2κ1

)
i + κ1

[
κ3(α + β)+ α − β

]
− κ3κ2(α + β),

Bi =
[
2κ2

3κ2 − κ1
(
κ2

3 − 1
)]

i + κ2
[
κ2

3 (α + β − 2)+ κ3(α − β)
]
+ κ1

(
κ2

3 − 1
)
,

Ci = κ3κ2
(
1 − κ2

3

)
(i − 2).

The next lemma establishes sufficient conditions to determine the sign of the

above coefficients.

Lemma 3.1. For κ2 ≥ 2κ1 ≥ 0, α + β > 2 and

{
α ≤ β, if κ3 ≤ −1,

α ≥ β, if κ3 ≥ 1,

then sgn(Ai ) = −sgn(κ3) and Bi > 0, for i ≥ 1. Moreover, if |κ3| 6= 1 then

sgn(Ci ) = −sgn(κ3) and if |κ3| = 1 then Ci = 0.

We remark that Lemma 3.1 establishes sufficient conditions in order to obtain

the sign of Ai , Bi and Ci . Under conditions of Lemma 3.1, analogous techniques

to those used in Lemmas 2.2 and 2.3 allow us to prove the next two lemmas.

Comp. Appl. Math., Vol. 29, N. 3, 2010



“main” — 2010/10/28 — 18:13 — page 441 — #19

E.X.L. ANDRADE, C.F. BRACCIALI, M.V. MELLO and T.E. PÉREZ 441

Lemma 3.2. For n ≥ 3, we have ν J2
0,n = 0 and

sgn
(
ν

J2
i,n

)
= −

[
sgn(κ3)

]n+i
, 1 ≤ i ≤ n − 1.

Lemma 3.3. For n ≥ 3, let us consider πr a monic polynomial of degree r ,

1 ≤ r ≤ n − 1, such that all its zeros are real, simple and lie in the interval

(−1, 1). Define

Ir,n =
∫ 1

−1
S J2

n (x)πr (x)dψ
(α,β)(x). (25)

Then sgn(Ir,n) = −
[
sgn(κ3)

]n+r
.

Under the same restrictions given in Lemma 3.1 for the parameters and using

the above two lemmas, we can show that the n-th Jacobi-Sobolev orthogonal

polynomial of type II, S J2
n , has n different real zeros and at least n − 1 zeros

lie inside (−1, 1). We denote the real zeros of S J2
n , in increasing order, by s J2

n,i ,

i = 1, 2, . . . , n.

Theorem 3.4. Under the conditions of Lemma 3.1, for n ≥ 3,S J2
n has n real

zeros and at least n − 1 of them lie inside the interval (−1, 1). Moreover, denot-

ing the zeros of S J2
n , by s J2

n,i , i = 1, 2, . . . , n, in increasing order, then

i) if κ3 ≤ −1,

s J2
n,i < p(α,β)n,i < s J2

n,i+1 < p(α,β)n,i+1, 1 ≤ i ≤ n − 1,

if κ3 ≥ 1,

p(α,β)n,i < s J2
n,i < p(α,β)n,i+1 < s J2

n,i+1, 1 ≤ i ≤ n − 1.

ii) For 1 ≤ i ≤ n − 1, the following interlacing property holds

s J2
n,i < p(α,β)n−1,i < s J2

n,i+1.

We must point out that one zero of S J2
n can be outside the interval (−1, 1).

Figure 1 shows the graphs of Jacobi-Sobolev orthogonal polynomial of type II

S J2
6 and the classical Jacobi orthogonal polynomial P (α,β)

6 . According to The-

orem 3.4, in Figure 1(a), with κ3 < −1, we can see that the smallest zero is

outside the interval (−1, 1). In Figure 1(b), with κ3 > 1, we can see that the

largest zero is outside (−1, 1).
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(a)

(b)

Figure 1 – Graphs of S J2
6 and P(α,β)6 with κ1 = 1, κ2 = 4, κ4 = 1. (a) κ3 = −1.1,

α = 1, β = 2. (b) κ3 = 1.1, α = 2, β = 1.

3.2 Some conditions for all zeros of S J2
n to lie inside (−1, 1)

In this section we obtain some conditions for the parameters in the inner prod-

uct (18) to assure that all zeros of S J2
n lie inside the interval (−1, 1).
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We now denote the polynomials S J2
n by S(κ1,κ2,κ3,κ4)

n (x) and the coefficients

a J2
n by a(κ1,κ2,κ3,κ4)

n .

Let κ2 tend to ∞ in 1
κ2

〈 f, g〉J S2 . Then we find that the monic polynomials,

S(κ1,∞,κ3,κ4)
n (x), must satisfy

∫ 1

−1
S

′(κ1,∞,κ3,κ4)
m (x) S

′(κ1,∞,κ3,κ4)
n (x)dψ(x) = 0, for m 6= n.

Since ρ J2
n > n2κ2ρ

(α,β,κ3,κ4)

n−1 and, for a fixed κ1, sgn(a(κ1,κ2,κ3,κ4)
n ) = −sgn(κ3),

from (20) we verify that a(κ1,∞,κ3,κ4)
n = 0. Then we conclude from (19) that

S(κ1,∞,κ3,κ4)
n (x) = P (α,β)

n (x)+ bn−1 P (α,β)

n−1 (x), n ≥ 0, (26)

with b−1 = b0 = 0.

It is well known that the sequence of monic Jacobi polynomials, {P (α,β)
n }∞n=0,

satisfies

P (α,β)

n+1 (x) =
(
x − λ

(α,β)

n+1

)
P (α,β)

n (x)− γ
(α,β)

n+1 P (α,β)

n−1 (x), n ≥ 1,

with P (α,β)

0 (x) = 1, P (α,β)

1 (x) = x − λ
(α,β)

1 ,

λ
(α,β)

n+1 =
β2 − α2

(2n + α + β)(2n + α + β + 2)
, n ≥ 0,

γ
(α,β)

n+1 =
4n(n + α)(n + β)(n + α + β)

(2n + α + β − 1)(2n + α + β)2(2n + α + β + 1)
, n ≥ 1.

Now, we can prove the following result.

Theorem 3.5. If the conditions of Lemma 3.1 are satisfied, n ≥ 3 and κ2

large enough, then the n zeros of S(κ1,κ2,κ3,κ4)
n lie inside the interval (−1, 1)

provided that

i) for κ3 ≤ −1, α and β are such that

bn−1 <
(2n + α + β + 1)(2n + α + β)

2n(n + α)
γ
(α,β)

n+1 ,

ii) for κ3 ≥ 1, α and β are such that

bn−1 > −
(2n + α + β + 1)(2n + α + β)

2n(n + β)
γ
(α,β)

n+1 .
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Proof. i) For x = −1 it is known that

P (α,β)
n (−1) = −

(2n + α + β + 1)(2n + α + β)

2n(n + α)
γ
(α,β)

n+1 P (α,β)

n−1 (−1)

and sgn(P (α,β)
n (−1)) = (−1)n . Then, from (26),

S(κ1,∞,κ3,κ4)
n (−1) = P (α,β)

n−1 (−1)

×
(

bn−1 −
(2n + α + β + 1)(2n + α + β)

2n(n + α)
γ
(α,β)

n+1

)
.

Choosing α and β such that

bn−1 <
(2n + α + β + 1)(2n + α + β)

2n(n + α)
γ
(α,β)

n+1 ,

we get sgn(S(κ1,∞,κ3,κ4)
n (−1)) = (−1)n .

From Theorem 3.4, for κ3 ≤ −1, at most sn,1 lies outside (−1, 1). Since

S(κ1,∞,κ3,κ4)
n is monic and sgn(S(κ1,∞,κ3,κ4)

n (−1)) = (−1)n then sn,1 > −1 and all

zeros of S J2
n lie inside (−1, 1).

ii) For κ3 ≥ 1, the proof is analogous using x = 1. �
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