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Abstract. Zeros of orthogonal polynomials associated with two different Sobolev inner prod-
ucts involving the Jacobi measure are studied. In particular, each of these Sobolev inner products
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are beyond the concept of coherent pairs of measures. Existence, real character, location and

interlacing properties for the zeros of these Jacobi-Sobolev orthogonal polynomials are deduced.
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1 Introduction

Consider the inner product

k
frgs=3 [ 100 g7 wdvw. k=1, (1)
=0
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424 ZEROS OF JACOBI-SOBOLEV ORTHOGONAL POLYNOMIALS

where dy;, for j = 0,1, ..., k, are positive measures supported on R. This
inner product is known as Sobolev inner product and the associated sequence
of monic orthogonal polynomials, {S,}7,, is known as a sequence of monic
Sobolev orthogonal polynomials.

This kind of inner product is non-standard in the sense that the shift operator,
i.e., the multiplication operator by x, is not self-adjoint

(x 1. &ls # ([, x&)s,

where f and g are polynomials with real coefficients. Therefore, some of the
usual properties of standard orthogonal polynomials are not true. In fact, the
usual three term recurrence relation and the properties about the zeros (real and
simple characters, interlacing, etc.) are no longer valid.

In 1991, A. Iserles et al. [9] studied Sobolev inner products as (1) for k£ = 1
when the two measures diyy and d/, are related. If we denote by {in" oy
(i = 0, 1) the sequence of monic orthogonal polynomials with respect to the
standard inner product

(fs &y = /Rf(X)g(X)d%(x), i=0,1,
then {d ¥, dy1} is a coherent pair of measures if
1 / /
PI(x) = m[Pnﬁol(x) + o, Pn‘po(x)], for n>1,

where o, are non-zero constants. As a consequence (see [9]), the sequence
of monic Sobolev orthogonal polynomials {S,}7°, associated with the Sobolev
inner product

(f. &)s=(fs &+ ([ &)y ()

satisfies

n

Sur1 (¥) + @y S,(x) = P (x) + 0, PYO(x), > L. (3)

H.G. Meijer [13] has shown that if {dv, di} is a coherent pair of measures,
then both measures are closely related and at least one of them must be classical.

Sobolev orthogonal polynomials associated with coherent pairs have been ex-
haustively studied. Algebraic and differential properties, as well as properties
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about zeros, have been investigated. In particular, in [6], [8], and [11], several
results about existence, location and interlacing properties of the zeros of or-
thogonal polynomials with respect to Gegenbauer-Sobolev and Hermite-Sobolev
inner products are shown. Moreover, in [14], the authors considered special
Jacobi-Sobolev and Laguerre-Sobolev inner products, where the pair of mea-
sures forms a coherent pair and they proved interlacing properties of the zeros
of Sobolev orthogonal polynomials.

In [2] and [3] it has been introduced an alternative approach to study Sobolev
inner products such that the corresponding orthogonal polynomials still satisfy a
relation of the form (3). This kind of Sobolev inner products generalizes Sobolev
inner products defined from a coherent pair of measures and it allows to extend
the results about Sobolev orthogonal polynomials beyond the concept of coherent
pairs. In [7] the authors have considered the inverse problem: starting from the
relation (3) to obtain a pair of quasi-definite moment functionals such that (3)
holds. Their results show that the pair of measures involved being coherent is
not necessary for (3) to hold.

In the present paper, properties for the zeros of Sobolev orthogonal polynomi-
als associated with inner products of the form (2) have been investigated. The
measures of the inner products involve Jacobi measures and they are beyond the
concept of coherent pairs of measures.

For o, B > —1, let dy P denotes the classical Jacobi measure on [—1, 1]
given by

dy P (x) = (1 = 0)*(1 +x)’dx,
(P )},‘1";0 be the sequence of classical monic Jacobi orthogonal polynomials
and " = (PP PP .

It is well known that the zeros of P,,(G”’3 ) are all real, distinct and lie inside
(=1, 1). We denote the zeros of %" by p,(fl?ﬁ), i=1,2,...,n,in increasing
order. For more details about these polynomials see, for instance, [5] and [15].

In this paper we consider two Sobolev inner products given in [3], namely

Typel. For |ki| <1, k3> k3],

dyo = (14k1x)dy@P(x),
dy (k2 + K3x) dyp @D (1),
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TypeIl.  For |k3| > 1, ko,k4 >0, k1> —l|izlia/(1+ |K3)),

dyy = dy*P(x),
dyn = <K1+ 2

) dy D (1) - seakad (k3).
Ky —X

When «; # 0, k; > 0 and k3 = 0, the measures involved in type I form a
coherent pair (see [13]). In [14], the authors have proved that the zeros of the
corresponding Sobolev orthogonal polynomials are real and simple, and they
have interlacing properties. When «3 # 0, the pair of measures no longer forms
a coherent pair and, in this case, we will show in Section 2 that, under some
conditions, the interlacing properties established in [14] for «3 = 0 still hold
even when k3 # 0.

When «; = 0 the pair of measures of type Il is also a coherent pair of mea-
sures (see [13]). In this case, properties about zeros for the corresponding
Sobolev orthogonal appear in [14]. In [10] the authors have studied the spe-
cial case when k; = x4 = 0, k, > 0 and x3 = —1. When «; # 0, the pair of
measures of type Il no longer forms a coherent pair. Section 3 is devoted to show
interlacing properties for the zeros of Jacobi-Sobolev orthogonal polynomials of
type Il when k; # 0. Indeed, our results generalize the interlacing properties
established in [14] for the particular case x; = 0.

In [1] it has been studied properties of the zeros of orthogonal polynomials
with respect to Gegenbauer-Sobolev inner product where the associated pair of

measures does not form a symmetrically coherent pair.
2 Jacobi-Sobolev inner product of type I
Let us consider the following modification of the Jacobi weight
dy PO x) = (1 + 0 0dy@P ) = 1+ k00 =01 +x)dx,

defined on [—1, 1], where |k;| < 1. We denote by {P,f“’ﬁ"”)}fjio the sequence
of monic orthogonal polynomials associated with dv©#1) and

1
@fr) — / (P,f""ﬂ"“)(x))2 (4«1 x)(1 —x)*(1 + x)Pdx.
1
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The following result is known (see, for instance, [3])
PP (x) = PP (x) 4 d, PPV (x), =1,

where )
o,
K1 Pn
= —p(cx,ﬁm)’ n>1. 4

n—1

dn—l

Observe that sgn(d,) = sgn(x;) where, as usual,

lal/a, if a #0,

sgn(a) = 0 o 0
, if a=0.

For n > 1, the zeros of Pn(“’ﬂ *1) are real, simple and all lie in the interval
(a,B.k1)

i ,i = 1,2,...,n, in increasing

(=1, 1). If we denote their zeros by p
order, then they interlace with the zeros of the classical Jacobi polynomials and
their position depends on the sign of k; (see [4]):

for -1 <k <0Oand 1 <i<n-—1,

(o, Bkc1) (o, B) (o, Bk1) (e, B,k1) (e, 8)
-1 <pn,i ] <pn,i <pn—1,i] <pn,i+l] <pn,i+l < 1’ (5)

and for O <y <l and 1 <i <n-—1,

(@,B) (o, B,k1) (a0, B,k1) (a0, ) (a,B,k1)
-1 < pn'?ti < prfi < pnoiLfl < pn(i#l < pz:iJrlkl <L (6)

Consider the following Sobolev inner product, introduced in [3],

1
(f, gus, = f lf(x)g(x)(l+A<1x)dxzf<°"ﬁ><x> (7

1
+ / (%) g () (ka + re3x)dy @A (x),
-1

with |«;| < 1 andk, > |k3|. Then (-, -) s, is positive definite and we will refer
to it as Jacobi-Sobolev inner product of type 1.

Let {81}, denote the sequence of monic orthogonal polynomials with re-
spect to (7), we will refer to it as sequence of Jacobi-Sobolev orthogonal poly-
nomials of type I. In addition, we denote p;/1 = (S/1, S71) ;.
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Furthermore, S(‘)I 'x)=1andforn >0

Sh ) +al s (x) = POP () = PO (x) + d, PAPO(x),  (8)

where a1 is given by the expression ([3])
i _latnitatpt 2)/(3),02‘1‘13).

n W7
[O n

Observe that, if k; = 0, then sgn(anJ]) = sgn(ks3). Otherwise, if sgn(k;) =
sgn(k3), then sgn(a;!) = sgn(k1) = sgn(ks).
2.1 Zeros of S and PP

For n,i > 0 we define

1 .
i, = / $;'@0)[x + sgniey) ] dy P (x), ©)
-1

and .
”A%Jln = / S,:J‘ (x)[x + sgn(/c3)]idw(“+l’ﬁ+l)(x). (10)
-1
Since (SnJ‘, [x + sgn(/cg)]")JS1 =0forn>1and0 <i <n — 1, we obtain

kvl (1= sentes) ) 'y = —i(is i, + G = I iy, ). (1)

Using integration by parts in (10) we have forn > 1 andi > 0,
= +a+p+2)ml,, — Qsgnles)i +mn)m, (12)
where n = (B + D[ + sgn(k3)] — (e + D[] — sgn(«3)]. Since

) “2(a+ 1), if k3 <0,
N 208+ 1), if x5 >0,

then sgn(n) = sgn(ks).
Substituting (12) in (11), the following three term recurrence relation holds

1
P — <mmﬁ—&mﬁmy (13)
’ Ki+iks@+a+pB+2) ’ '
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forn >2and 1 <i <n — 1, where

Ai = (= 3lkDi® + [(k2 — k3D (@ + B+ 1) —kam)]i + (1 — sgn(k3)ky),
Bi = (ia — |Kk3])[2sgn(ie3) (i — 1) + n]i.

Since k; > |k3| and sgn(n) = sgn(xz), we observe that sgn(B;) = sgn(k3) for
i>1.
Moreover, in order to assure the positivity of 4; for i > 1, we need some

additional conditions.

Lemma 2.1. Suppose o, B > 0, ko > 3|«3| and sgn(ky) = sgn(ks) if k1 # 0.
Then A; > 0 fori > 1.

Proof. Observe that we can write

A; = [k = 33| )i + [k2 = 3l (@ 4+ B+ 1) — 23 Bi + (1 — |xa])
for k3 < 0, and

A; = [k2 = 3li3])i% + [(kc2 = 3lks)) (@ + B+ 1) + 2i3a]i + (1 — k1))

for k3 > 0. Then, the result holds. O

Lemma 2.2. Assume that the conditions of Lemma 2.1 hold. Forn > 1, if

k1 =0, we get
m({,ln =0, sgn(mij’ln) — (_l)n-i-i [Sgn(/q)]'”i ’ 1 <i<n,
and ifky # 0
JiN n+i n+i .
sgn(m;,) = (—1) [sgn(;q)] , 0<i<n.
Proof. Suppose k; = 0. From (11), we get mOan = 0, n > 1. On the other
hand, using the well known property for the monic classical Jacobi polynomi-

als (see [15])
PPy =nPT P (x), n>0,
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in relation (8), we have

1
A J J J 1, 1
— / S ()dyr @A o),
-1

Therefore

1
~J -1 _J Ji S J 1J] +1,8+1
mo,ln =(=D""a, . a,,...a a / S ‘(x)dw("‘ P (x).

Since sgn(a;!) = sgn(k3) and f_ll S/ (x)dy @A) (x) > 0, we deduce
sgn(mo' ) = (—=1)"*" [sgn(x; )] n>1.
By making i = 0 in (12), we get r?zén (a+ B8+ 2)m1 ,» and then
sgn(my!) = sgn(iy') = (=" [sene) "™, n= 1.

Now, suppose that k; # 0. Using (8), we obtain
1 1
f SA L 0dy P (x) + al f S x)dy P (x) =0, n=>0,
-1 —1

and then m;', .| = —a)' m;',. Since mj\y = [, 8 (x)dy@F (x) > 0 for

n > 0, we get

sgn(my' ) = (=D"sgn(@ @', - a") sgn(m;')) = (—1)"[sgn(es)]".

The substitution of i = 0 in (13) yields mlJ‘n =—1- sgn(Kg)/q)mé}n//q, then

)n+1 n+l

sgn(my',) = (=1)" [sgn(ic3)]"sgn(ky) = (—=1)"[sgn(k3)]

Therefore, using mathematical induction on 7 in (13), we get the result. U

Lemma 2.3. Under the hypotheses of Lemma 2.1, let w,.(x) be a monic poly-
nomial of degree r, with 1 <r < n, such that all of its zeros are real and lie in
[—1, 1]. Let us define

1
L,= / ST ), (x)d P (x).
-1

Then sgn(L,.,) = (=" [sgn(3)|"™"
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Proof. Let—1<t,<t,<---<t, <1 bethe zeros of 7, (x). Then

() = [ Jix + senis) — [t + sen(e3)]} = Y e;lx + sgn(ies)]’,

j=1 i=0

where ¢, = 1 and, if ¢; # 0, then sgn(c;) = (—=1)""[sgn(k3)]" ™", i

0,1,...,r. Using (9),

rn— E ¢im ,n,

and the result holds from Lemma 2.2.

431

O

Now we will show that, under the hypotheses of Lemma 2.1, the n-th Jacobi-

Sobolev orthogonal polynomial of type I, S/, has n real and simple zeros and

they interlace with the zeros of the classical Jacobi polynomial PP

Theorem 2.4. Suppose that the conditions of Lemma 2 1 hold. Then, for
n > 2, S has n real and simple zeros. If we denote s forl1 <i <,

the zeros of S:' in increasing order, then they satisfy

fork; <0,
Ji (o, B) (a,B) .
SVli<pnl <Snz+l<pn,+1’ 1515”-1,
for k3 > 0,
(e, B) (@,B) Ji .
pnl Snli<pn1+1<snl+1a ISZSn_l.

Proof. Define

(@.8)
' P (x) .
T (x) = o || x—p™. 1=<j<n
X = nj i=1,i#j

Then, deg nr{_l =n — 1 and, using Lemma 2.3, we get

sgn(Z]_, ) = (=1)*"[sgn(i3) """ = —sgn(x3),

where

1 .
I, = / IS,{l ) ) (x)dy P (x).

Comp. Appl. Math., Vol. 29, N. 3, 2010

(14)

(15)
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Applying the Gaussian quadrature rule based on the n zeros of pF ), we
obtain

n

J Jig @B _J (e, 8)

]n—l,n = an,i Snl(pn,i )nn—l(pn,i )
i=1

J1 (5 (@B) , (@.B)
= w,, Snl(pno,[jﬂ ) Pn/(a ﬂ)(pntjéjﬁ )

forj=1,2,...,n.

Suppose k3 < 0. In this case, for j = 1,2, ..., n, we get

S P YE P (p) > 0.

Therefore, there is just one zero of S7! in each interval (pfﬁi’f )1, pfi’ﬂ )) for

i =2,3,...,n Since Pn(a‘ﬁ) and S/1 are monic, there is one zero of S/ in
(—o0, p”). Then, (14) holds.
For x5 > 0, we observe that

SHpe P[P (py <0, for j=1,2,....n,

and a similar argument as above shows (15). O

Moreover, it is possible to show interlacing properties between the zeros of
Jacobi-Sobolev orthogonal polynomials, S/!, and the zeros of the classical Ja-
cobi polynomials plhth  pethh) ang plettAh,

Theorem 2.5. Under the hypotheses of Lemma 2.1, forn > 2 and 1 < i <

n — 1, we get
i) the zeros of S interlace with the zeros of PPV and TP g follows

Ji (o, B+1) Ji (o, B+1)
Sui < Pni <Spit1 < Pniy1 <1,

(x+1,8) Ji (a+1,8) Ji
-1 < pn,[ < Sn,i < pn,i—i—l < Sn,i+l’

(a+1,8+1)
Pn—l

i) the zeros of separate the zeros of S in the following way

Ji (a+1,+1) Ji

Sn,i < pn—l,i < Sn,i-i—l'
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Proof. Defining

P(ozﬂ-i—l)( ) n
T =+ D =+ D) [ - pP),
(o, B+1) ni
X = Py i=1,itj
and

(a+1, /3)( ) (@t1.p)
(x)—(x—l)w—( x—1) H = p5 ),

x p i=1,i#j

a similar argument used for Theorem 2.4 shows the result i).
To get the result ii), take

(a+1,8+1) n—1
o (x* — DP,~; (x ) (a+1 B+1)
7T, (x) = @t 1A - D l_[ & =pp1i )
X = n—1,j i=li#j

in Lemma 2.3. Then one obtains

Ji +1,8+1) (a+1,6+1) . (a+1,8+1
wary SH(pERATD) PITIAED (plet L AED)

forj=1,2,...,n—1. O

As a consequence of this theorem, the following result is established.

Corollary 2.6. For n > 1, Jacobi-Sobolev orthogonal polynomial S/ has n
real and simple zeros inside (—1, 1).

Finally, interlacing properties of the zeros of Jacobi-Sobolev orthogonal

polynomials of two consecutive degrees can be shown.

Theorem 2.7. Under conditions of Lemma 2.1, for n > 2, the n — 1 zeros of

SnJLI interlace with the zeros of S as follows

S;l],li<sr‘llll<sr‘ljz+17 151571—1
Proof. From (8) we get
a;qjll (S;,Jll)—P(aﬂ)(Sjl) for i=1,2,---,n.
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On the other hand, Theorem 2.4 provides
sgn(S; (pys”) PP (piii?)) = —sgn(is),
and then
sgn (S, (s;") PiP (s;1) = sgnis).
Since sgn(a 1) = sgn(ks3), we deduce SJI/(SJ] )SJ‘ 1(SJ] ) > 0.
Therefore, S,° 1 | has a zero in each interval (snl 155, 1), fori = 2,3,...,

n. O

Remark 2.8. If we have sgn(k;) # sgn(ks3) instead of sgn(x;) = sgn(k3) in
the hypotheses of Lemma 2.1, then sgn(aOJ ") = sgn(x) and there exists N € N
such that

sgn(ky), if n < N,

Iy — =
sen =sgn(k+n(n+a+p+2 =
gn(a,') gn(ki+n(n+a+p+2)k3) sgn(k3), if n > N, or aN =0.

Numerical experiments allow us to conjecture that, also in this case, the zeros of
SnJ I interlace with the zeros of Pn(a’ﬁ ), Moreover, for 1 <i <n,

e ifk; < Oand k3 > 0, thens,” < pnlﬂ) forn < Nandp(aﬁ) s;{"i
forn > N,

o ifk; > 0and k3 < 0, then p\%” < s/ forn < N ands], < pP
forn > N.

Table 1 describes an example of this fact. Notice, from (8), that if a}{,‘ -0
then SIG+1 (x) = Piilaﬁ)(x).
2.2 Zeros OfSh]l and Pn(oz,ﬁ,/cl)

In this section we relate the zeros of Jacobi-Sobolev orthogonal polynomial of
type I with the zeros of the polynomial PP e # 0, orthogonal with respect
to the first measure in (7).

Forn,i > 0, we define
1
ul = / ST (1 + 11 ) dy @D (x),
—1
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J1 (e, 8)
i o/ (@.B) Ss.i Ps,;
=l 4.1 _0.5449824458 | —0.5449890822
1| —0.4308679926 | —0.4307826553
_0.1698341048 | —0.1698432787
2 | 00148759928 | 0.0149809768
02118047152 | 0.2117956865
3| 04375627876 | 04376478562
05577706724 | 0.5577641564
4| 07781122439 | 07781538222
0.8276284403 | 0.8276254591

BT T RETEERE

Table 1 — Zeros of polynomials SnJ1 and P,ga’ﬂ) for n =4,5 a =2, B=5, k1 =—0.999,
ky =5, and k3 = 0.02. Here N = 4.

and 1
Al = / S0+ 0y ),
Observe that, since (S71, (1 + &1 x)") 5, = 0, forn > 1,
why = =ik +ils — kiR, i=0,1,....n—1.  (16)
On the other hand, using integration by parts we get
il = 24 a+ P,
Ji

—Ri+(a+ DA —=x)+ B+ DA+ )] ui,

+i(l = kD s

forn > 1 and i > 0. Then, the following recurrence relation holds

Jl — _ K1 (A ‘.]l — B "]l +C ‘Zl >
I’Lz+l,n K1 +ZK3(Z+2+06+,3) l/’l“l,n l/’l“t—l,n l'uz—Z,n ’
forn>1andi=1,2,...,n — 1, where

4 = (K2 - 3%) 2+ (Kz(a +B+1) = =@ =) + B2+ ) +3]) 3
1 1

K3 2\ .2 K3 .
B — (2K2 ERLENE S )) i 4 (Kz - —) (@(1 — K1) + B+ K1) i,
K1 K1
C, = (K2_9> (1 —kd)iG—1).
K1
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436 ZEROS OF JACOBI-SOBOLEV ORTHOGONAL POLYNOMIALS

In order to obtain A;, B; and C; as non-negative coefficients, we need some
additional conditions. Observe that the conditions given in the next lemma are
sufficient.

Lemma 2.9. Suppose a, B > 0, ko > 3x3/k1 > 0 and sgn(k;) = sgn(ks).
Then A;, B; and C; are non-negative fori > 1.
A similar argument used in Lemma 2.2 allows us to obtain the sign of /,LlJln and

[Llj‘n, using the hypotheses of Lemma 2.9.

Lemma 2.10. Assume that the conditions of Lemma 2.9 hold. Forn > 1, we
have

i) uy, =0, sen(u) = (=" [sgn(c)l", i=2,3,....n,

i) sgn()) = (=) [sgne)", i=0,1,...,n— 1.

i,n

The next lemma is analogous to Lemma 2.3 and it can be proved using the
same technique. Again, we assume that the hypotheses of Lemma 2.9 are valid.

Lemma 2.11.  Under conditions of Lemma 2.9, for n > 2 it follows

1) Let , be a monic polynomial of degreer, 1 <r < n — 1, such that all of

its zeros are real and lie in (—1, 1). Define

1 1
Ly=— [ S'@)m )dy@rPeo(x),
K1 J-1

then sgn(l,.,,) = (= 1)+ [sgn(ic;)]"++.

i1) Let m, be a monic polynomial of degree r, 1 < r < n, with all real zeros
in (—1,1). If we define

1 1
Jrn =— | S () (x)dy @THELED (),
K1 J-1

then sgn(J,,) = (— 1)+ sgn(x))]"+".
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Proof. To provei),let —1 < ¢, <t <--- <t, < 1 be the zeros of m,.
Then
n(x)—lL[(x—t)—lL[ x—l—i— t-—i—l —Xr:c» x—l—ii
r _j:1 r,] _j:1 K’l V,] K'l - [:0 1 K’l ’

with ¢, = 1. When —1 < k; < Owehavetr,j—i—% < 0Oandwhen0 <« <1

we have t. ; + Kl—] > 0. Therefore

sgn(c;) = (=1) [sgn(k)T ™, i=0,1,...,r

Hence,
r 1 r
L= i / S/ (141 1) dy@P o) = 3
i=0 1 -1 i=0 K1
and using Lemma 2.10 the result holds. A similar argument shows ii). g

Now, we have the necessary tools to get the announced interlacing property
between the zeros of S/ and the zeros of P\

Theorem 2.12. Under the conditions of Lemma 2.9, forn > 2 and 1 <i <
n — 1, the zeros of S satisfy

) If —1<k <0,

(o, B,k1) Ji (e, B,k1) Ji
pn,i < Sn,i < pn,i+l < Sn,i—i—l’
and, if 0 <k <1,
Ji (v, Bkc1) J (v, Bkc1)
Sn,i < pn,i < Sn,i+1 < pn,i—i—l

i1) The zeros of Pn(ilﬂ ) separate the zeros of S'. That is,
Ji (a.B.x1) Ji
Smi = Pn—1i " = Snjiv1-

Collecting all the interlacing properties given in (5), (6) and Theorems 2.4 and
2.12, we have for —1 < k; < 0,

(a,B.k1) J) (a,) (a,B,x1) (a,B.k1) :
pn,i : <Sn,li <pn,i <pnfl,i1 <pn,i+11 ’ 1 =1 fl’l—l,
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and, for0 < «; <1,

(e, B) (v, Boxc1) (o, B.k1) (o, ) .
pnz Snli<pnz : < Pu_ 111 <pnt+1’ l<i<n-1

To finish this section, the extremal points of S! can be analyzed. Denote the

extremal points of S bys i=1,2,...,n—1,in increasing order.

n,i’
Theorem 2.13. Under the hypotheses of Lemma 2.9, for n > 3 the polynomial
S/t has n — 1 extremal points in the interval (—1, 1) and they satisfy

(a+1,8+1,k1) ~Ji (a+1,8+1, ;q) .
D <Spi < Ppiri l1<i<n-1

3 Jacobi-Sobolev inner product of type II

Let dy/ (x) be the measure defined on [—1, 1] by means of

(f. &y = / f(X)g(X) (1 —) N (14+x)  dx iy f(3) glics), (17)
where |k3] > 1 and k4 > 0, and let {P*” ’K3’K4)};’,°:0 be the corresponding se-
quence of monic orthogonal polynomials. In Maroni [12] (see also [3]), the
author has obtained the relation

Pn(a,ﬂ,lq,/q)(x) — P’I(Ot+l,ﬂ+l)(x) +dn— P(Dl+l ﬂ+l)( ), n>1,

(Ohﬂgks»lm)

d,_; =— /Or(za Bik3.ka) _ (prl(a,ﬂ,K3,K4)’ pn(ot»B,K3,K4)>w.

(a+1,8+1)°
K3 pnal g

Note that sgn(d,_1) = —sgn(x3).
In this section we consider Jacobi-Sobolev inner product of type II, intro-
duced in [3], given by the expression

1
(f.8)ss, = / 1 f(x) g)dy@P (x) (18)

1
+/1f’(X)g’(X)(
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where
reslier_

1+ lies]

We denote by {S;2}°° the sequence of monic orthogonal polynomials associ-

k3] > 1, ko, k4 >0 and x> —

ated with (-, -)s5,, and we call it sequence of monic Jacobi-Sobolev orthogo-
nal polynomials of type II. These polynomials satisfy S(‘)]2 x) = 1, SlJ 2(x) =
Pl(“’ﬂ )(x) and

S2 0 +alshx) = PYP )+ b, PP (x), n>1, (19)
where
(mﬁ“’ﬁ) + fqnzp,ﬁ“jl’ﬂ“)) b,
0 = . Conzl, (20)
IOI‘l
ng = (S;lb, S;,l]z)JSZ and
n 1 n 1 (a0, B,K3,K4)
b, = + dy_1 =— + Pr AT n>1.
n n K3 pn71
Since pfﬁl’ﬂﬂ) =m+a+ B+ Dp™P /n, we can also write

i (rmotatp+ 1))b,,p,(,a’ﬂ).

Pn

n

Observe thatsgn(b,) = sgn(d,,—1) = —sgn(k3) and, ifk; > 0, then sgn(a;ﬁ) =
sgn(b,) = —sgn(cs).

3.1 Zeros of S and PP

Forn,i > 0, we define

1
Vo = / S0 = k) dy P (x) 21
-1

and

1 —
R B 22)
—1 3

1
= / Sn/J2 x)(x — K3)i(1 — x)“+1(1 +x)ﬂ+ldx.
-1
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Because of the orthogonality property, we have (S;{Z, (x — Kk3)) Js, = 0, for
n > 1, and then

ho_ A
vi’n_z(—lqv

2 kb2, ), P2 (23)

i—1,n

Integration by parts in (22) forn > 1 and i > 1 provides

D2 = (i +2+a+ P,

+H[2i5i + (@ + D1 +13) = (B+ D(1 =) ]y}
+Z(K§ - 1)‘),?]11’”,
and then, if we define vle,n =0,forn > landi =2,3,..., n—1, the following

three term recurrence relation can be deduced

S i ( J J Jo )
V= — A;v; — Biv;® Civ2 , (24
M Tk Lha+ gy N 2t CViS ) (29

where

i = =32 —2k1)i + k1 [k3( + B) + o — B] — k3k2( + B),

B = [2/<32/c2 — K] (K32 — l)]i +K2[K32(a +B8—-2)+k3(x — ,3)] +K1(K32 — l),

Ci = waka(l —k3) (i —2).

The next lemma establishes sufficient conditions to determine the sign of the
above coefficients.

Lemma 3.1. Forx; >2k; >0, 0+ 8 > 2 and

a<pB, if k3 <-1,

a=p, if ki3=1,

then sgn(A4;) = —sgn(ks) and B; > 0, fori > 1. Moreover, if |k3| # 1 then
sgn(C;) = —sgn(k3) and if |k3] = 1 then C; = 0.

We remark that Lemma 3.1 establishes sufficient conditions in order to obtain
the sign of 4;, B; and C;. Under conditions of Lemma 3.1, analogous techniques
to those used in Lemmas 2.2 and 2.3 allow us to prove the next two lemmas.
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Lemma 3.2. Forn > 3, we have Vo = 0and

sgn(v2) = —[senGen) ", 1<i<n—1.

Lemma 3.3. For n > 3, let us consider w, a monic polynomial of degree r,
1 <r < n—1, such that all its zeros are real, simple and lie in the interval
(=1, 1). Define

1
Lin =/ S () ()dy P (x). (25)
-1

Then sgn(l,.,) = —[sgn(/q)]H'

Under the same restrictions given in Lemma 3.1 for the parameters and using
the above two lemmas, we can show that the n-th Jacobi-Sobolev orthogonal
polynomial of type II, S72, has n different real zeros and at least n — 1 zeros

lie inside (—1, 1). We denote the real zeros of S2, in increasing order, by s”
i=1,2,...,n

nl’

Theorem 3.4. Under the conditions of Lemma 3.1, for n > 3,S;,’2 has n real

zeros and at least n — 1 of them lie inside the interval (—1, 1). Moreover, denot-

ing the zeros of S, by sn i =1,2,...,n, inincreasing order, then
D) ifi; < —1,
) (a.B) ) (a.B) :
Sni<pnz <snl+l<pnt+1’ l<i<n-1,
ifis > 1,
(@.B) ¥ (o, 8) J .
pnz snz<pnl+1<snl+l’ l<i<n-1

i1) For 1 <i < n — 1, the following interlacing property holds
S;llzi < P;g f)z < S;{H—l

We must point out that one zero of S;2 can be outside the interval (—1, 1).
Figure 1 shows the graphs of Jacobi-Sobolev orthogonal polynomial of type II
sz and the classical Jacobi orthogonal polynomial P(a 28 According to The-
orem 3.4, in Figure 1(a), with k3 < —1, we can see that the smallest zero is
outside the interval (—1, 1). In Figure 1(b), with k3 > 1, we can see that the
largest zero is outside (—1, 1).
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‘ 0,2' ,'
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| |
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\ |
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Figure 1 — Graphs of S'6J2 and PG(O"'B) withk; = 1, k0 = 4, k4 = 1. (a) k3 = —1.1,

a=18=2.brs=11a=2, =1

3.2 Some conditions for all zeros of S to lie inside (—1, 1)

In this section we obtain some conditions for the parameters in the inner prod-
uct (18) to assure that all zeros of S:2 lie inside the interval (—1, 1).
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We now denote the polynomials S2 by S1-<2:%3:44) (x) and the coefficients
a;ilz by a,(fl”cz’“’“).
Let «;, tend to 0o in é( /. 8)ss,- Then we find that the monic polynomials,

Sl1.00.k3.64) (x), must satisfy

1
/ S, {100k H) (1) § (100368 () (x) = 0, for m 7 n.
-1

Since p2 > nzxzpiof’f"q’“) and, for a fixed k-, sgn(a(¥1:<2:3:44)) = —ggn(k3),

from (20) we verify that a{¥1:°3%4) = 0. Then we conclude from (19) that
SErooRs ) (x) = PP (x) + by PP (x),  n =0, (26)

with b_; = by = 0.
It is well known that the sequence of monic Jacobi polynomials, {Pn(m"3 ) 0
satisfies

P @) = (x = KV PP @) =y R 0, nz 1

with PP () = 1, PP (x) = x =27,

S @B _ p -
L Qn4+a+BCn+a+B+2)

@p) _ dn(n+a)(n+ B)(n+a+ B)
Yl T onfatB—D)Cnta+BlCntatB+1)

Now, we can prove the following result.

Theorem 3.5. [If the conditions of Lemma 3.1 are satisfied, n > 3 and k»
large enough, then the n zeros of S*1*2:%3%4) Jie inside the interval (—1, 1)

provided that

1) fork; < —1, o and B are such that

n-l 2n(n + a) Ynti

il) for k3 > 1, o and B are such that

QCnta+B+DCn+a+B) wp

by .
L= 2n(n + B) Vntl
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Proof. i) For x = —1 it is known that

_@ntat B+ D+ B) wp pep
2n(n + 0[) n+l * n—1

PP (—1) = (—1)

and sgn(PP (—1)) = (=1)". Then, from (26),

Syt (1) = PP (=1

Cn+a+B+1DCn+a+pB) (@p
X\ bp1 — Vn+1 :
2n(n + a)
Choosing o and 8 such that

CQu+a+B+D2n+a+p) wp
2n(n—|—05) yn+l ’

bn—l <

we get sgn(SF1ook3 k) (—1)) = (—1)".

From Theorem 3.4, for k3 < —1, at most s, ; lies outside (—1, 1). Since
Sl1.00.43.44) js monic and sgn(Slg"l’oo”“"“‘)(—l)) = (—1)" thens,; > —1 and all
zeros of 7 lie inside (—1, 1).

ii) For k3 > 1, the proof is analogous using x = 1. U
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