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Abstract. We are concerning with two analytical methods; the classical method of successive

approximations (Picard method) [14] which consists the construction of a sequence of functions

such that the limit of this sequence of functions in the sense of uniform convergence is the solution

of a quadratic integral equation, and Adomian method which gives the solution as a series see

([1-6], [12] and [13]). The existence and uniqueness of the solution and the convergence will be

discussed for each method.
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1 Introduction

Quadratic integral equations (QIEs) are often applicable in the theory of radia-

tive transfer, kinetic theory of gases, in the theory of neutron transport and in the

traffic theory. The quadratic integral equations can be very often encountered in

many applications.

The quadratic integral equations have been studied in several papers and

monographs (see for examples [7-11] and [16-22]).
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The Picard-Lindelof theorem for the initial value problem

x ′(t) = f (t, x(t)), x(0) = x0

was proved in [14] and the solution can be shown as the limit of constructed

sequence.

The existence of continuous solution of the nonlinear quadratic integral equa-

tion

x(t) = a(t) + g(t, x(t))
∫ t

0
f (s, x(s)) ds (1)

was proved in [18] by using Tychonov fixed point theorem where f and g satisfy

Carathéodory condition.

In this work, we will prove the existence and the uniqueness of continuous

solution for (1) by using the principle of contraction mapping. Also, we are

concerning with the two methods; Picard method and Adomian method.

2 Main Theorem

Now, equation (1) will be investigated under the assumptions:

(i) a : I → R+ = [0, + ∞) is continuous on I where I = [0, 1];

(ii) f, g : I × D ⊂ R+ → R+ are continuous and there exist positive con-

stants M1 and M2 such that |g(t, x)| ≤ M1 and | f (t, x)| ≤ M2 on D;

(iii) f, g satisfy Lipschitz condition with Lipschitz constants L1 and L2 such

that,

|g(t, x) − g(t, y)| ≤ L1|x − y|,

| f (t, x) − f (t, y)| ≤ L2|x − y|.

Let C = C(I ) be the space of all real valued functions which are continuous

on I .

Define the operator F as

(Fx)(t) = a(t) + g(t, x(t))
∫ t

0
f (s, x(s)) ds, ∀x ∈ C.
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Theorem 1. Let the assumptions (i)-(iii) be satisfied. If h = (L1 M2 +

L2 M1) < 1, then the nonlinear quadratic integral equation (1) has a unique

positive solution x ∈ C.

Proof. It is clear that the operator F maps C into C .

Now define a subset S of C as

S = {x ∈ C : |x − a(t)| ≤ k}, k = M1 M2.

Then the operator F maps S into S, since for x ∈ S

|x(t) − a(t)| ≤ M1 M2

∫ t

0
ds = M1 M2 t = M1 M2.

Moreover it is easy to see that S is a closed subset of C . In order to show that

F is a contraction we compute

(Fx)(t) − (Fy)(t) = g(t, x(t))
∫ t

0
f (s, x(s)) ds

− g(t, y(t))
∫ t

0
f (s, y(s)) ds + g(t, x(t))

×
∫ t

0
f (s, y(s)) ds − g(t, x(t))

∫ t

0
f (s, y(s)) ds

= [g(t, x(t)) − g(t, y(t))]
∫ t

0
f (s, y(s)) ds

+g(t, x(t))
∫ t

0
[ f (s, x(s)) − f (s, y(s))] ds

|(Fx)(t) − (Fy)(t)| ≤ |g(t, x(t)) − g(t, y(t))|
∫ t

0
| f (s, y(s))| ds

+|g(t, x(t))|
∫ t

0
| f (s, x(s)) − f (s, y(s))| ds

≤ L1 M2 |x − y| + L2 M1

∫ t

0
|x(s) − y(s)| ds

||(Fx)(t) − (Fy)(t)|| = max
t∈I

|(Fx)(t) − (Fy)(t)|

≤ L1 M2 ||x − y|| + L2 M1 ||x − y||

≤ (L1 M2 + L2 M1) ||x − y||

≤ h||x − y||.
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Since

h = (L1 M2 + L2 M1) < 1,

then F is a contraction and F has a unique fixed point in S, thus there exists a

unique solution for (1). �

3 Method of successive approximations (Picard method)

Applying Picard method to the quadratic integral equation (1), the solution is

constructed by the sequence

xn(t) = a(t) + g(t, xn−1(t))
∫ t

0
f (s, xn−1(s)) ds, n = 1, 2, . . . ,

x0(t) = a(t). (2)

All the functions xn(t) are continuous functions and xn can be written as a sum

of successive differences:

xn = x0 +
n∑

j=1

(x j − x j−1),

This means that convergence of the sequence xn is equivalent to convergence of

the infinite series
∑

(x j − x j−1) and the solution will be,

x(t) = lim
n→∞

xn(t),

i.e. if the infinite series
∑

(x j − x j−1) converges, then the sequence xn(t) will

converge to x(t). To prove the uniform convergence of {xn(t)}, we shall consider

the associated series
∞∑

n=1

[xn(t) − xn−1(t)].

From (2) for n = 1, we get

x1(t) − x0(t) = g(t, x0(t))
∫ t

0
f (s, x0(s)) ds

and

| x1(t) − x0(t) | ≤ M1 M2

∫ t

0
ds = M1 M2 t. (3)
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Now, we shall obtain an estimate for xn(t) − xn−1(t), n ≥ 2

xn(t) − xn−1(t) ≤ g(t, xn−1(t))
∫ t

0
f (s, xn−1(s)) ds

− g(t, xn−2(t))
∫ t

0
f (s, xn−2(s)) ds + g(t, xn−1(t))

×
∫ t

0
f (s, xn−2(s)) ds − g(t, xn−1(t))

∫ t

0
f (s, xn−2(s)) ds

≤ g(t, xn−1(t))
∫ t

0
[ f (s, xn−1(s)) − f (s, xn−2(s))] ds

+ [g(t, xn−1(t)) − g(t, xn−2(t))]
∫ t

0
f (s, xn−2(s)) ds,

using assumptions (ii) and (iii), we get

|xn(t) − xn−1(t)| ≤ M1L2

∫ t

0
|xn−1(s) − xn−2(s)| ds

+M2 L1|xn−1(t) − xn−2(t)|
∫ t

0
ds.

Putting n = 2, then using (3) we get

|x2(t) − x1(t)| ≤ M1L2

∫ t

0
|x1(s) − x0(s)|ds + M2L1|x1(t) − x0(t)|t.

|x2 − x1| ≤ M2
1 M2 L2

t2

2
+ M1 M2

2 L1t2

≤ M1 M2

(
1

2
M1L2 + M2L1

)
t2

|x3 − x2| ≤ M1L2

∫ t

0
|x2(s) − x1(s)|ds + M2L1|x2(t) − x1(t)|

∫ t

0
ds

≤ M1 M2

(
1

2
M1L2 + M2L1

)(
1

3
M1L2 + M2L1

)
t3.

Repeating this technique, we obtain the general estimate for the terms of the
series:

|xn − xn−1|

≤ M1 M2

(
1

2
M1L2 + M2L1

) (
1

3
M1L2 + M2 L1

)
×∙ ∙ ∙×

(
1

n
M1L2 + M2 L1

)
tn
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≤ M1 M2

(
1

2
M1L2 + M2L1

) (
1

3
M1L2 + M2 L1

)
×∙ ∙ ∙×

(
1

n
M1L2 + M2 L1

)

≤ M1 M2(M1L2 + M2L1)(M1L2 + M2L1) ×∙ ∙ ∙× (M1L2 + M2L1)

≤ (M1L2 + M2 L1)
n .

Since (L1 M2 + L2 M1) < 1, then the uniform convergence of

∞∑

n=1

[
xn(t) − xn−1(t)

]

is proved and so the sequence {xn(t)} is uniformly convergent.

Since f (t, x) and g(t, x) are continuous in x , then

x(t) = lim
n→∞

g(t, xn(t))
∫ t

0
f (s, xn(s)) ds

= g(t, x(t))
∫ t

0
f (s, x(s)) ds.

thus, the existence of a solution is proved.

To prove the uniqueness, let y(t) be a continuous solution of (1). Then

y(t) = a(t) + g(t, y(t))
∫ t

0
f (s, y(s)) ds t ∈ [0, 1]

and

y(t) − xn(t) ≤ g(t, y(t))
∫ t

0
f (s, y(s)) ds − g(t, xn−1(t))

∫ t

0
f (s, xn−1(s)) ds

+ g(t, y(t))
∫ t

0
f (s, xn−1(s)) ds − g(t, y(t))

∫ t

0
f (s, xn−1(s)) ds

= g(t, y(t))
∫ t

0
[ f (s, y(s)) − f (s, xn−1(s))] ds

+ [g(t, y(t)) − g(t, xn−1(t))]
∫ t

0
f (s, xn−1(s)) ds,

using assumptions (ii) and (iii), we get

|y(t) − xn(t)| ≤ M1L2

×
∫ t

0
|y(s) − xn−1(s)| ds + M2L1|y(t) − xn−1(t) |

∫ t

0
ds.

(4)
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But

|y(t) − a(t)| ≤ M1 M2t,

and using (4) then we get

|y(t) − xn(t)| ≤ (M1L2 + M2L1)
n.

Hence

lim
n→∞

xn(t) = y(t) = x(t) ,

which completes the proof. �

When g(t, x) = 1, then M1 = 1 and L1 = 0 and we obtain the original Picard

theorem [14] and [15].

Corollary 1. Let the assumptions of Theorem 1 (with g(t, x) = 1) be satis-

fied. If L2 < 1, then the integral equation

x(t) = x0(t) +
∫ t

0
f (s, x(s)) ds

has a unique continuous solution.

4 Adomian Decomposition Method (ADM)

The Adomian decomposition method (ADM) is a nonnumerical method for

solving a wide variety of functional equations and usually gets the solution in a

series form.

Since the beginning of the 1980s, Adomian ([1-6] and [12-13]) has pre-

sented and developed a so-called decomposition method for solving algebraic,

differential, integro-differential, differential-delay, and partial differential equa-

tions. The solution is found as an infinite series which converges rapidly to accu-

rate solutions. The method has many advantages over the classical techniques,

mainly, it makes unnecessary the linearization, perturbation and other restrictive

methods and assumptions which may change the problem being solved, some-

times seriously. In recent decades, there has been a great deal of interest in

the Adomian decomposition method. The method was successfully applied to
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a large amount of applications in applied sciences. For more details about the

method and its application, see ([1-6] and [12-13]).

In this section, we shall study Adomian decomposition method (ADM) for the

quadratic integral equation (1).

The solution algorithm of the quadratic integral equation (1) using ADM is,

x0(t) = a(t), (5)

xi (t) = A(i−1)(t)
∫ t

0
B(i−1)(s) ds. (6)

where Ai and Bi are Adomian polynomials of the nonlinear terms g(t, x) and

f (s, x) respectively, which have the form

An =
1

n!

dn

dλn

[

f

(

t,
∞∑

i=0

λi xi

)]

λ=0

, (7)

Bn =
1

n!

dn

dλn

[

g

(

t,
∞∑

i=0

λi xi

)]

λ=0

(8)

and the solution will be,

x(t) =
∞∑

i=0

xi (t) (9)

4.1 Convergence analysis

Theorem 2. Let the solution of the QIE (1) exists. If |x1(t)| < l, l is a posi-

tive constant, then the series solution (9) of the QIE (1) using ADM converges.

Proof. Define the sequence
{

Sp
}

such that,

Sp =
p∑

i=0

xi (t)

is the sequence of partial sums from the series solution
∑∞

i=0 xi (t), and we have

g(t, x) =
∞∑

i=0

Ai ,

f (s, x) =
∞∑

i=0

Bi .
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Let Sp and Sq be two arbitrary partial sums with p > q. Now, we are going to

prove that
{

Sp
}

is a Cauchy sequence in this Banach space E .

Sp − Sq =
p∑

i=0

xi −
q∑

i=0

xi

=
p∑

i=0

A(i−1)(t)
∫ t

0

p∑

i=0

B(i−1)(s) ds −
q∑

i=0

A(i−1)(t)
∫ t

0

q∑

i=0

B(i−1)(s) ds

=
p∑

i=0

A(i−1)(t)
∫ t

0

p∑

i=0

B(i−1)(s) ds −
q∑

i=0

A(i−1)(t)
∫ t

0

p∑

i=0

B(i−1)(s) ds

+
q∑

i=0

A(i−1)(t)
∫ t

0

p∑

i=0

B(i−1)(s) ds −
q∑

i=0

A(i−1)(t)
∫ t

0

q∑

i=0

B(i−1)(s) ds

=

[
p∑

i=0

A(i−1)(t) −
q∑

i=0

A(i−1)(t)

] ∫ t

0

p∑

i=0

B(i−1)(s) ds

+
q∑

i=0

A(i−1)(t)
∫ t

0

[
p∑

i=0

B(i−1)(s) −
q∑

i=0

B(i−1)(s)

]

ds

∥
∥Sp − Sq

∥
∥ ≤ max

t∈I

∣
∣
∣
∣
∣
∣

p∑

i=q+1

A(i−1)(t)
∫ t

0

p∑

i=0

B(i−1)(s) ds

∣
∣
∣
∣
∣
∣

+ max
t∈I

∣
∣
∣
∣
∣
∣

q∑

i=0

A(i−1)(t)
∫ t

0

p∑

i=q+1

B(i−1)(s) ds

∣
∣
∣
∣
∣
∣

≤ max
t∈I

∣
∣
∣
∣
∣
∣

p−1∑

i=q

Ai (t)

∣
∣
∣
∣
∣
∣

∫ t

0

∣
∣
∣
∣
∣

p∑

i=0

B(i−1)(s) ds

∣
∣
∣
∣
∣

ds

+ max
t∈I

∣
∣
∣
∣
∣

q∑

i=0

A(i−1)(t)

∣
∣
∣
∣
∣

∫ t

0

∣
∣
∣
∣
∣
∣

p−1∑

i=q

Bi (s)

∣
∣
∣
∣
∣
∣

ds

≤ max
t∈I

∣
∣g(t, Sp−1) − g(t, Sq−1)

∣
∣
∫ t

0

∣
∣ f (t, Sp)

∣
∣ ds

+ max
t∈I

∣
∣g(t, Sq)

∣
∣
∫ t

0

∣
∣ f (t, Sp−1) − f (t, Sq−1)

∣
∣ ds

≤ L1 M2 max
t∈I

∣
∣Sp−1 − Sq−1

∣
∣ + L2 M1 max

t∈I

∣
∣Sp−1 − Sq−1

∣
∣

≤ h
∥
∥Sp−1 − Sq−1

∥
∥
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Let p = q + 1 then,

∥
∥Sq+1 − Sq

∥
∥ ≤ h

∥
∥Sq − Sq−1

∥
∥ ≤ h2

∥
∥Sq−1 − Sq−2

∥
∥ ≤ ∙ ∙ ∙ ≤ hq ‖S1 − S0‖

From the triangle inequality we have,

∥
∥Sp − Sq

∥
∥ ≤

∥
∥Sq+1 − Sq

∥
∥ +

∥
∥Sq+2 − Sq+1

∥
∥ + ∙ ∙ ∙ +

∥
∥Sp − Sp−1

∥
∥

≤
[
hq + hq+1 + ∙ ∙ ∙ + h p−1

]
‖S1 − S0‖

≤ hq
[
1 + h + ∙ ∙ ∙ + h p−q−1

]
‖S1 − S0‖

≤ hq

[
1 − h p−q

1 − h

]
‖x1(t)‖

Now 0 < h < 1, and p > q implies that (1 − h p−q) ≤ 1. Consequently,

∥
∥Sp − Sq

∥
∥ ≤

hq

1 − h
‖x1(t)‖

≤
hq

1 − h
max
t∈I

|x1(t)|

but, |x1(t)| < l and as q → ∞ then,
∥
∥Sp − Sq

∥
∥ → 0 and hence,

{
Sp

}
is a Cau-

chy sequence in this Banach space E and the series
∑∞

i=0 xi (t) converges. �

4.2 Error analysis

Theorem 3. The maximum absolute truncation error of the series solution (9)

to the problem (1) is estimated to be,

max
t∈I

∣
∣
∣
∣
∣
x(t) −

q∑

i=0

xi (t)

∣
∣
∣
∣
∣
≤

hq

1 − h
max
t∈I

|x1(t)|

Proof. From Theorem 2 we have,

∥
∥Sp − Sq

∥
∥ ≤

hq

1 − h
max
t∈I

|x1(t)|

but, Sp =
∑p

i=0 xi (t) as p → ∞ then Sp → x(t) so,

∥
∥x(t) − Sq

∥
∥ ≤

hq

1 − h
max
t∈I

|x1(t)|
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so, the maximum absolute truncation error in the interval I is,

max
t∈I

∣
∣
∣
∣
∣
x(t) −

q∑

i=0

xi (t)

∣
∣
∣
∣
∣
≤

hq

1 − h
max
t∈I

|x1(t)|

and this completes the proof. �

5 Numerical Examples

In this section, we shall study some numerical examples and applying Picard and

ADM methods, then comparing the results.

Example 1. Consider the following nonlinear QIE,

x(t) =
(

t2 −
t10

35

)
+

t

5
x(t)

∫ t

0
s2x2(s) ds, (10)

and has the exact solution x(t) = t2.

Applying Picard method to equation (10), we get

xn(t) =
(

t2 −
t10

35

)
+

t

5
xn−1(t)

∫ t

0
s2 x2

n−1(s) ds, n = 1, 2, . . . ,

x0(t) =
(

t2 −
t10

35

)
.

and the solution will be,

x(t) = lim
n→∞

xn(t).

Applying ADM to equation (10), we get

x0(t) =
(

t2 −
t10

35

)
,

xi (t) =
t

5
xi−1(t)

∫ t

0
s2 Ai−1(s) ds, i ≥ 1.

where Ai are Adomian polynomials of the nonlinear term x2, and the solution

will be,

x(t) =
q∑

i=0

xi (t)

Table 1 shows a comparison between the absolute error of Picard (when n = 5)

and ADM solutions (when q = 5).
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t |xExact − xPicard| |xExact − xADM|

0.1 0 1.57823×10−19

0.2 0 1.03431×10−14

0.3 2.94109×10−22 6.79375×10−12

0.4 0 6.77831×10−10

0.5 0 2.40789×10−8

0.6 1.50584×10−19 4.44997×10−7

0.7 1.57984×10−16 5.23525×10−6

0.8 9.63707×10−14 0.0000441862

0.9 2.73899×10−11 0.000288498

1 4.26772×10−9 0.00153008

Table 1 – Absolute error.

Example 2. Consider the following nonlinear QIE,

x(t) =
(

t3 −
t19

100
−

t20

110

)
+

t3

10
x2(t)

∫ t

0
(s + 1)x3(s) ds, (11)

and has the exact solution x(t) = t3.

Applying Picard method to equation (11), we get

xn(t) =
(

t3 −
t19

100
−

t20

110

)
+

t3

10
x2

n−1(t)
∫ t

0
(s + 1)x3

n−1(s) ds, n = 1, 2, . . . ,

x0(t) =
(

t3 −
t19

100
−

t20

110

)
.

and the solution will be,

x(t) = lim
n→∞

xn(t).

Applying ADM to equation (11), we get

x0(t) =
(

t3 −
t19

100
−

t20

110

)
,

xi (t) =
t3

10
Ai−1(t)

∫ t

0
(s + 1)Bi−1(s) ds, i ≥ 1.
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where Ai and Bi are Adomian polynomials of the nonlinear terms x2 and x3

respectively, and the solution will be,

x(t) =
q∑

i=0

xi (t)

Table 2 shows a comparison between the absolute error of Picard (when n = 3)

and ADM solutions (when q = 3).

t |xExact − xPicard| |xExact − xADM|

0.1 1.88079×10−34 1.88079×10−34

0.2 2.46519×10−29 1.89203×10−26

0.3 2.24387×10−26 9.48288×10−21

0.4 1.61559×10−24 1.08415×10−16

0.5 0 1.55749×10−13

0.6 5.39199×10−21 6.01199×10−11

0.7 1.90012×10−16 9.35496×10−9

0.8 1.21415×10−12 7.47272×10−7

0.9 2.79233×10−9 0.0000356866

1 2.82633×10−6 0.0011119

Table 2 – Absolute error.

Example 3. Consider the following nonlinear QIE [9],

x (t) = t3 +
(

1

4
x (t) +

1

4

)(∫ t

0
t + cos

(
x (s)

1 + x2 (s)

))
ds, (12)

Applying Picard method to equation (12), we get

xn(t) = t3 +
(

1

4
xn−1 (t) +

1

4

) (∫ t

0
t + cos

(
xn−1 (s)

1 + x2
n−1 (s)

))

ds, n = 1, 2, . . . ,

x0(t) = t3.

and the solution will be,

x(t) = xn(t).
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Applying ADM to equation (12), we get

x0 (t) = t3,

xn+1 (t) =
(

1

4
xn (t) +

1

4

)(∫ t

0
t + Ai−1(s)

)
ds, i ≥ 1.

where Ai are Adomian polynomials of the nonlinear term cos
(

x(s)
1+x2(s)

)
and the

solution will be,

x(t) =
q∑

i=0

xi (t).

Table 3 shows a caparison between ADM and Picard solutions.

t ADM solution Picard solution |xADM − xPicard|

0.1 0.0285275 0.0272762 0.00125125

0.2 0.0684798 0.0634398 0.00504

0.3 0.127128 0.115575 0.0115538

0.4 0.212929 0.191649 0.02128

0.5 0.335783 0.300627 0.0351563

0.6 0.507262 0.452542 0.05472

0.7 0.740798 0.65854 0.0822587

0.8 1.05195 0.930992 0.12096

0.9 1.45895 1.28389 0.175061

1 1.98343 1.73343 0.25

Table 3 – Absolute error.

Example 4. Consider the following nonlinear QIE [8],

x(t) = e−t + x(t)
∫ t

0

t2 ln(1 + s|x(s)|)

2e(t+s)
ds, 0 < t ≤ 2. (13)

Applying Picard method to equation (13), we get

xn(t) = e−t + xn−1(t)
∫ t

0

t2 ln(1 + s|xn−1(s)|)

2e(t+s)
ds, n = 1, 2, . . . , x0(t)

= e−t .

and the solution will be,

x(t) = xn(t).
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Applying ADM to equation (13), we get

x0(t) = e−t ,

xn+1(t) = xn(t)
∫ t

0

t2 Ai−1(s)

2e(t+s)
ds, i ≥ 1.

where Ai are Adomian polynomials of the nonlinear term ln(1 + s|x(s)|) and

the solution will be,

x(t) =
q∑

i=0

xi (t).

Table 4 shows a caparison between ADM and Picard solutions.

t ADM solution Picard solution |xADM − xPicard|

0.2 0.818926 0.818926 1.11022×10−16

0.4 0.671897 0.671897 0

0.6 0.552921 0.552921 0

0.8 0.456136 0.456136 0

1 0.376724 0.376724 0

1.2 0.31109 0.31109 0

1.4 0.256612 0.256612 2.77556×10−17

1.6 0.211338 0.211338 0

1.8 0.173748 0.173748 0

2 0.142602 0.142602 0

Table 4 – Absolute error.

6 Conclusion

We used two analytical methods to solve QIEs; Picard method and ADM, from

the results in the tables we see that Picard method gives more accurate solution

than ADM.
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