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Abstract. We develop the impulsive inequality and the classical lower and upper solutions, and
establish the comparison principles. By using these results and the monotone iterative technique,
we obtain the existence of solutions of periodic boundary value problems for a class of impulsive
neutral differential equations with multi-deviation arguments. An example is given to demonstrate

our main results.
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1 Introduction

Impulsive differential equations have become more important in recent years
in some mathematical models of real phenomena, especially in control, bio-
logical or medical domains (see, for example, [1-5]). As to periodic boundary
value problems for impulsive differential equations, many authors have obtained
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508 DIFFERENTIAL EQUATIONS WITH MULTI-DEVIATION ARGUMENTS

excellent existence results; see, for instance, [7-11] for impulsive differential
equations, [15-18] for impulsive neutral functional differential equations, [19]
for abstract impulsive neutral functional differential equations. In [15-19], the

characters of their neutral types are

Llx(t) — gt x)],  S(t) + gt u), S+ F(t,uy)),

t

4 |:x(t) —g (t,xt, fa(t,s,xs)ds>:| and %(x(t) —g(t,x0)),

0
respectively. In this paper, however, the character of its neutral type is
(u(@(¢))). The character is different from the previous ones. Consider the
following periodic boundary value problems for impulsive neutral differential

equations with multi-deviation arguments of the form

(@) = f(t, u(®), u(ei(@), ..., ul@y (1)),
teJ=I0,T] t # &,

(1.1)
Au(ty) = L(u(t)), k=1,...,p,
u(0) = u(T),
where 0 =t < ) < -+ < t, <ty =T;0 € C'(J,R), 6 is mono-

tone increasing with 0 < 6(¢) < ¢t (¢t € J),0(0) = 0,0(T) = T, and set
O =t k=1,....p), Jo=J\{t1,....t,}, T =J\{G1,..., Lk [ IX
R?*! — R is continuous almost everywhere, and ¢;: J — R continuous
with ¢;(J) € J (G = 1,...,9); and I; € C[R,R), Au(ty) = u(t;) —
u(ty). Denote by PC(X,Y), where X C R,Y C R, the set of all func-
tions u: X — Y which are piecewise continuous in X with points of dis-
continuity of the first kind at the points # € X, i.e., there exist the limits
u(l,j) < ooand u(t,) = u(t) < oo. PC'(X, Y) denotes the set of all func-
tions u € PC(X, Y), that are continuously differentiate for ¢ € X, ¢ # #. Let
Q= PC(0,T],R) PC!([0, T], R).

Definition. We say that the functions «, § € 2 are lower and upper solutions

of (1.1), respectively, if there exist M > 0 and 0 < L; < 1 such that

(a@@®) < ft,a@), alei(?), ..., alp, ) —a(t), telJ,
Aa(ty) < I(a(ty)) — Liay, k=1,..., p,
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where
0, a(0) < a(T),
O =1 vty vgo 1.2)
7= (@(0) —a(T)), a(0) > a(T),
0, a(0) < a(T),
ap = (13)
[ L(@(0) —a(T)), a(0) > a(T),
and
BO@)) = f(t, @), Ble1 (D)), ..., Bloy (1)) +b(), teJ,
AB(t) = L(B(t) + Liby, k=1,..., D
where
0, B(0) > B(T),
b) = 0O+ M+ Nigi (0 (1.4
7= (B(T) — B(0)), BO) < B(T),
0, B0) > B(T),
by — (1.5)
L(B(T) — B(0)), BO) < B(T).

The definitions of classical lower and upper solutions make reference to the
case a(0) < «(T) and B8(0) > B(T).

2 Preliminaries

Lemmal. Lets € [0,T], ¢t >0, o,k =1, ..., p be constants, p,q €
PC(J,R), x € PC'(J,R) and 0 be set by (1.1). If

x@O@)) <pt)x@@)+q@t), tels, T), t# &,
x () < epx () + o, trels, 1),

then fort € [s, T,

x(@@) < x(9(s+))< I1 ck> exp <fp(u)du> f( )
s<Cp<t s u<qp<t

t
X exXp (f p(t)d‘c) gwydu+ ) ( ) exp (/ p(‘[)d‘[) o
u Ck<di<t

s<Cp<t

Comp. Appl. Math., Vol. 29, N. 3, 2010



510 DIFFERENTIAL EQUATIONS WITH MULTI-DEVIATION ARGUMENTS

This proof is similar to the one of [1], here we omit it.

Lemma?2. Letue€ Q M >0 N;>0G=1,...,9),0<Ly <1land?b
be set by (1.1), such that
q
(AD) (@) + Mu(t) + 3 Niu(g;(t)) <0, te€Jy;
i=1
(A2) Au(ty) < —Liu(ty), k=1,...,p;

(A3) u(0) =u(T);
T
(A4) <M+ i N,-) [ T1 A —=Lypds < ﬁ(l — Ly)>
i=1 0 s<¢<T k=1

Thenu <0on J.
Proof. By (A1) and (A2), we have

q
@@@®)) < —Mu() — ZNiu((pi(t))’ teJi, 2.1)
i=1

du(t) . dt

q
T = —Mu() - Y Nulgi(t), tes,T=00). (22

i=1
u(td) < (L= Lpu(), k=1,...,p. (2.3)

To prove u(¢) < 0 on J, we shall consider the following two cases.

Case 1. u(¢t) > 0 for all ¥ € J. In this case, by (2.2) and (2.3) and the
properties of 6, we get u'(¢) < 0 on Jy and u(t,j) <ulty), k=1,...,p.
Therefore u(¢) is a non-increasing function on J. Then u(0) > u(7T). Since
u(0) < u(T), u(t) = conJ (cisanon-negative constant), and u’ = 0 on Jj.
This and (A1) imply (M + i Ni)c <0. Thenu =0o0nJ.
i=1

Case 2. There exists t* € J such that u(#*) > 0 and u(¢) can take negative
values in J. Let 6(¢*) = ¢*. Again let ¢ = min{r € J, infyc, u(0(s)) =
u(@(t)) = —A, A > 0}. Since (A3), ¢ € [0, T). Without loss of generality,
let ¢ # &, gLok=1,....p (If ¢ = & or ¢, the proof is similar, here we
omit.). In this case, we consider two subcases.

Comp. Appl. Math., Vol. 29, N. 3, 2010
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Subcase 1. u(7T) > 0. From (2.1), we have

@@@)) < (M+ i Ni> , teJ. (2.4)

i=1
In view of (2.4), (2.3), and Lemma 1, we can get for ¢ € [g:, T],

u@@) < u@@) II (1—Lk)+f [I d—Lpxr (M+ZN)

C<tp<t 7 S<Gk<t i=1

= -2 ] (l—Lk)+k(M+ZN>f [T (1= Lyds.

r<fp<t i=1 z s<gp<t

Let ¢ = T. Then we have

w@(T) < —x I (I—Lk>+x<M+zN)f [T (1—Lyds,
C<gp<T i=1 7 s<G<T

(2.5)
T
u(T) §k|:(M+iNi)f [T (1 —=Lypds— ﬁ(l—Lk):|.

i=1 0 s<¢@<T k=1

Since u(T) > 0, we get

T
[T -1p < (M—I— iNl) [ 11 (—=Lyds,
k=1

i=1 0 s<¢<T

ﬁ(l_Lk)2< (M+ZN)f [T (1—Lyds,
k=1

i=1 0 s<¢<T

which is contradictory to (A4).

Subcase 2. u(T) < 0. In this subcase, then < ¢* or ¢ > ¢*.

(i) ¢ < ¢*. According to the same arguments as (2.5), we get

u@@) < -1 ] (1—Lk>+A<M+ZN>

F<fr<¢* =1

xf [T Q- Lyds.

¢ S<Gp<C*
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512 DIFFERENTIAL EQUATIONS WITH MULTI-DEVIATION ARGUMENTS

Multiplying both sides of the above inequality by H§*§§k<T(1 —
(If ¢* > ¢,, this reduction is not needed.), we obtain

u@@*) I1 (=L

¢ <g<T
é'*
<2 ] (1—Lk)+A<M+ZN>f [T (1—Lyds
<gi<T i=1 ¢ s<@<T

A

—A ]_[(I—Lk)+A<M+ZN>f [T (-=Lyds

k=1 i=1 0 s<¢<T

=x[(M+iN,~)f [T (- Lods - n<1—Lk>}

i=1 0 s<¢<T

Since u(6(¢*)) > 0, we have

ﬁ(l_Lk)<<M+ZN>f [T (1 —Lyds,
=1 i=1 0 s<¢<T
lﬁl(l—Lk)2 (M+ZN>f [T (- Lods,
=1 i=1 0 s<¢<T

which is contradictory to (A4).

L)

(i) ¢ > ¢*. By (A3), we have u(0) < 0. This and the properties of # imply

0 < ¢*. According to the same arguments as (2.5), we get

u@c*) < u@®©0) [ 1-Lp

O0<gr<g*

q ¢*
+A(M+2Ni>f M a-ry,

i=1 0 s<¢p<C*

u@E*) < u() [I (A-=Ly
0<gr<g*

q 98
+A(M+2Ni)f [T (1—Lpads.

i=1 0 s<¢r<C*

Since u(6(¢*)) > 0, we have

wT [ =Ly = ,\(M+ZN)I [T (-Lyds. (2.6)

O<gp<t* i=1 0 s<@p<C*
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By (2.5) and (2.6), we obtain

q
[T A-Lp I (1—Lk)§(M+ZNi>
0<gr<C* Z<§‘k<T i=1
¢ T
x[f M A—Lpds+ I A-Ly [ [] A —Lk)ds}.
0 s<¢r<iC* O<@p<C* E s<tp<T

Multiplying both sides of the above inequality by n{*s gl — Ly (If
¢* > £, this reduction is not needed.), we get

[I =Ly [I =Ly

O<ge<T c<g<T

5<M+_izv,~)[ I (I—Lk)7 [T (1-Lyds

i=1 o< <T 0 s<Cp<C*

T
+ [T a-Lo ) TI (l—Lk)dS]

0<g<T E s<tp<T

p
kl:[l(l—Lk) [T (A1=Ly

t<tr<T

§(M+iN,->|:§f* I1 (1—Lk)ds—|—fT I1 (l—Lk)dsi|,

i=1 0 s<@k<T ¢ s<t<T

T
k]ﬁl(l —Ly) I =Ly < (M+ i N,-) [ T1 (—=Lyds,

r<g<T i=1 0 s<¢<T

T
ﬁ(l —Ly)? < (M+ iN,-) [ T1 (= Lyds,
k=1 ‘

i=1 0 s<¢@<T

which is contradictory to (A4).

Thus, in either case u < 0 on J. Therefore the proof of the Lemma is

complete.

Lemma3. Letue Q M=>0,N,>0G=1,...,9),0<L; <1and?0 be
set by (1.1), such that
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514 DIFFERENTIAL EQUATIONS WITH MULTI-DEVIATION ARGUMENTS

q 9'(t)+Mt+i: Nigi(t)
(B @) + Mu(t) + Z Niu(e;(t)) + —————[u(0) —u(T)] <

i=1
0, teJ;
(B2) Au(t) < —Lgu(ty) — Li x %[u(0) —u(T)), k=1,...,p;
(B3) u(0) > u(T).

Also assume that (A4) holds. Thenu < 0on J.

Proof. Set m(¢t) = u(t) +¢t/T - [u(0) — u(T)]. Clearly, m(0) = m(T). It
follows that for ¢ € Jp,

9
(M6 (1)) + Mm(t) + 3 Nim(g; (1)) = (6(1))" + Mu(r)

i=1

q 9/(Z)+Ml‘+.i Ni<p,-(t)
+ 2 Niulei (1) + 7 [u(0) —u(T)] <0,

i=1

and for ¢t = ¢,

Am(t) = Au(ty) < —Lgu(ty) — L X 4/ T - [u(0) — u(T)] = —Lim(&).
By Lemma 2, we obtain m(¢) < 0 on J, and so u(¢) < 0 on J. Thus, we have
completed the proof of the Lemma.

3 Existence for linear problem

In this section, we consider the linear problem of (1.1)

@ (0(1))) + Mu(t) + i Niu(pi(t)) =o(t), teJ,

i=1
Au(t) = —Lau(t) + v, k=1.....p, 3D
u(0) = u(T),
where o(t) € PC(,R), y e R,k =1,....,p, M > 0, N; > 0@ =
1,...,¢9),0 < L; < 1and 9 is set by (1.1). Fora, B8 € Q, set [«, 8] =
{ula(t) <u() < B@),t € J}.

Comp. Appl. Math., Vol. 29, N. 3, 2010
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Theorem 1. Suppose that there exist a, § € Q such that

(Cl) a<Bond,
(C2) @OM)) + Ma(t) + 3. Nl () < 0 (t) —a(t), 1€ Jy,

i=1
Aa(ty) < —Lwat) +ve—ar, k=1,...,p;
q

BOM) +MB() + 3 NiB(gi(1)) =2 a(t) + b(t), te,

i=1
AB(ty) = —LiBt) + v + b, k=1,...,p,
where a(t), b(t), ai, by are defined by (1.2)-(1.5). Also assume that (A4) holds.

Then there exists a unique solution u for (3.1) withu € [«, B].
Proof. We shall prove the Theorem in the following three steps.

Step 1. Ifuy, u, are solutions of (3.1), set v; = u; —u, and vy, = uy —u;y, then

q

(1 (0() + Mvi(t) + ) Nivi(g;i(¢)) =0, e Ji,
i=1

Avl(tk) = —Lkvl(tk), k= 1,..., D,

v1(0) = v (T),

and .

(0200(0))) + Mvy(2) + Z Niva(gi(1)) =0, teJ,

i=1
Avy(tr) = —Liva(t), k=1,...,p,
v2(0) = v (T).

By Lemma 2, we obtain vy = uy —upy < 0and vy, = up —u; < 0. Thusu; = u,.

Then there exists a unique solution u for (3.1).

Step 2.  We prove that if w, y are classical lower and upper solutions, respec-
tively, for (3.1) with w < y, then (3.1) has a solution u € [w, y].
Let u(-, a) denote the unique solution of the following equation
q
@ (@) + Mu(t) + ) Nu(p;(t)) =o(t), teJ,
i=1
Au(ty) = —Liu(t) +ve, k=1,...,p,

u(0) =a.

(3.2)

Comp. Appl. Math., Vol. 29, N. 3, 2010
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Firstly, we show w(0) < u(T,w(0)) and y(0) > u(T, y(0)). Assume
w(0) > u(T, w(0)). Letv(t) = w(t) —u(t, w(0)). Then the function v satisfies

((@@)) + Mv(@) + i]viv((pi(t)) =0, reJ,
j=1

Av(ty) = —Lyv(ty), k=1,...,p,
v(0) =w(0) —w(0) < o(T) —u(T, w(0)) =v(T).
ByLemma2, wehave v(¢) < 0onJ. Thisimplies v(7T) = o (T)—u(T, w(0)) <
0. Thus w(0) < w(T) < u(T,w(0)), which is contradictory to the above
assumption. Then w(0) < u(T, w(0)). Similarly, we have y (0) > u(T, y(0)).
Next, we prove that there exists ¢ € [w(0), y(0)] such that u(0, ¢) = u(T, ¢).

Now, we consider two cases.

Casel. w(0) = y(0). Inthiscase, wegetw(0) < u(T, y(0)) < y(0) = w(0).
Thus u(T, y(0)) = w(0). Then we choose ¢ = w(0), and so u = u(-,c) is a
solution of (3.1).

Case 2. w(0) < y(0). In this case, we define the map F: [@w(0), y(0)] - R
by F(s) = s—u(T, s). Clearly F'is continuous. Since F(w(0)) <0 < F(y(0)),
there must exist one point ¢ € [w(0), y (0)] suchthat F(¢) = 0. Thenu = u(-, ¢)
is a solution of (3.1).

Finally, we claim u € [w, y]. Let m(t) = w(t) — u(t,c) and my(t) =
u(t,c) — y(t). Itis evident that m, m, € 2, and

q
(m1(0(1))) + Mmy () + 3 Nimi(@:(1)) <0, ¢ € Ji,

i=1

Ami(ty) < —Limi(t), k=1,...,p,
m1(0) = w(0) —u(0,c) < o(T) —u(T,c) =m(T),

and
(m2(0(1))) + Mmy(t) + i Nimy (i (1)) <0, teJ,

i=1
Amy(ty) < —Limy(t), k=1,...,p,
m2(0) =u(0,¢) —y(0) <u(T,c) —y(T) =m(T).

Using Lemma 2, we obtain m; < 0 and m, < O0Oon J. Thusw < u(-,¢) <y

onJ.
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Step 3. We prove that &(¢), B(¢) are classical lower and upper solutions, re-
spectively, for (3.1) with @ < B, moreover [&, 8] C [«, B], where

a(t) = [ @), @(0) = a(D), 3.3)
a(t) +t/T - [a(0) —a(T)], a0) > a(T),
and
B(r) = B(1), B0) > B(T), (3.4)
B)—t/T-[B(T)— BO)], BO) < B(T).

It is evident that « < @ and B < B on J. Thus @(0) = «(0) < &(T) and
B(0) = B(0) > B(T).

(i) If(0) < a(T), then

q
@@®)" + Ma + ) Nia(pi(1) = («(O(1)))

i=1

b Ma() + Y. Nia(ei(0) < o(0), 1 € Ji,
i=1

Aa(ty) = Aa(ty) < —Lia(ty) + vk —ap < —Lia(t) + v — Lyag
= —Lila(®) +ar]l +yie = —Lia() +vv, k=1,...,p,

and add to a(0) < (7).

(i) Ifx(0) > a(T), then

q
(@@(1) + Ma(r) + ; Nia (i (1)) = (@(6(1)) + Ma(?)

g 0'(1)+ M1+ 3 Ny (1)
+ 2 Nia(gi (1)) + —————(@(0) — (D)

i=1
<o(t), teJy,
Aa(t) = Aa(ty) < —Lya(t) + v, k=1,...,p,

and add to a(0) < (7).

Thus, in either case, « is a classical lower solution for (3.1). The same argu-

ments show that 8 is a classical upper solution for (3.1).
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Now, we consider the function m = @ — 8.

q
(m(6())) + Mm(t) + 3 Nim(g;(1))

i=1

q
= [(&(90)))’ + Ma(t) + ; Nia(g (t))]

- [(B(e(t»)’ + MB(W) + Y. Nif(e, (r))]
<o(@)—o(t)=0, teld, -
Am(ty) = Aa(t) — AB(t) < [—Lia(t) + vil — [—LiB @) + vi]
=—Lm(t), k=1,...,p,
m(0) = &(0) — B(0) < a(T) — B(T) = m(T).
Using Lemma 2, we get m <0 on J,ie., &« < on J.

Thus, we have completed the proof of Theorem 1.

4 Existence for nonlinear problem
In this section, we establish the existence criteria for solutions of (1.1) by the
lower and upper solutions and the monotone iterative technique.
Theorem 2. Suppose that there exist «, § € 2 such that
(D1) « and B are lower and upper solutions for (1.1) with a < B;
(D2)  f(t,x2, Y125+ -5 Yg2) — fE X1, Y115 w05 Yg1) = —M(x2 — x1)
- iNi(yi2 — yi1) forevery t € Jj,a <x1 <x3 < B,
@i (0) = @) = ol (0) = P@D) (= 1..... )

(D3) Ii(x) — It (y) = —Li(x — y) for a(ty) < y(t4) < x(t&) < B,
k=1,...,p.
Also assume that (A4) holds. Then there exist monotone sequence {a,(t)},
{B,()} with ay = &, By = B, where @, B are defined by (3.3) and (3.4), such
that lim,_, o a,(t) = p(t) and lim,_ ,gn(t) = Y (t) uniformly hold on J,

where p(t), ¥ (t) are minimal and maximal solutions of (1.1), respectively.
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Proof. We shall prove the Theorem in the following three steps.

Step 1. Itisevidentthat o < @ and B8 < B on J. Thus «(0) = a(0) < a(T)
and (0) = B(0) > B(T).

Let the function m = & — B, then m(0) = @(0) — B(0) < &(T) — B(T) =
m(T). Next, we consider two cases.

Casel. «(0) > a(T) and B(0) < B(T).
Firstly, by (D2), we get

q
(m©@®))) + Mm(1) + 3 Nim(p;(1))

i=1

q
0" ()+Mt+>" Nig;(t)

q :
= | (@(0)) + Ma(t) + Zl Nia(g; (1)) + ———F=——(@(0) — (7))
q 9’(f)+Mt+i Nig;i (1)
— | (BO®) + MB(t) + 21 NiB(gi(t)) — 7= (B(T) — B(0))

<[f@ a@),a(@@),..., alpy (1)) = [, B@), Blp1(D)), ..., Blgq(1)))]

- [M(ﬂ(t) — ) + 3 Nl o) - a(goi(o))}
<0, teJ.
Again, by (D3), we obtain
Am(ty) = Aa(t) — AB(4) = Aa(t) — AB (1)
< Ui(a(t)) — Lrax] — Uk(B(@)) + Libi]
< —Lyla() — B(t)] — Lxay — Liby < —Lygm(t), k=1,..., p-

Finally, add to m(0) < m(T). Using Lemma 2, m(¢) < Oon J, i.e,, & < B
onJ.
It follows that

@O = @O)) + 22[a(0) — a(1)]

q
Mi+3 Nigi()

< [t a@®), alpi@), ..., alpy (1) — —=F——[a(0) — a(T)].
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Since o < o < B, by (D2), we get

F(t. a0, @@ (1)), ... & (1) — f(t, (), al@i(®)). ..., alp, (1))
> —Mla(t) — a(t)] - é Nila (@i (1) — alg; (D).
Then
@O0 < f(t. @), a(@i (1)), ..., alp, ) + Mla) — e ()]
q Mz+f Nigi (1)
+ X Nl@ @i (e) — alpi0)] = — 55— [a(0) — a(T)]
= [t &(1), @(p1(1)), ..., &(py(1))) @D
Mt+i Nigi(t) Mt+i Nig; (1)
@ (0) — a(T)] — — e [a(0) — a(])]
= f(t.a@(0), &1 (1)), ..., &g, (1))

From (D3), we get

Aa(t) = Aalty) < I(a(t)) — 2w (0) — a(T)]
< L@t) + Lila () — a(t)] — 2 [a(0) —a(T)]  (4.2)
= L(@®)).

Case2. «a(0) <a(T) and B(0) > B(T). In this case, it is trivial that we get
(4.1) and (4.2).

Thus, in either case, « is a classical lower solution. Similarly, B is a classical

upper solution. Moreover [&, 8] C [a, B].

Step 2. For any 7 € [&, B], we consider

q q
@O (®))) + Mu(t) + - Niu(pi()) = Mn(@) + 3 Nin(g; (1))

i=1 i=1
+ f @&, n@), n(e1(0)), ..., n(py (1)), teJ, 43)
Au(ty) + Liu(ty) = Li(n(t)) + Lin(t), k=1,..., D

u(0) = u(T).
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Then, by Theorem 1, (4.3) has a unique solution u € .
Define operator 4 by u = An. Then A possesses the following properties:

(El) @ < Aa, p > AB;
(B2) Any < An for ny, my € [@, B] with iy < n,.

Firstly, let m = o — &y, where &; = Aa. Then we get

(m(0(1))) = (@) — (1 (6(1)))

q
= f@ a@,a(gi(), ..., a(pq (1)) + May (t) + Y N;ay (i (1))
i=1

q
— Ma(t) — ; Nia(pi () — f(t, (1), a(gi (1), ..., a(pq(1)))

i=1

= —Mla(?) — o (t)] - i Nila (i (1)) — alei(t))]

i=1

= —Mm(t) = 3 Nom(gs(1)), t € i,
i=1

Am(ty) = Aa(ty) — Aay(t)
< Li(a(ty)) — Li(a(te)) — Lioe(te) + Loy (t)
=—Limty), k=1,..., D,

m(0) = «(0) —a1(0) < a(T) — o (T) = m(T).

By Lemma 2, we have m(¢) < 0on J,ie., @ < Ax. Similarly, we get B > AB.
Next, set vi = An; and v, = An,, where 11, 1, € [a, ,B_] with n; < n,. Let
m = v; — v;. By (D2), (D3) and (4.3), we get

(m(0(1))) = (v1(6(1))" — (12(0(1)))

=[—Mmo—éwam»+ﬂmmmmwm» ..... Mg, )
+Mmm+iwawﬂ—[—Mmo—éMwmm>

+ ) e O). ... mmmm+Mmm+éwawﬂ
— —Mm(©) = Y Nom(gi(0) + L. (@ (0. .. 11, ()
@ O, . g O]

q
- [M(nz(t) —m@) + 21 Ni(m2(@i (1)) — m(g; (t)))}

i=
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< —Mm() = X Nim(i©). 1<,
Am(ty) = AUI(Zk; — Ava (%)
= [—Livi () + Le(mi (%)) + Limi (4)]
— [—=Lyxv2(t) + Le(m2(t)) + Limz2(t)]
<—-Lim(t), k=1,...,p,
m(0) = m(T).
By Lemma 2, we get m(¢) < 0on J,ie., v; < vy, onJ. Then An; < An, for

ni, M2 € @, Bl with ny < n,.

Step 3. Define the sequence {, (1)}, {B1(1)} by @1 = A&y, Pus1 = APy,
@ = @, Bp = B. From (E1) and (E2), we get

0<a<..<@ <P, <...<Bi=Ph, VneN.

Qi

Thus it is immediate to verify that
lim &,(t) = p(t) and lim B,(t) = ¥ (¢)
n—0oQ n— o0

uniformly hold on J.
We consider the equation

q
(@11 (0(0))) + My i1 (t) + 3 Nidyy1(9i (1)) = Ma, (1)
i=1

q
+ > N;iau (@i (1) + f(t, @n(t), @u(@1(2)), ..., Qn(pe (), t € Ji,
i=1
Aoty (te) + Loty (te) = I (o, (4)) + Lia, (%), k=1,...,p,
Api1(0) = @, (1),

and pass to the limit when 7z tends to co. Thus we obtain that p is a solution of

(1.1). Analogously, ¥ is also a solution of (1.1).

Finally, let u be any solution of (1.1) on [&, B]. Clearly &y < u. Assume
o, < u. We get that &, < u by considering the function m = u — &, and
using Lemma 3 again. Then by passing to the limit, we conclude p < u on J.
Similarly, # < v on J. Then p(¢), ¥ (¢) are minimal and maximal solutions of

(1.1), respectively. Thus, we have completed the proof of Theorem 2.
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5 An example

Now we consider the equation

W) = —5;u2 () — 3¢ [u (51) + u(VD) +u (31)]
+ o5t t€[0,1],1 # ¢ =1,

(5.1
Au(t) = —3u(t), 4

u(0) = u(l).

1
4’

Firstly, it is obvious that @ = 0 is a classical lower solution for (5.1). Certainly
o = 0 is a lower solution. Similarly 8 = 1 is an upper solution. Moreover
a < BonJ =][0,1]. Next,

S, x2, y12, 22, ¥32) — f (&, X1, Y11, Yar, V31)
3
—3 (3 —x]) — % ;(yiz = Yi1)

3
= —5 o+ x)02 —x1) — 3 2(%‘2 —yin)
=

\

3
= _%(’Q —Xx1) — % 2()’:‘2 — Yil)s

foro < x < x < Boa(dt) < yu(de) < ya(dt) = B(31), (VD) <
yu(VH) <y < B, a(3t) < y3i(5t) < yn(31) < B(51). where
M=% N =N =Ny = & Further, 1(x) — [;(») = —Ix + 1y >
—E(x —y), for « (}‘) y(}—‘) <x (—) < ﬁ(%),whereo <L = % < 1. Finally,

3 T ]
(M+Z ,)Of [ T(I—Lk)ds=%of (I — Ly)ds

i=1

Then all the conditions of Theorem 2 are satisfied. Thus (5.1) has minimal and
maximal solutions in [¢, S].

In addition, we consider 8 (¢) = ]’m + == 100, t €0, 1]. Clearly 8,(0) < 8,(1),
then b(6) = 5 + s (3¢ + V7 + 3) + 45 and by = g We still take
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&, Ni = N, = N3 = 5. From

(%)
(8 -

1 9800
~5 X 100 T 1002 T j002 T f+2xm]

- 2 2
= _1l(L Lo 9 P _ L
= 24_(100 T 55 X 100 (100) t—55+2x 100]

(1 9\* _ 1 99 | 1 ‘

=—ﬁ<m +m) — 36 %3 % 100 t 2t t w000

‘ 1 g2 I

5 1 _ (L 1

0 = b 36[(100X t+1oo> (mox“/_"'loo)

1 2 99 t
(1 % 3+ ) |+ st + [+ st (3 VE+ 2) + 5],

we have (8,(2))' = ——ﬂ1 (1) — % [ﬁl(lz) + B + Bi(3) | + 5t + b0,
From 0 > _% (1(1)_0 + 100) + ; X 400’ we get AB, (?11) > 1 (/31(}1)) + Liby.

These show that 8;(¢) is an upper solution for (5.1). Moreover @ < f; on
J. Similarly, we get the existence of monotone sequence that approximate the

extremal solutions for (5.1) in [«, B1].
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