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Abstract. We introduce a globally convergent sequential linear programming method for

nonlinear programming. The algorithm is applied to the solution of classic topology optimization

problems, as well as to the design of compliant mechanisms. The numerical results suggest that the

new algorithm is faster than the globally convergent version of the method of moving asymptotes,

a popular method for mechanical engineering applications proposed by Svanberg.
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1 Introduction

Topology optimization is a computational method originally developed with the
aim of finding the stiffest structure that satisfies certain conditions, such as an
upper limit for the amount of material. The structure under consideration is
under the action of external forces, and must be contained into a design domain
�. Once the domain � is discretized, to each one of its elements we associate
a variable χ that is set to 1 if the element belongs to the structure, or 0 if the
element is void. Since it is difficult to solve a large nonlinear problem with
discrete variables, χ is replaced by a continuous variable ρ ∈ [0, 1], called the
element’s “density”.
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However, in the final structure, ρ is expected to assume only 0 or 1. In order
to eliminate the intermediate values of ρ, Bendsøe [1] introduced the Solid Iso-
tropic Material with Penalization method (SIMP for short), which replaces ρ by
the function ρ p that controls the distribution of material. The role of the penalty
parameter p > 1 is to reduce of the occurrence of intermediate densities.

One of the most successful applications of topology optimization is the design
of compliant mechanisms. A compliant mechanism is a structure that is flexible
enough to produce a maximum deflection at a certain point and direction, but is
also sufficiently stiff as to support a set of external forces. Such mechanisms are
used, for example, to build micro-eletrical-mechanical systems (MEMS).

Topology optimization problems are usually converted into nonlinear pro-
gramming problems. Since the problems are huge, the iterations of the math-
ematical method used in its solution must be cheap. Therefore, methods that
require the computation of second derivatives must be avoided. In this paper,
we propose a new sequential linear programming algorithm for solving con-
strained nonlinear programming problems, and apply this method to the solution
of topology optimization problems, including compliant mechanism design.

In the next section, we present the formulation adopted for the basic topology
optimization problem, as well as to the compliant mechanism design problem.
In Section 3, we introduce a globally convergent sequential linear program-
ming algorithm for nonlinear programming. We devote Section 4 to our nu-
merical experiments. Finally, Section 5 contains the conclusion and suggestions
for future work.

2 Problem formulation

The simplest topology optimization problem is the compliance minimization of
a structure (e.g. Bendsøe and Kikuchi [2]). The objective is to find the stiffest
structure that fits into the domain, satisfies the boundary conditions and has a
prescribed volume. After domain discretization, this problem becomes

min
ρ

fT u

s.t. K(ρ)u = f
nel∑

i=1

vi ρi ≤ V

ρmin ≤ ρi ≤ 1, i = 1, . . . , nel ,

(1)
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where nel is the number of elements of the domain, ρi is the density and vi is the
volume of the i-th element, V is the upper limit for the volume of the structure,
f is the vector of nodal forces associated to the external loads and K(ρ) is the
stiffness matrix of the structure.

When the SIMP model is used to avoid intermediate densities, the global
stiffness matrix is given by

K(ρ) =
nel∑

i=1

ρ
p
i Ki ,

The parameter ρmin > 0 is used to avoid zero density elements, that would
imply in singularity of the stiffness matrix. Thus, for ρ ≥ ρmin, matrix K(ρ) is
invertible, and it is possible to eliminate the u variables replacing u = K(ρ)−1f
in the objective function of problem (1). In this case, the problem reduces to

min
ρ

fT K(ρ)−1 f

s.t. vT ρ ≤ V

ρmin ≤ ρi ≤ 1, i = 1, . . . , nel,

(2)

This problem has only one linear inequality constraint, besides the box con-
straints. However, the objective function is nonlinear, and its computation
requires the solution of a linear systems of equations.

2.1 Compliant mechanisms

A more complex optimization problem is the design of a compliant mechanism.
Some interesting formulations for this problem were introduced by Nishiwaki et
al. [14], Kikuchi et al. [10], Lima [11], Sigmund [16], Pedersen et al. [15], Min
and Kim [13], and Luo et al. [12], to cite just a few.

No matter the author, each formulation eventually represents the physical
structural problem by means of a nonlinear programming problem. The degree
of nonlinearity of the objective function and of the problem constrains vary
from one formulation to another. In this work, we adopt the formulation pro-
posed by Nishiwaki et al. [14], although similar preliminary results were also
obtained for the formulations of Sigmund [16] and Lima [11].

Considering that the mechanism belongs to a domain �, fixed at a region 0d

of its boundary ∂�, Nishiwaki et al. [14] suggest to decouple the problem into
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two distinct load cases. In the first case, shown in Figure 1(a), a load t1 is applied
to the region 0t1 ⊂ ∂�, and a fictitious load t2 is applied to a different region
0t2 ⊂ ∂�, where the deflection is supposed to occur. The optimal structure
for this problem is obtained maximizing the mutual energy of the mechanism,
subject to the equilibrium and volume constraints. This problem represents the
kinematic behavior of the compliant mechanism.

After the mechanism deformation, the 0t2 region eventually contacts a work-
piece. In this case, the mechanism must be sufficiently rigid to resist the reac-
tion force exerted by the workpiece and to keep its shape. This structural behav-
ior of the mechanism is given by the second load case, shown in Figure 1(b).
The objective is to minimize the mean compliance, supposing that a load is
applied to 0t2 , and that there is no deflection at the region 0t1 .

Ω

Γd

Γt1

Γt2

(a)

t

t

1

2

Ω

Γd

Γt1

Γt2

(b)

2−t

(a) (b)

Figure 1 – The two load cases considered in the formulation of Nishiwaki et al. [14].

These load cases are combined into a single optimization problem. After
discretization and variable elimination, this problem becomes

min
ρ
−

fT
b K1(ρ)

−1 fa

fT
c K2(ρ)−1 fc

s.t. vT ρ ≤ V

ρmin ≤ ρi ≤ 1, i = 1, . . . , nel

where fa and fb are the vectors of nodal forces related to the loads t1 and t2 shown
in Figure 1(a), fc is the vector of nodal forces related to the load −t2 shown in
Figure 1(b), and K1(ρ) and K2(ρ) are the stiffness matrices associated to the
first and the second load cases, respectively.
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This problem has the same constraints of (2). However, the objective func-
tion is very nonlinear, and its computation requires the solution of two linear
systems of equations. Other formulations, such as the one proposed by Sig-
mund [16], also include constraints on the displacements at certain points of
the domain, so the optimization problem becomes larger and more nonlinear.

3 Sequential linear programming

Sequential linear programming (SLP) algorithms have been used successfully
in structural design (e.g. Kikuchi et al. [10]; Nishiwaki et al. [14]; Lima [11];
Sigmund [16]). This class of methods is well suited for solving large nonlinear
problems due to the fact that it does not require the computation of second
derivatives, so the iterations are cheap.

However, for most algorithms actually used to solve topology optimization
problems, global convergence results are not fully established. On the other
hand, SLP algorithms that are proved to be globally convergent are seldom
adopted in practice. In part, this problem is due to the fact that classical SLP
algorithms, such as those presented in [21] and [8], have practical drawbacks.
Besides, recent algorithms that rely on linear programming also include some
sort of tangent step that use second order information (e.g. [5] and [6]).

In this section we describe a new SLP algorithm for the solution of constrained
nonlinear programming problems. As it will become clear, our algorithm is not
only globally convergent, but can also be easily adapted for solving topology
optimization problems.

3.1 Description of the method

Consider the nonlinear programming problem

min f (x)
s.t. c(x) = 0,

x ∈ X,

(3)

where the functions f : Rn → R and c : Rn → Rm have Lipschitz continuous
first derivatives,

X =
{
x ∈ Rn | xl ≤ x ≤ xu

}
,
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and vectors xl, xu ∈ Rn define the lower and upper bounds for the compo-
nents of x. One should notice that, using slack variables, any nonlinear pro-
gramming problem may be written in the form (3).

The linear approximations for the objective function and for the equality con-
straints of (3) in the neighborhood of a point x ∈ Rn , are given by

f (x + s) ≈ f (x)+ ∇ f (x)T s ≡ L(x, s),

c(x + s) ≈ c(x)+ A(x)s,

where A(x) = [∇c1(x) . . . ∇cm(x)]
T is the Jacobian matrix of the constraints.

Therefore, given a point x, we can approximate (3) by the linear program-
ming problem

min
s

f (x)+ ∇ f (x)T s

s.t. A(x)s+ c(x) = 0

x + s ∈ X.

(4)

A sequential linear programming (SLP) algorithm is an iterative method that
generates and solves a sequence of linear problems in the form (4). At each
iteration k of the algorithm, a previously computed point x(k) ∈ X is used to
generate the linear programming problem. After finding sc, an approximate
solution for (4), the variables of the original problem (3) are updated according
to x(k+1) = x(k) + sc.

Unfortunately, this scheme has some pitfalls. First, problem (4) may be
unlimited even if (3) has an optimal solution. Besides, the linear functions
used to define (4) may be poor approximations of the actual functions f and
c on a point x + s that is too far from x. To avoid these difficulties, it is an
usual practice to require the step s to satisfy a trust region constraint such as
‖s‖∞ ≤ δ, where δ > 0, the trust region radius, is updated at each iteration
of the algorithm, to reflect the size of the neighborhood of x where the linear
programming problem is a good approximation of (3). Including the trust
region in (4), we get the problem

min ∇ f (x(k))T s
s.t. A(x(k))s+ c(x(k)) = 0

sl ≤ s ≤ su

(5)

where sl = max{−δk, xl − x(k)} and su = min{δk, xu − x(k)}.
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However, unless x(k) satisfies the constraints of (3), it is still possible that
problem (5) has no feasible solution. In this case, we need not only to improve
f (x(k) + s), but also to find a point that reduces this infeasibility. This can be
done, for example, solving the problem

min M(x(k), s) =
∣
∣
∣
∣A(x(k))s+ c(x(k))

∣
∣
∣
∣
1

s.t. sl
n ≤ s ≤ su

n

(6)

where sl
n = max{−0.8δk, xl − x(k)}, su

n = min{0.8δk, xu − x(k)}. Clearly,
M(x, s) is an approximation for the true measure of the infeasibility given
by the function

ϕ(x) = ‖c(x)‖1.

Although the square of the Euclidean norm is the usual choice for defining
ϕ (see [9]), due to its differentiability, the one-norm is more appropriate when
dealing with an SLP algorithm. Besides avoiding the use of a quadratic function,
the one-norm allows the replacement of (6) by the equivalent linear program-
ming problem

min M̄(x(k), s, z) = eT z
s.t. A(x(k))s+ E(x(k))z = −c(x(k))

sl
n ≤ s ≤ su

n

z ≥ 0.

(7)

where z ∈ Rm I is a vector of slack variables corresponding to the infeasible
constraints, and eT = [1 1 . . . 1]. To see how matrix E(x(k)) is constructed,
let Ii represent the i-th column of the identity matrix and suppose that
{i1, i2, . . . , im I } are the indices of the nonzero components of c(x(k)). In this
case, the j-th column of E(x(k)) is given by

E j (x
(k)) =

{
Ii j , if ci j (x

(k)) < 0,
−Ii j , if ci j (x

(k)) > 0.

A basic feasible point for (7) can be obtained taking s = 0 and z j =
|ci j (x

(k))|, j = 1, . . . ,m I .
One should notice that the trust region used in (6) and (7) is slightly smaller

that the region adopted in (5). This trick is used to give (5) a sufficiently large
feasible region, so the objective function can be improved. As it will become
clear in the next sections, the choice of 0.8 is quite arbitrary. However, we
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prefer to explicitly define a value for this and other parameters of the algo-
rithm in order to simplify the notation.

Problems (5) and (6) reveal the two objectives we need to deal with at each
iteration of the algorithm: the reduction of f (x) and the reduction of ϕ(x).

If f (x(k) + sc) << f (x(k)) and ϕ(x(k) + sc) << ϕ(x(k)), it is clear that
x(k) + sc is a better approximation than x(k) for the optimal solution of prob-
lem (3). However, no straightforward conclusion can be drawn if one of these
functions is reduced while the other is increased.

In such situations, we use a merit function to decide if x(k) can be replaced
by x(k) + sc. In this work, the merit function is defined as

ψ(x, θ) = θ f (x)+ (1− θ)ϕ(x), (8)

where θ ∈ (0, 1] is a penalty parameter used to balance the roles of f and ϕ.
The step acceptance is based on the comparison of the actual reduction of ψ
with the reduction predicted by the model used to compute sc.

The actual reduction of ψ between x(k) and x(k) + sc is given by

Ared = θ Aopt
red + (1− θ)A

f sb
red ,

where
Aopt

red = f (x(k))− f (x(k) + sc)

is the actual reduction of the objective function, and

A f sb
red = ϕ(x

(k))− ϕ(x(k) + sc)

is the reduction of the infeasibility.
The predicted reduction of the merit function is defined as

Pred = θ Popt
red + (1− θ)P

f sb
red ,

where
Popt

red = −∇ f (x(k))T sc

is the predicted reduction of f and

P f sb
red = M(x(k), 0)− M(x(k), sc) =

∣
∣
∣
∣c(x(k))

∣
∣
∣
∣
1 −

∣
∣
∣
∣A(x(k))sc + c(x(k))

∣
∣
∣
∣
1

is the predicted reduction of the infeasibility.
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At the k-th iteration of the algorithm, the step sc is accepted if Ared ≥
0.1Pred . If this condition is not verified, δk is reduced and the step is recom-
puted. On the other hand, the trust region radius may also be increased if the
ratio Ared/Pred is sufficiently large.

The role of the penalty parameter is crucial for the acceptance of the step.
Following a suggestion given by Gomes et al. [9], at the beginning of the k-th
iteration, we define

θk = min{θ large
k , θ

sup
k }, (9)

where

θ
large
k =

[
1+

N

(k + 1)1.1

]
θmin

k , (10)

θmin
k = min {1, θ0, . . . , θk−1} , (11)

θ
sup
k = sup{θ ∈ [0, 1] | Pred ≥ 0.5P f sb

red }

=






0.5

(
P f sb

red

P f sb
red − Popt

red

)

, if Popt
red ≤

1

2
P f sb

red

1, otherwise.

(12)

Whenever the step is rejected, θk is recomputed. However, this parameter is
not allowed to increase within the same iteration. The constant N ≥ 0, used to
compute θ large

k , can be adjusted to allow a nonmonotone decrease of θ .

3.2 An SLP algorithm for nonlinear programming

Let us define θ0 = θmax = 1, and k = 0, and suppose that a starting point
x(0) ∈ X and an initial trust region radius δ0 ≥ δmin > 0 are available. A new
SLP method for solving problem (3) is given by Algorithm 1.

In the next subsections we prove that this algorithm is well defined and con-
verges to the solution of (3) under mild conditions. In Section 4, we describe
a particular implementation of this SLP method for solving the topology opti-
mization problem.

3.3 The algorithm is well defined

We say that a point x ∈ Rn is ϕ-stationary if it satisfies the Karush-Kuhn-
Tucker (KKT) conditions of the problem min ϕ(x). Besides, a point x ∈ X
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that satisfies ϕ(x) = 0 is said to be regular if the gradient vectors of the
active constraints at x are linearly independent (i.e. the linear independence
constraint qualification holds at x).

In this section, we show that, after repeating the steps of Algorithm 1 a finite
number of times, a new iterate x(k+1) is obtained. In order to prove this well
definiteness property, we consider three cases. In Lemma 3.1, we suppose that
x(k) is not ϕ-stationary and (6) is infeasible. Lemma 3.2 deals with the case in
which x(k) is not ϕ-stationary, but (6) is feasible. Finally, in Lemma 3.3, we
suppose that x(k) is feasible and regular for (3), but does not satisfy the KKT
conditions of this problem.

Lemma 3.1. Suppose that x(k) is not ϕ-stationary and that the condition stated
in step 3 of Algorithm 1 is not satisfied. Then after a finite number of step
rejections, x(k) + sc is accepted.

Proof. Define (s0, z0) = (0, −E(x(k))T c(x(k))) as the feasible (yet not basic)
initial point for the restoration problem (7), solved at step 2 of Algorithm 1.
Define also

dn = (ds, dz) = PN (x(k))(−∇ M̄(x(k), s0, z0)), (13)

where PN (x) denotes the orthogonal projection onto the set

N (x) =
{
(s, z) ∈ Rn+m I |A(x)s+ E(x)z = −c(x),

xl − x ≤ sn ≤ xu − x, z ≥ 0
}
.

(14)

For a fixed x, M̄(x, s, z) is a linear function of s and z. In this case,
∇ M̄(x, s, z) does not depend on these variables, and we can write ∇ M̄(x) for
simplicity.

If x(k) is not ϕ-stationary and M̄(x(k), sn, z) > 0, the reduction of the infeasi-
bility generated by sc ≡ sn satisfies

P f sb
red ≥ M(x(k), 0)− M̄(x(k), s0 + ᾱds, z0 + ᾱdz)

= −ᾱeT dz = −ᾱ∇ M̄(x(k))T dn > 0
(15)

where
ᾱ = max {α ∈ (0, 1] | ‖αdn‖∞ ≤ 0.8δk}.
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Algorithm 3.1 General SLP algorithm.
1: while a stopping criterion is not satisfied, do

2: Determine sn , the solution of (7)

3: if M̄(x(k), sn, z) = 0, then

4: Starting from sn , determine sc, the solution of (5)

5: else

6: sc ← sn .

7: end if

8: Determine θk = min{θ large
k , θ

sup
k , θmax}

9: if Ared ≥ 0.1Pred then

10: x(k+1)← x(k) + sc

11: if Ared ≥ 0.5Pred , then

12: δk+1 ← min{2.5δk, ‖xu − xl‖∞}

13: else

14: δk+1 ← δmin

15: end if

16: Recompute A, E and ∇ f .

17: θmax ← 1

18: k ← k + 1

19: else

20: δk ← max{0.25‖sc‖∞, 0.1δk}

21: θmax ← θk

22: end if

23: end while

After rejecting the step and reducing δk a finite number of times, we eventu-
ally get ‖ᾱdn‖∞ = 0.8δk . In this case, defining η = −∇ M̄(x(k))T dn/‖dn‖∞,
we have

P f sb
red ≥ 0.8ηδk . (16)

Now, doing a Taylor expansion, we get

c(x(k) + sc) = c(x(k))+ A(x(k))sc + O(‖sc‖
2),

so
ϕ(x(k) + sc) = ‖c(x

(k) + sc)‖1 = M(x(k), sc)+ O(‖sc‖
2).
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Analogously, we have

f (x(k) + sc) = L(x(k), sc)+ O(‖sc‖
2).

Therefore, for δk sufficiently small, Ared(δk) = Pred(δk)+ O(δ2
k ), so

|Ared(δk)− Pred(δk)| = O(δ2
k ). (17)

Our choice of θk ensures that Pred ≥ 0.5P f sb
red . Thus, from (16), we get

Pred ≥ 0.4ηδk . (18)

Finally, from (17) and (18), we obtain
∣
∣
∣
∣

Ared(δk)

Pred(δk)
− 1

∣
∣
∣
∣ = O(δk). (19)

Therefore, Ared ≥ 0.1Pred for δk sufficiently small, and the step is accepted. �

Lemma 3.2. Suppose that x(k) is not ϕ-stationary and that the condition stated
in step 3 of Algorithm 1 is satisfied. Then after a finite number of step rejec-
tions, x(k) + sc is accepted.

Proof. Let δ(0)k be the trust region radius at the beginning of the k-th iteration,
and sa be the solution of

min ‖s‖∞
s.t. As = −c

sl
n ≤ s ≤ su

n .

Since x(k) is not ϕ-stationary, ‖sa‖∞ > 0. Now, supposing that the step is
rejected j times, we get δ( j)

k ≤ 0.25 jδ
(0)
k . Thus, after

⌈
log2

√
0.8δ(0)k /‖sa‖∞

⌉

attempts to reduce δk , sn is rejected and Lemma 3.1 applies. �

Lemma 3.3. Suppose that x(k) is feasible and regular for (3), but does not
satisfy the KKT conditions of this problem. Then after a finite number of itera-
tions x(k) + sc is accepted.
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Proof. If x(k) is regular but not stationary for problem (3), then we have dt =
Pϒ(−∇ f (x(k))) 6= 0, where Pϒ denotes the orthogonal projection onto the set

ϒ =
{
s ∈ Rn | A(x(k))s = 0, xl − x(k) ≤ s ≤ xu − x(k)

}
.

Let ᾱ be the solution of the auxiliary problem

min α∇ f (x(k))T dt

s.t. ‖αdt‖∞ ≤ δk

α ≥ 0.

Since this is a linear programming problem, ᾱdt belongs to the boundary of
the feasible set. Therefore, after reducing δk a finite number of times, we get
‖ᾱdt‖∞ = δk , implying that ᾱ = δk/‖dt‖∞. Moreover,

η = −∇ f (x(k))T dt/‖dt‖∞ > 0,

so we have

L(x(k), 0)− L(x(k), ᾱdt) = −ᾱ∇ f (x(k))T dt

= − δk
‖dt‖∞
∇ f (x(k))T dt = η δk .

(20)

Combining (20) with the fact that sc is the solution of (5), we get

Popt
red = L(x(k), 0)− L(x(k), sc)

≥ L(x(k), 0)− L(x(k), ᾱdt) = η δk .

On the other hand, since x(k) is feasible,

M(x(k), 0) = M(x(k), s) = 0.

Thus, θk = min{1, θ large
k } is not reduced along with δk , and

Pred = θk Popt
red ≥ θkη δk . (21)

Since (17) also applies in this case, we can combine it with (21) to obtain (19).
Therefore, for δk sufficiently small, Ared ≥ 0.1Pred and the step is accepted. �
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3.4 Every limit point of {x(k)} is ϕ-stationary

As we have seen, Algorithm 1 stops when x(k) is a stationary point for prob-
lem (3); or when x(k) is ϕ-stationary, but infeasible; or even when x(k) is feasible
but not regular.

We will now investigate what happens when Algorithm 1 generates an infinite
sequence of iterates. Our aim is to prove that the limit points of this sequence
are ϕ-stationary. The results shown below follow the line adopted in [9].

Lemma 3.4. If x∗ ∈ X is not ϕ-stationary, then there exists ε1, α1, α2 > 0

such that, if Algorithm 1 is applied to x ∈ X and ‖x − x∗‖ ≤ ε1, then

Pred(x) ≥ min{α1δ, α2}.

Proof. Let (s∗0, z∗0) = (0, −E(x∗)T c(x∗)) be a feasible initial point and
(s∗n, z∗) be the optimal solution of (7) for x ≡ x∗.

If x∗ is not ϕ-stationary, there exists ε > 0 such that, for all x ∈ X,
‖x − x∗‖ ≤ ε, the constraints that are infeasible at x∗ are also infeasible
at x. Thus, for a fixed vector x near x∗, we can consider the auxiliary linear
programming problem

min M̃(x, s, z) = eT z
s.t. A(x)s+ E(x∗)z = −c̃(x)

sl
n ≤ s ≤ su

n

z ≥ 0,

(22)

where c̃i (x) = ci (x) if ci (x∗) > 0 and c̃i (x) = 0 if ci (x∗) = 0. We denote
(s̃n, z̃) the optimal solution of this problem and (s0, z0) = (0, −E(x∗)T c̃(x))
a feasible initial point.

Following (13), let us define

d̃n(x) = PÑ (x)(−∇ M̃(x)),

where Ñ (x) is defined as in (14), using E(x∗) and c̃(x). One should notice that
d̃n(x∗) = dn(x∗) = PN (x∗)(−∇ M̄(x∗)).

Due to the continuity of d̃n , there must exist ε1 ∈ (0, ε] such that, for all
x ∈ X, ‖x − x∗‖ ≤ ε1,

−∇ M̃(x)T d̃n(x) ≥ −
1

2
∇ M̄(x∗)T dn(x

∗) > 0
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and
0 < ‖d̃n(x)‖∞ ≤ 2‖dn(x

∗)‖∞.

Now, let us consider two situations. Firstly, suppose that, after solving (22),
we get M̃(x, s̃n, z̃) > 0. In this case, if ‖d̃n(x)‖∞ ≥ 0.8δ, then from (18) we
have

Pred ≥ 0.4
(−∇ M̃(x)T d̃n(x))

‖d̃n(x)‖∞
δ ≥ 0.1

(−∇ M̄(x∗)T dn(x∗))

‖dn(x∗)‖∞
δ. (23)

On the other hand, if ‖d̃n(x)‖∞ < 0.8δ, then from (15) and our choice of θ ,

Pred ≥ 0.5P f sb
red ≥ −0.5∇ M̃(x)T d̃n(x)

≥ −0.25∇ M̄(x∗)T dn(x∗).
(24)

Finally, let us suppose that, after solving (22), we get M̃(x, s̃n, z̃) = 0. In
this case, P f sb

red = M̃(x, s̃0, z̃0), i.e. P f sb
red is maximum, so (24) also holds.

The desired result follows from (23) and (24), for an appropriate choice of
α1 and α2. �

Lemma 3.5. Suppose that x∗ is not ϕ-stationary and that K1 is an infinite set
of indices such that limk∈K1 x(k) = x∗. Then {δk | k ∈ K1} is bounded away
from zero. Moreover, there exist α3 > 0 and k̄ > 0 such that, for k ∈ K1, k ≥ k̄,
we have Ared ≥ α3.

Proof. For k ∈ K1 large enough, we have ‖x − x∗‖ ≤ ε1, where ε1 is defined
in Lemma 3.4. In this case, from Lemma 3.1 we deduce that the step is never
rejected whenever its norm is smaller than some δ1 > 0. Thus, δk is bounded
away from zero. Moreover, from our step acceptance criterion and Lemma 3.4,
we obtain

Ared ≥ 0.1Pred ≥ 0.1 min{α1δ1, α2}.

The desired result is achieved choosing α3 = 0.1 min{α1δ1, α2}. �

In order to prove the main theorem of this section, we need an additional
compactness hypothesis, trivially verified when dealing with bound constrained
problems such as (3).
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Hypothesis H1. The sequence {x(k)} generated by Algorithm 1 is bounded.

Theorem 3.1. Suppose that H1 holds. If {x(k)} is an infinite sequence gener-
ated by Algorithm 1, then every limit point of {x(k)} is ϕ-stationary.

Proof. To simplify the notation, let us write fk = f (x(k)), ϕk = ϕ(x(k)),
ψk = ψ(x(k), θk), and A(k)red = Ared(x(k), s(k)c , θk). From (8), we have that

ψk = θk fk + (1− θk)ϕk − [θk−1 fk + (1− θk−1)ϕk]

+ [θk−1 fk + (1− θk−1)ϕk]

= (θk − θk−1) fk − (θk − θk−1)ϕk + θk−1 fk + (1− θk−1)ϕk

= (θk − θk−1)( fk − ϕk)+ ψk−1 − A(k−1)
red .

Besides, from (9)–(11), we also have that

θk − θk−1 ≤
N

(k + 1)1.1
θk−1.

Hypothesis H1 implies that there exists an upper bound c > 0 such that
| fk − ϕk | ≤ c for all k ∈ N, so

ψk ≤
cN

(k + 1)1.1
θk−1 + ψk−1 − A(k−1)

red . (25)

Noting that θk ∈[0, 1] for all k, and applying (25) recursively, we get

ψk ≤
k∑

j=1

cN

( j + 1)1.1
+ ψ0 −

k−1∑

j=0

A( j)
red .

Since the series
∑∞

j=1
cN

( j+1)1.1
is convergent, the inequality above may be

written as

ψk ≤ c̃ −
k−1∑

j=0

A( j)
red .

Let us now suppose that x∗ ∈ X is a limit point of {x(k)} that is not ϕ-stationary.
Then, from Lemma 3.5, there exists α3 > 0 such that A(k)red ≥ α3 for an infinite
set of indices. Besides, A(k)red > 0 for all k. Thus, ψk is unbounded below, which
contradicts Hypothesis H1, proving the lemma. �
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3.5 The algorithm finds a critical point

In this section, we show that there exists a limit point of the sequence of iter-
ates generated by Algorithm 1 that is a stationary point of (3).

Lemma 3.6. For each feasible and regular point x∗ there exists ε0, σ̂ > 0 such

that, whenever Algorithm 1 is applied to x ∈ X that satisfies ‖x − x∗‖ ≤ ε0,

we have

‖sn‖∞ ≤ ‖c(x)‖1/σ̂ .

and

M(x, 0)− M(x, sn(x, δ)) ≥ min{‖c(x)‖1, σ̂ δ}.

Proof. Since A(x) is Lipschitz continuous, for each x∗ that is feasible and
regular, there exists ε0 such that, for all x ∈ X satisfying ‖x − x∗‖ ≤ ε0, A(x)
has full row rank and the auxiliary problem

min M̄(x, s, z) = eT z
s.t. A(x)s+ E(x)z = −c(x)

xl − x ≤ s ≤ xu − x
z ≥ 0.

(26)

has an optimal solution (s, z) = (ŝ, 0). In this case, A(x)ŝ = −c(x), so ‖ŝ‖2 ≤
‖c(x)‖2/σ̂ , where σ̂ > 0 is the smallest singular value of A(x). Since problem
(26) is just (7) without the trust region constraint ‖s‖∞ ≤ 0.8δ, we have

‖sn‖∞ ≤ ‖ŝ‖∞ ≤ ‖ŝ‖2 ≤ ‖c(x)‖2/σ̂ ≤ ‖c(x)‖1/σ̂ ,

proving the first part of the lemma.
If (ŝ, 0) is also feasible for (7), then sn = ŝ, and we have

M(x, 0)− M(x, sn(x, δ)) = M(x, 0) = ‖c(x)‖1. (27)

On the other hand, if ‖ŝ‖∞ > 0.8δ, then we can define ŝn = δŝ/‖ŝ‖∞
and ẑn = (1 − δ/‖ŝ‖∞)z0 (where z0 is the z vector corresponding to s = 0),
so (ŝn, ẑn) is now feasible for (7). Moreover, since M̄(x, 0, z0) = ‖c(x)‖1,
M̄(x, ŝ, 0) = 0, and M̄ is a linear function of s and z, we have M(x, sn(x, δ)) =
M̄(x, ŝn, ẑn) = (1− δ/‖ŝ‖∞)‖c(x)‖1. Thus,

M(x, 0)− M(x, sn(x, δ)) = δ‖c(x)‖1/‖ŝ‖∞ ≥ σ̂ δ. (28)

The second part of the lemma follows from (27) and (28). �
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Lemma 3.7. Let {x(k)} be an infinite sequence generated by Algorithm 1.

Suppose that {x(k)}k∈K1 is a subsequence that converges to the feasible and reg-

ular point x∗ that is not stationary for problem (3). Then there exist c1, k1,

δ′ > 0 such that, for x ∈ {x(k) | k ∈ K1, k ≥ k1}, whenever M̄(x, sn, z) = 0 at

step 3 of Algorithm 1, we have

L(x, sn)− L(x, sc) ≥ c1 min{δ, δ′}.

Proof. As in Lemma 3.3, let us define dt = P0(−∇ f (x)), where

0 = {s ∈ Rn | A(x)s = 0, xl ≤ x + sn + s ≤ xu}.

Let us also denote sd
t the solution of

min L(x, sn + s) = f (x)+ ∇ f (x)T (sn + s)
s.t. s = tdt , t ≥ 0

‖sn + s‖∞ ≤ δ
xl ≤ x + sn + s ≤ xu

(29)

After some algebra, we note that sd
t = t̃dt is also the solution of

min (∇ f (x)T dt)t
s.t. 0 ≤ t ≤ t̄,

where
t̄ = min {1,11,12} ,

11 = min
dti<0

{
δ + sni

−dti
,

xi + sni − xli

−dti

}
,

12 = min
dti>0

{
δ − sni

dti
,

xui − xi − sni

dti

}
.

Since (29) is a linear programming problem and ∇ f (x)T dt < 0, we conclude
that t̃ = t̄ . Besides, t = 1 satisfies xl ≤ x + sn + s ≤ xu , so

t̄ = min
{

1, min
dti<0

{
δ + sni

−dti

}
, min

dti>0

{
δ − sni

dti

}}
. (30)

Remembering that sc is the solution of (5), we obtain

L(sn)− L(sc) ≥ L(sn)− L(sn + sd
t ) = −t̄ ∇ f (x)T dt . (31)
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Since P0(−∇ f (x)) is a continuous function of x, and x∗ is regular and
feasible but not stationary, there exist c′1, c′2 > 0 and k1 ≥ 0 such that, for
all x ∈ {x(k) | k ∈ K1, k ≥ k1},

‖dt‖∞ ≤ c′1, (32)

−∇ f (x)T dt ≥ c′2. (33)

From (30) and the fact that ‖sn‖∞ ≤ 0.8δk , we have that

t̄ ≥ min
{

1,
0.2δ

‖dt‖∞

}
.

Thus, from (32) we obtain

t̄ ≥ min
{

1,
0.2δ

c′1

}
=

0.2

c′1
min

{
c′1
0.2
, δ

}
. (34)

Combining (31), (33) and (34), we get, for all x ∈ {x(k) | k ∈ K1, k ≥ k0},

L(sn)− L(sc) ≥
0.2c′2

c′1
min

{
c′1
0.2
, δ

}
.

The desired result is obtained taking c1 =
0.2c′2

c′1
and δ′ =

c′1
0.2

. �

Lemma 3.8. Let {x(k)} be an infinite sequence generated by Algorithm 1. Sup-

pose that {x(k)}k∈K1 is a subsequence that converges to the feasible and regular

point x∗ that is not stationary for problem (3). Then there exist β, c2, k2 > 0

such that, whenever x ∈ {x(k) | k ∈ K1, k ≥ k2} and ‖c(x)‖1 ≤ βδk ,

L(x, 0)− L(x, sc) ≥ c2 min{δ, δ′}

and θ sup(x, δ) = 1, where θ sup is given by (12) and δ′ is defined in Lemma 3.7.

Proof. From Lemma 3.6, we obtain

‖sn‖∞ ≤ ‖c(x)‖1/σ̂ ≤ βδk/σ̂ .

Therefore, defining β = 0.8σ̂ , we get ‖ŝ‖∞ ≤ 0.8δk , so M̄(x, sn, z) = 0 at
step 3 of Algorithm 1.
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From Lemma 3.7 and the Lipschitz continuity of ∇ f (x), we can define k2 ≥ 0
such that

L(0)− L(sc) ≥ L(sn)− L(sc)− |L(0)− L(sn)|

≥ c1 min{δ, δ′} − O(‖c(x)‖),

for all x ∈ {x(k) | k ∈ K1, k ≥ k2}. Thus, choosing β conveniently, we prove the
first statement of the Lemma.

To prove the second part of the lemma, we note that

P f sb
red = M(0)− M(sc) = M(0)− M(sn) = ‖c(x)‖1,

so
Popt

red − 0.5P f sb
red ≥ c2 min{δ, δ′} − 0.5‖c(x)‖1.

Thus, for an appropriate choice of β, we obtain Pred > 0.5P f sb
red for θ = 1, and

we get the desired result. �

Lemma 3.9. Let {x(k)} be an infinite sequence generated by Algorithm 1. Sup-
pose that H1 holds, and that {x(k)}k∈K1 is a subsequence that converges to
the feasible and regular point x∗ that is not stationary for problem (3). Then
lim

k→∞
θk = 0.

Proof. The sequences {θmin
k } and {θ large

k } are bounded below and nonincreas-
ing, so both are convergent. Moreover, they converge to the same limit, as
limk←∞(θ

large
k − θmin

k ) = 0. Besides, θmin
k+1 ≤ θk ≤ θ

large
k . Therefore, {θk} is

convergent.

Suppose, for the purpose of obtaining a contradiction, that the infinite se-
quence {θk} does not converge to 0. Thus, there must exist k3 ≥ k2 and
θ̂U > θ̂L > 0 such that θ̂L ≤ θk ≤ θ̂U for k ≥ k3.

Now, suppose that x ∈ {x(k) | k ∈ K1, k ≥ k3}, and M(x, sn) = 0. In this case,
from Lemma 3.7, we obtain

Pred ≥ θ [L(x, 0)− L(x, sc)] ≥ θc1 min{δ, δ′} − O(‖c(x)‖1).

Since θ is not increased if the step is rejected, for each θ tried at the iteration that
corresponds to x , we have that

Pred ≥ θ̂Lc1 min{δ, δ′} − O(‖c(x)‖1).
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Using a Taylor expansion and the fact that ∇ f and A are Lipschitz continuous,
we obtain

|Ared − Pred | = O(δ2). (35)

Thus, there exists δ̃ ∈ (0, δ′) ⊂ (0, δmin) such that, if δ ∈ (0, δ̃) and x ∈
{x(k) | k ∈ K1, k ≥ k3},

|Ared − Pred | ≤ θ̂Lc1δ̃/40.

Let k ′3 ≥ k3 be an iteration index such that, for all x ∈ {x(k) | k ∈ K1, k ≥ k ′3},
and for all θ tried at the iteration that corresponds to x , we have

Pred ≥ θ̂Lc1 min{δ, δ′} − θ̂Lc1δ̃/20.

If, in addition, δ ∈ [̃δ/10, δ̃), then

Pred ≥ θ̂Lc1δ̃/20.

Therefore, for all δ ∈ [̃δ/10, δ̃) and all x ∈ {x(k) | k ∈ K1, k ≥ k ′3}, we have

|Ared − Pred |

Pred
≤ 0.5, (36)

On the other hand, if M(x, sn) > 0, then Popt
red = 0, so Pred = (1 − θ)P

f sb
red .

In this case, from (28) and the fact that θ is not increased if the step is rejected,
we get

Pred ≥ (1− θ̂U )σ̂ δ.

Using (35) again, there exists δ̃ ∈ (0, δmin) such that, if δ ∈ (0, δ̃) and x ∈
{x(k) | k ∈ K1, k ≥ k3},

|Ared − Pred | ≤ (1− θ̂U )σ̂ δ̃/2,

so (36) also applies.
Thus, for some δ ∈ [̃δ/10, δ̃), the step is accepted, which means that δk is

bounded away from zero for k ∈ K1, k ≥ k ′3, so Pred is also bounded away
from zero.

Since Ared ≥ 0.1Pred , the sequence {x (k)} is infinite and the sequence {θk}
is convergent, we conclude that ψ(x, θ) is unbounded, which contradicts
Hypothesis H1, proving the lemma. �
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Lemma 3.10. Let {x(k)} be an infinite sequence generated by Algorithm 1.

Suppose that H1 holds, and that {x(k)}k∈K1 is a subsequence that converges

to the feasible and regular point x∗ that is not stationary for problem (3). If

x ∈ {x(k) | k ∈ K1, k ≥ k2} and ‖c(x)‖1 ≥ βδ, then

δ/θ sup = O(‖c(x)‖1).

Proof. Observe that, when θ sup 6= 1,

θ sup =
Pred

2(P f sb
red − Popt

red )

=
M(0)− M(sn)

2[M(0)− M(sn)− L(0)+ L(sc)]
.

From Lemma 3.6, if x ∈ {x(k) | k ∈ K1, k ≥ k2}, we have that

1

2θ sup
= 1+

L(sc)− L(sn)

M(0)− M(sn)
+

L(sn)− L(0)

M(0)− M(sn)

≤ 1+
|L(0)− L(sn)|

M(0)− M(sn)

≤ 1+
O(‖c(x)‖1)

min{‖c(x)‖1, σ̂ δ}
≤ 1+

O(‖c(x)‖1)

min{β, σ̂ } δ
.

Therefore, since ‖c(x)‖1 ≥ βδ, we have δ/θ sup = O(‖c(x)‖1). �

Lemma 3.11. Let {x(k)} be an infinite sequence generated by Algorithm 1.

Suppose that {x(k)}k∈K1 is a subsequence that converges to the feasible and reg-

ular point x∗ that is not stationary for problem (3). Then there exist k4 > 0,

θ̃ ∈ (0, 1] such that, if

x ∈ {x(k) | k ∈ K1, k ≥ k4}, ‖c(x)‖1 ≥ βδ and θ ≤ θ̃

satisfies (9)–(12), then Ared ≥ 0.1Pred .

Proof. From the fact that ∇ f (x) and A(x) are Lipschitz continuous, we may
write Ared = Pred + O(δ2). Now, supposing that ‖c(x)‖1 ≥ βδ, we have

|Ared − Pred | = δ O(‖c(x)‖1). (37)
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Since our choice of θ ensures that Pred ≥ 0.5[M(0) − M(sc)], Lemma 3.6
implies that, for k ∈ K1 sufficiently large,

Pred ≥ 0.5 min{‖c(x)‖1, σ̂ δ} ≥ 0.5 min{β, σ̂ } δ.

Thus, dividing both sides of (37) by Pred , we get
∣
∣
∣
∣

Ared

Pred
− 1

∣
∣
∣
∣ = O(‖c(x)‖1),

which yields the desired result. �

Lemma 3.12. Let {x(k)} be an infinite sequence generated by Algorithm 1.
Suppose that all of the limit points of {x(k)} are feasible and regular and that
Hypothesis H1 holds. Then, there exists a limit point of {x(k)} that is a station-
ary point of problem (3).

Proof. Following the guidelines of Lemma 13 of [9], we note that, by
Hypothesis H1, there exists a convergent subsequence {x(k)}k∈K1 . Suppose,
for the purpose of obtaining a contradiction, that the limit point of this sub-
sequence is not a stationary point of (3). Then, from Lemma 3.9, we have
that limk←∞ θk = 0.

Since (10)–(11) imply that θ large
k > min{1, θ0, θ1, . . . , θk−1}, there must

exist an infinite subset K2 ⊂ K1 such that

lim
k∈K2

θ
sup
k (δk) = 0, (38)

where δk is one of the trust region radii tested at iteration k. Therefore, there
also exists θ̃ , k5 > 0 such that, for all k ∈ K2, k ≥ k5, we have θ large

k ≤ 2θmin
k ,

θ
sup
k (δk) ≤ θ̃/2 < 1, and θk ≤ θ̃/2. (39)

Lemma 3.8 assures that θ sup
k (δ) = 1 for all k ∈ K2 whenever ‖c(x(k))‖1 ≤

βδ. So, by (38) and (39),
‖c(x(k))‖1 > βδk (40)

for all k ∈ K2. Therefore, since ‖c(x(k))‖1 → 0, we conclude that

lim
k∈K2

δk = 0.
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Assume, without loss of generality, that

δk ≤ 0.1δ′ < 0.1δmin (41)

for all k ∈ K2, where δ′ is defined in Lemma 3.7. Thus, δk cannot be the first
trust region radius tried at iteration k. Let us call δ̂k the trust region radius tried
immediately before δk , and θ̂k the penalty parameter associated to this rejected
step. By (39) and the choice of the penalty parameter, we get θ̂k ≤ θ̃ for all
k ∈ K2, k ≥ k5. Therefore, Lemma 3.11 applies, so ‖c(x(k))‖1 < βδ̂k for all
k ∈ K2, k ≥ k5. Moreover, since δk ≥ 0.1δ̂k , inequality (41) implies that

δ̂k ≤ 10δk ≤ δ
′ < δmin. (42)

Let us define θ ′(δ̂k) = θ
large
k if δ̂k was the first trust region radius tested at

iteration k, and θ ′(δ̂k) = θ(δ′k) otherwise, where δ′k is the penalty parameter tried
immediately before δ̂k at iteration k.

From (9)–(12), the fact that θ is not allowed to increase within an iteration,
equation (38) and Lemma 3.8, we have

θ̂k = min{θ ′k(δ̂k), θ
sup
k (δ̂k)} = θ ′k(δ̂k)

≥ min{θ ′k(δ̂k), θ
sup
k (δk)} = θ

sup
k (δk)

(43)

for all k ∈ K2, k ≥ k5.
Since ∇ f (x) and A(x) are Lipschitz continuous, we may write

|Ared(θ̂k, δ̂k)− Pred(θ̂k, δ̂k)| = O(δ̂2).

for all k ∈ K2, k ≥ k5. Besides, by Lemma 3.8, (42) and the definition of Pred ,
we have

Pred(θ̂k, δ̂k) ≥ θ̂kc2δ̂k,

so
|Ared(θ̂k, δ̂k)− Pred(θ̂k, δ̂k)|

Pred(θ̂k, δ̂k)
=

O(δ̂2)

θ̂kc2δ̂k

=
O(δ̂)

θ̂k

. (44)

From Lemma 3.10 and (40), we obtain

δk/θ
sup
k (δk) = O(‖c(x(k))‖1 for k ∈ K2, k ≥ k5.

So, by (42) and (43), we also have δ̂k/θ
sup
k (δk) = O(‖c(x(k))‖1. Therefore,

from the feasibility of x∗, the right-hand side of (44) tends to zero for k ∈ K2,
k ≥ k5. This implies that, for k large enough, Ared ≥ 0.1Pred for δ̂k , contra-
dicting the assumption that δ̂k was rejected. �
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Theorem 3.2. Let {x(k)} be an infinite sequence generated by Algorithm 1. Sup-
pose that hypotheses H1 and H2 hold. Then all of the limit points of {x(k)}
are ϕ-stationary. Moreover, if all of these limit points are feasible and regu-
lar, there exists a limit point x∗ that is a stationary point of problem (3). In
particular, if all of the ϕ-stationary points are feasible and regular, there exists
a subsequence of {x(k)} that converges to feasible and regular stationary point
of (3).

Proof. This result follows from Theorem 3.1 and Lemma 3.12. �

4 Computational results

In this section, we present one possible implementation for our SLP algorithm,
and discuss its numerical behavior when applied to the solution of some stan-
dard topology optimization problems.

4.1 Algorithm details

Steps 2 and 4 constitute the core of Algorithm 1. The implementation of the
remaining steps is straightforward.

Step 2 corresponds to the standard phase 1 of the two-phase method for linear
programming. If a simplex based linear programming function is available,
then sn may be defined as the feasible solution obtained at the end of phase 1,
supposing that the algorithm succeeds in finding such a feasible solution. In this
case, we can proceed to the second phase of the simplex method and solve the
linear programming problem stated at Step 4. One should note, however, that
the bounds on the variables defined at Steps 2 and 4 are not the same. Thus,
some control over the simplex routine is necessary to ensure that not only the
objective function, but also the upper and lower bounds on the variables are
changed between phases.

On the other hand, when the constraints given in Step 2 are incompatible,
the step sc is just the solution obtained by the simplex algorithm at the end of
phase 1. Therefore, if the two-phase simplex method is used, the computation
effort spent at each iteration corresponds to the solution of a single linear pro-
gramming problem.

If an interior point method is used as the linear programming solver instead,
then some care must be taken to avoid solving two linear problems per iteration.
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A good alternative is to try to compute Step 4 directly. In case the algorithm fails
to obtain a feasible solution, then Steps 2 need to be performed. Fortunately, in
the solution of topology optimization, the feasible region of (5) is usually not
empty, so this scheme performs well in practice.

4.2 Filtering

It is well known that the direct application of the SIMP method for solving a
topology optimization problem may result in a structure containing a checker-
board-like material distribution (e.g. Díaz and Sigmund [7]). To circumvent this
problem, several regularization schemes were proposed in the literature.

In our experiments, three different schemes were considered, in order to see
how they affect the performance of the algorithms. The first one was the den-
sity filter proposed by Bruns and Tortorelli [3]. For each element i , this filter
replaces ρi by a weighted mean of the densities of the elements belonging to a
ball Bi with radius rmax.

Other filter we have tested was the Sinh method of Bruns [4], that combines
the density filter with a new scheme for avoiding intermediate densities, re-
placing the power function of the SIMP model by the hyperbolic sine function.
This filter was chosen because it turns the volume constraint into a nonlinear
inequality constraint, so the problem is more difficult to solve.

Finally, we also tried the dilation filter introduced by Sigmund [17]. This
filter replaces the density of an element i by the maximum of the densities
of the elements that belong to the neighborhood Bi . This filter also turn the
volume constraint into a nonlinear constraint, so the related problems are more
challenging.

4.3 Description of the tests

In order to confirm the efficiency and robustness of the new algorithm, we com-
pare it to the globally convergent version of the Method of Moving Asymptotes,
the so called Conservative Convex Separable Approximations algorithm (CCSA
for short), proposed by Svanberg [20].

At every iteration, the CCSA method approximates the objective and con-
straint functions by convex separable functions and solve the resulting sub-
problem. This inner iteration is repeated until its objective and constraint func-
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tions become greater than or equal to the original functions at the optimal so-
lution of the subproblem. A parameter vector, σ , is used to define upper and
lower limits for the variables, as well as to convexify the objective and con-
straint functions.

We solve four topology optimization problems. The first two are compli-
ance minimization problems easily found in the literature: the cantilever and
the MBB beams. The last two are compliant mechanism design problems: the
gripper and the force inverter. All of them were discretized into 4-node rectan-
gular finite elements, using bilinear interpolating functions to approximate the
displacements.

We also analyze the effect of the application of the filters presented in Sec-
tion 4.2, to reduce the formation of checkerboard patterns in the structures.
For the density, the dilation and the erosion filters, the penalty parameter p of
the SIMP method is set to 1, 2 and 3, consecutively. The Sinh method uses a
similar parameter p, that is set to 1 to 6, consecutively.

When the SIMP method is used and p = 1 or 2, the SLP and the CCSA
algorithms stop whenever 1 f , the difference between the objective function of
two consecutive iterations, falls below 10−3. For p = 3, both algorithms are
halted when 1 f < 10−3 for three successive iterations. For the sinh method,
if p = 1, 2 or 3, we stop the algorithms whenever 1 f is smaller than 10−3.
If p = 4, 5 or 6, we require that 1 f < 10−3 for three successive iterations.
Besides, for the density filter, we also define a limit of 1000 iterations for each
value of the penalty parameter p used by the SIMP method. When the dilation
filter is used, this limit is increased to 2800 iterations. For the Sinh filter, a
limit of 500 iterations for each p was adopted. Although not technically sound,
this stopping criterion based on the function improvement is quite common in
topology optimization.

The initial trust region radius used by the SLP algorithm was set to 0.1. For
the CCSA method, the stopping tolerance for the subproblems was set to 10−5.
A limit of 20 iterations was also defined for each subproblem. The components
of the initial vector σ0 were set to 0.1.

The tests were performed on a personal computer, with an Intel Pentium T4200
processor (2.0GHz, 4GB RAM), under the Windows Vista operating system. The
algorithms were implemented in Matlab.
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Figure 2 – Design domain for the cantilever beam.

4.4 Cantilever beam design

The first problem we consider is the cantilever beam presented in Figure 2.
We suppose that the structure’s thickness is e = 1cm, the Poisson’s coeffi-
cient is σ = 0.3 and the Young’s modulus of the material is E = 1 N/cm2.
The volume of the optimal structure is limited by 40% of the design domain.
A force f = 1 N is applied downwards in the center of the right edge of the
beam. The domain was discretized into 1800 square elements with 1 mm2 each.
The radius of the filters, rmax, was set to 2.5.

The optimal structures for all of the combinations of methods and filters are
shown in Figure 3. Table 1 contains the numerical results obtained, including
the optimal value of the objective function, the total number of iterations and the
execution time. In this table, the rows labeled Ratio contain the ratio between
the values obtained by the SLP and the CCSA algorithms. A ratio marked in
bold indicates the superiority of SLP over CCSA.

The cantilever beams shown in Figure 3 are quite similar, suggesting that
all of the filters efficiently reduced the formation of checkerboard patterns, as
expected. On the other hand, Table 1 shows a clear superiority of the SLP algo-
rithm. Although both methods succeeded in obtaining the optimal structure with
all of the filters (with minor differences in the objective function values), the
CCSA algorithm spent much more time and took more iterations to converge.

4.5 MBB beam design

The second problem we consider is the MBB beam presented in Figure 4. The
structure’s thickness, the Young’s modulus of the material and the Poisson’s
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Figure 3 – The cantilever beams obtained.

Filter Method Objective Iterations Time (s)

None SLP 75.978 243 51.20
CCSA 77.904 715 212.87
Ratio 0.975 0.34 0.241

Density SLP 72.973 353 95.45
CCSA 72.960 1172 457.85
Ratio 1.000 0.301 0.208

Dilation SLP 73.320 563 650.88
CCSA 73.569 5542 6679.40
Ratio 0.997 0.102 0.097

Sinh SLP 73.784 680 234.52
CCSA 74.297 2317 1796.20
Ratio 0.993 0.293 0.131

Table 1 – Results for the cantilever beam.
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Figure 4 – Design domain for the MBB beam.

coefficient are the same used for the cantilever beam. The volume of the optimal
structure is limited by 50% of the design domain. A force f = 1 N is applied
downwards in the center of the top edge of the beam. The radius of the filters,
rmax, was set to 2.5.

The domain was discretized into 3750 square elements with 1 mm2 each.
The optimal structures are shown in Figure 5. Due to symmetry, only the right
half of the domain is shown. Table 2 contains the numerical results obtained
for this problem.

Again, the structures obtained by both methods are similar. The same hap-
pens to the values of the objective function, as expected. However, the structure
obtained using the density filter has some extra bars. Table 2 shows that the SLP
algorithm performs much better than the CCSA method for the MBB beam.

4.6 Gripper mechanism design

Our third problem is the design of a gripper, whose domain is presented in
Figure 6. In this compliant mechanism, a force fa is applied to the center of
the left side of the domain, and the objective is to generate a pair of forces
with magnitude fb at the right side. We consider that the structure’s thickness
is e = 1 mm, the Young’s modulus of the material is E = 210000 N/mm2

and the Poisson’s coefficient is σ = 0.3. The volume of the optimal struc-
ture is limited by 20% of the design domain. The input and output forces are
fa = fb = 1 N . The domain was discretized into 3300 square elements with
1 mm2. The filter radius was set to 1.5.

Table 3 summarizes the numerical results. Figure 7 shows the grippers ob-
tained. Due to symmetry, only the upper half of the domain is shown.

Comp. Appl. Math., Vol. 30, N. 1, 2011



“main” — 2011/2/5 — 12:32 — page 83 — #31

FRANCISCO A.M. GOMES and THADEU A. SENNE 83

SLP CCSA

n
o
fi
lt
e
r

d
e
n
si
ty

d
il
a
ti
o
n

S
in
h

Figure 5 – The MBB beams obtained.

Filter Method Objective Iterations Time (s)

None SLP 181.524 173 41.29
CCSA 181.020 613 346.57
Ratio 1.003 0.282 0.119

Density SLP 180.618 1054 224.51
CCSA 180.380 2516 2203.50
Ratio 1.001 0.419 0.102

Dilation SLP 185.472 752 896.03
CCSA 185.325 5698 7650.40
Ratio 1.001 0.132 0.117

Sinh SLP 181.453 857 285.487
CCSA 186.601 2694 2620.10
Ratio 0.972 0.318 0.109

Table 2 – Results for the MBB beam.
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Figure 6 – Design domain for the gripper.

Filter Method Objective Iterations Time (s)

None SLP –5.871 94 46.07
CCSA –7.257 527 2139.50
Ratio 0.809 0.178 0.022

Density SLP –2.924 358 136.30
CCSA –3.669 1302 4034.10
Ratio 0.797 0.275 0.034

Dilation SLP –2.997 847 520.96
CCSA –2.834 2488 12899.00
Ratio 1.057 0.340 0.040

Sinh SLP –1.240 632 255.86
CCSA –1.065 2487 14077.00
Ratio 1.164 0.254 0.018

Table 3 – Results for the gripper mechanism.

Once again, the results presented in Table 3 suggest that the SLP method is
better than CCSA, since the SLP algorithm spent much less time to obtain the
optimal solution in all cases.
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Figure 7 – The grippers obtained.

4.7 Force inverter design

Our last problem is the design of a compliant mechanism known as force
inverter. The domain is shown in Figure 8. In this example, an input force
fa is applied to the center of the left side of the domain and the mechanism
should generate an output force fb on the right side of the structure. Note that
both fa and fb are horizontal, but have opposite directions. For this problem,
we also use e = 1 mm, σ = 0.3 and E = 210000 N/mm2. The volume is
limited by 20% of the design domain, and the input and output forces are
given by fa = fb = 1 N . The domain was discretized into 3600 square
elements with 1 mm2. The filter radius was set to 2.5.

Figure 9 shows the mechanisms obtained. Again, only the upper half of the
structure is shown, due to its symmetry. Table 4 contains the numerical results.
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Figure 8 – Design domain for the force inverter.

Filter Method Objective Iterations Time (s)

None SLP –4.006 118 46.49
CCSA –4.223 443 485.54
Ratio 0.949 0.266 0.096

Density SLP –1.380 281 131.63
CCSA –1.378 2514 3556.50
Ratio 1.002 0.112 0.037

Dilation SLP –1.084 668 916.84
CCSA –1.014 5741 2679.80
Ratio 1.069 0.116 0.342

Sinh SLP –0.574 512 248.16
CCSA –0.286 820 2019.30
Ratio 2.007 0.624 0.123

Table 4 – Results for the force inverter.

The structures obtained by the algorithms are fairly similar, with the exception
of the Sinh filter. According to Table 4, the SLP algorithms found the best
solution for all of the filters. The CCSA method attained the best solution just
when no filter was used. As in the previous examples, the SLP method took
much less time to converge than the CCSA algorithm.
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Figure 9 – The force inverters obtained.

5 Conclusions and future work

In this paper, we have presented a new globally convergent SLP method.
Our algorithm was used to solve some standard topology optimization prob-
lems. The results obtained show that it is fast and reliable, and can be used in
combination with several filters for removing checkerboards. The new algo-
rithm seems to be faster than the globally convergent version of the MMA
method, while the structures obtained by both methods are comparable. All
of the filters work well in combination with the SLP algorithm to avoid the
occurrence of checkerboards, although the dilation filter seems to be more ex-
pensive than the others. The nonlinearity introduced by the dilation and the
Sinh filters poses no difficulty for the SLP method. For the combination of
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filter and trust region radii tested, the Sinh filter presented the best formed
structures. Some of the filters allowed the formation of one node hinges. The
implementation of hinge elimination strategies, following the suggestions of
Silva [18], is one possible extension of this work. We also plan to analyze the
behavior of the SLP algorithm in combination with other compliant mecha-
nism formulations, such as those proposed by Pedersen et al. [15], Min and
Kim [13], and Luo et al. [12].
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