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1 Introduction

Let C be a nonempty closed convex subset of Rn and let f : Rn × Rn −→

(−∞, +∞] be a bifunction such that f (x, x) = 0 for all x ∈ C and C × C is

contained in the domain of f . We consider the following Equilibrium Problem:

E P( f, C)

{
Find x∗ ∈ C such that

f (x∗, y) ≥ 0 ∀ y ∈ C.
(1)

The solution set of this problem (1) is denoted by S( f, C).

This formulation gives a unified framework for several problems in the sense

that it includes, as particular cases, optimization problems, Nash equilibria prob-

lems, complementarity problems, fixed point problems, variational inequalities

and vector minimization problems (see for instance [4]).
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In this work we assume that the function f (x, ∙) : Rn −→ (−∞, +∞] is

convex and subdifferentiable at x , for all x ∈ C (see [8, 13, 15, 18]). In [8] the

subdifferential of this function is called diagonal subdifferential. We define by

diagonal subgradients the elements of this set.

The aim of this paper is to develop and to analyze an inexact projected diagonal

subgradient method using a divergent series steplength rule. The algorithm is

easy to implement and it has a low computational cost since only one inexact

projection is done per iteration.

Recently, many algorithms have been developed for solving problem (1)

combining diagonal subgradients with projections, see for instance, [6, 7, 15,

18, 19, 21] and references therein.

The paper is organized as follows: In Section 2 we recall useful basic notions.

In Section 3 we define the algorithm and study its convergence. In Section 4, we

report some computational experiments. In Section 5, we give some concluding

remarks.

2 Preliminaries

In this section we present some basic concepts, properties, and notations that we

will use in the sequel. Let Rn be endowed with the Euclidean inner product 〈∙, ∙〉

and the associated norm ‖ ∙ ‖.

Definition 2.1. Let ξ ≥ 0 and x ∈ Rn . A point px ∈ C is called a ξ -projection

of x onto C , if px is a ξ -solution of the problem

min
y∈C

{
1

2
‖x − y‖2

}
,

that is
1

2
‖x − px‖

2 ≤
1

2
‖x − PC(x)‖2 + ξ

where PC(x) is the orthogonal projection of x onto C .

It is easy to show that the ξ -projection of x onto C is characterized by

〈x − px , px − y〉 ≥ −ξ ∀ y ∈ C. (2)
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Through this paper we will consider the following enlargement of the diagonal

subdifferential.

Definition 2.2. The ε-diagonal subdifferential ∂ε
2 f (x, x) of a bifunction f at

x ∈ C , is given by

∂ε
2 f (x, x) := {g ∈ Rn : f (x, y) + ε ≥ f (x, x) + 〈g, y − x〉 ∀ y ∈ Rn}

= {g ∈ Rn : f (x, y) + ε ≥ 〈g, y − x〉 ∀ y ∈ Rn}.
(3)

Let us note that the 0-diagonal subdifferential is the diagonal subdifferential

∂2 f (x, x), studied in [8].

The following well-known property will be useful in this paper.

Lemma 2.3. Let {νk} and {δk} be nonnegative sequences of real numbers

satisfying νk+1 ≤ νk + δk with
∑+∞

k=1 δk < +∞. Then the sequence {νk} is

convergent.

The next technical result will be used in the convergence analysis.

Lemma 2.4. Let θ, β and ξ be nonnegative real numbers satisfying θ2 − βθ

−ξ ≤ 0, then,

βθ ≤ β2 + ξ. (4)

Proof. Consider the quadratic function s(θ) = θ2 − βθ − ξ , then s(θ) ≤ 0

implies that

θ ≤
β +

√
β2 + 4ξ

2
,

since θ > 0.

Multiplying the last inequality by β and using the property ab ≤ a2+b2

2 we

obtain
βθ ≤ 2−1

[
β2 + β

√
β2 + 4ξ

]

≤ 2−1
[
β2 + β2+β2+4ξ

2

]

= 2−1
[
β2 + β2 + 2ξ

]

= β2 + ξ.

The proof is complete. �
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In the convergence analysis we will assume that the solution set of (1) is

contained in the solution set of its dual problem, which is given by
{

Find x∗ ∈ C such that

f (y, x∗) ≤ 0 ∀ y ∈ C.
(5)

The solution set of this problem is denoted by Sd( f, C).

When f is a pseudomonotone bifunction on C (if x, y ∈ C and f (x, y) ≥ 0,

then f (y, x) ≤ 0), it holds that S( f, C) ⊆ Sd( f, C). Moreover, this inclusion

is also valid for monotone bifunctions ( f (x, y) + f (y, x) ≤ 0).

Now, we are in position to define our algorithm.

3 The algorithm and its convergence analysis

Take a positive parameter ρ and real sequences {ρk}, {βk}, {εk} and {ξk} verifying

the following conditions:

ρk > ρ, βk > 0, εk ≥ 0, ξk ≥ 0 ∀k ∈ N, (6)

∑ βk

ρk
= +∞,

∑
β2

k < +∞, (7)

∑ βkεk

ρk
< +∞,

∑
ξk < +∞. (8)

3.1 The Inexact Projected Subgradient Method (IPSM)

Step 0: Choose x0 ∈ C . Set k = 0.

Step 1: Let xk ∈ C . Obtain gk ∈ ∂
εk
2 f (xk, xk). Define

αk =
βk

γk
where γk = max{ρk, ‖gk‖}. (9)

Step 2: Compute xk+1 ∈ C such that:

〈αk gk + xk+1 − xk, x − xk+1〉 ≥ −ξk ∀ x ∈ C. (10)

Notice that the point xk+1 is a ξk-projection of (xk −αk gk) onto C . In particular,

if ξk = 0, then xk+1 = PC(xk − αk gk).

Comp. Appl. Math., Vol. 30, N. 1, 2011



“main” — 2011/2/28 — 13:03 — page 95 — #5

PAULO SANTOS and SUSANA SCHEIMBERG 95

We also observe that the steplength rule (9) is similar with those given in [1]

and [2]. In fact, in [1] is taking γk = max{βk, ‖gk‖} with
∑

βk = +∞, while

in [2] is considered ρk = 1 for all k ∈ N.

In the exact version of IPSM is considered εk = ξk = 0 for all k ∈ N and the

following stopping criteria are included: gk = 0 (at step 1) and xk = xk+1 (at

step 2).

3.2 Convergence analysis

The first result concerns the exact version of the algorithm.

Proposition 3.1. If the exact version of Algorithm IPSM generates a finite

sequence, then the last point is a solution of problem E P( f, C).

Proof. Since εk = 0, we have that gk ∈ ∂2 f (xk, xk). If the algorithm stops at

step 1 we have gk = 0. So, our conclusion follows from (3).

Now, assume that the algorithm finishes at step 2, that is, xk = xk+1. Suppose,

for the sake of contradiction, that xk /∈ S( f, C). Then, there exists x ∈ C such

that f (xk, x) < 0. Using again (3) we get

0 > f (xk, x) ≥ 〈gk, x − xk〉. (11)

On the other hand, by replacing xk+1 by xk in (10) and taking in account that

ξk = 0, it results

〈αk gk, x − xk〉 ≥ 0. (12)

Therefore, from (11) and (12) we get a contradiction because αk > 0. Hence,

xk ∈ S( f, C). �

From now on, we assume that the algorithm IPSM generates an infinite

sequence denoted by {xk}.

We derive the following auxiliary property.

Lemma 3.2. For each k, the following inequalities hold

(i) αk‖gk‖ ≤ βk;

(ii) βk‖xk+1 − xk‖ ≤ β2
k + ξk .
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Proof. (i) From (9) it follows

αk‖gk‖ =
βk‖gk‖

max{ρk, ‖gk‖}
≤ βk . (13)

(ii) By taking x = xk in (10) it results

‖xk+1 − xk‖2 ≤ 〈αk gk, xk − xk+1〉 + ξk

≤ αk‖gk‖‖xk+1 − xk‖ + ξk

≤ βk‖xk+1 − xk‖ + ξk,

(14)

where the Cauchy-Schwarz inequality is used in the second inequality and the

last follows from (13).

Therefore, the desired result is obtained from Lemma 2.4 with θ = ‖xk+1 −

xk‖, β = βk and ξ = ξk , for each k ∈ N. �

The next requirement will be used in the subsequent discussions.

A1. The solution set S( f, C) is nonempty;

Notice that this is a common assumption for E P( f, C) (see for example, [11,

13, 15, 18] and references therein). Regarding the existence of solutions for

equilibrium problems we refer to [9, 12, 20] and references therein.

Proposition 3.3. Assume that A1 is verified. Then, for every x∗ ∈ S( f, C) and

for each k, the following assertion holds

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2αk f (xk, x∗) + δk, (15)

where δk = 2αkεk + 2β2
k + 4ξk .

Proof. By a simple algebraic manipulation we have that

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − ‖xk+1 − xk‖2 + 2〈xk − xk+1, x∗ − xk+1〉

≤ ‖xk − x∗‖2 + 2〈xk − xk+1, x∗ − xk+1〉. (16)

By combining (16) and (10) with x = x∗ it follows

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2〈αk gk, x∗ − xk+1〉 + 2ξk

= ‖xk − x∗‖2 + 2〈αk gk, x∗ − xk〉

+ 2〈αk gk, xk − xk+1〉 + 2ξk .

(17)
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By applying the Cauchy-Schwarz inequality and Lemma 3.2 (i), it yields

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2αk〈g
k, x∗ − xk〉

+ 2βk‖xk − xk+1‖ + 2ξk .
(18)

In virtue of (18) and Lemma 3.2 (ii) it results

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2αk〈g
k, x∗ − xk〉 + 2β2

k + 4ξk . (19)

On the other hand, from the fact that gk ∈ ∂
εk
2 f (xk, xk), we have that 〈gk, x∗ −

xk〉 ≤ f (xk, x∗) + εk . Therefore, since αk > 0 we obtain

2αk〈g
k, x∗ − xk〉 ≤ 2αk f (xk, x∗) + 2αkεk . (20)

The conclusion follows from (19) and (20). �

The following requirement will be used to obtain the boundedness of the

sequence {xk} generated by IPSM.

A2. S( f, C) ⊆ Sd( f, C);

We point out that this assumption is weaker than the pseudomonotonicity

condition. In fact, consider the following example.

Example 3.4. Let E P( f, C) be defined by

C = [−1, 1] ⊆ R, f (x, y) = 2y|x |(y − x) + xy|y − x |, x, y ∈ R.

Observe that S( f, C) = {0} and f (y, x∗) = f (y, 0) = 0 for all y ∈ C . Hence,

A2 holds. However, the bifunction f is not pseudomonotone on C . In fact, we

have f (−0.5, 0.5) = f (0.5, −0.5) = 0.25 > 0.

Notice that f (x, ∙) is convex for all x ∈ C and is diagonal subdifferentiable

with ∂2 f (x, x) = [2|x |x − x2, 2|x |x + x2].

Furthermore, this example gives a negative answer to the conjecture given in

[9], namely, if C is a nonempty, convex and closed set such that f (x, x) =

0, f (x, ∙) : C → R is convex and lower semi-continuous, f (∙, y) : C → R

is upper semi-continuous for all x ∈ C and the primal and dual equilibrium

problems have the same nonempty solution set, then f is pseudomonotone.
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We observe that in [12] an example which disproves the conjecture using a

pseudoconvex function f (x, ∙) instead of a convex function is given.

Theorem 3.5. Assume that A1 and A2 are verified. Then,

(i) {‖xk − x∗‖2} is convergent, for all x∗ ∈ S( f, C);

(ii) {xk} is bounded.

Proof. (i) Let x∗ ∈ S( f, C) and k ∈ N. By A2 we have f (xk, x∗) ≤ 0 which

together with Proposition 3.3 implies

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + δk, (21)

where δk = 2αkεk + 2β2
k + 4ξk .

Therefore, in virtue of (7), (8) and (9) we obtain

+∞∑

k=0

δk < +∞. (22)

Hence, from (21), (22) and Lemma 2.3 it results that {‖xk − x∗‖2} is a

convergent sequence.

(ii) The conclusion follows from part (i). �

Now, we establish two different hypotheses on the data to obtain an asymptotic

behavior of the sequence {xk} .

A3. The ε-diagonal subdifferential is bounded on bounded subsets of C .

A3’. The sequence {gk} is bounded.

Let us note that, condition A3 has been considered in [14] in the setting of

optimization problems. Also, a similar condition has been assumed in [10] for

equilibrium problems (condition (A)). We observe that A3 and A3’ hold under

the conditions that there is a nonempty, open and convex set U containing C such

that f is finite and continuous on U × U , f (x, x) = 0 and f (x, ∙) : C → R is

convex for all x ∈ C ([10], Proposition 4.3). Condition A3’ has been required

in [7] and [15] for equilibrium problems. This condition has also been assumed

in [16] and [17] for saddle point problems.
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Observe that Example 3.4 satisfies both assumptions.

Theorem 3.6. Suppose that A1 and A2 are verified. Then, under A3 or A3’ it

holds

lim sup
k→+∞

f (xk, x∗) = 0 ∀ x∗ ∈ S( f, C).

Proof. Let x∗ ∈ S( f, C). By Proposition 3.3 and A2 it results

0 ≤ 2αk[− f (xk, x∗)] ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + δk . (23)

Hence,
0 ≤ 2

∑m
k=0 αk[− f (xk, x∗)]

≤ ‖x0 − x∗‖2 − ‖xm+1 − x∗‖2 +
∑m

k=0 δk

≤ ‖x0 − x∗‖2 +
∑m

k=0 δk .

(24)

As m → +∞ we have

0 ≤ 2
+∞∑

k=0

αk[− f (xk, x∗)] ≤ ‖x0 − x∗‖2 +
+∞∑

k=0

δk, (25)

which together with (22) yields

0 ≤
+∞∑

k=0

αk[− f (xk, x∗)] < +∞. (26)

On the other hand, by A3’ or A3 we have that {‖gk‖} is bounded. In fact, by

Theorem 3.5 we get that {xk} is bounded. Therefore, the assertion follows from

A3. In consequence, using (6) and (9) we conclude that there exists L ≥ ρ

such that
∥
∥gk

∥
∥ ≤ L for all k ∈ N. Therefore

γk

ρk
= max{1, ρ−1

k ‖gk‖} ≤
L

ρ
∀ k ∈ N.

Therefore

αk =
βk

γk
≥

ρ

L

βk

ρk
∀ k ∈ N. (27)

Consequently, by (26) and (27) we have

+∞∑

k=0

βk

ρk
[− f (xk, x∗)] < +∞. (28)

Then, the conclusion follows from (28) and (7). �
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In order to obtain the convergence of the whole sequence we introduce two

additional assumptions.

A4. Let x∗ ∈ S( f, C) and x ∈ C . If f (x, x∗) = f (x∗, x) = 0 then

x ∈ S( f, C);

A5. f (∙, y) is upper semicontinuous for all y ∈ C .

Assumption A4 holds, for example, when the problem E P( f, C) corresponds

to an optimization problem, or when it is a reformulation of the variational

inequality problem with a paramonotone operator. Moreover, the requirement

A4 can be considered as an extension of the cut property given in [5] from

variational inequality problems to equilibrium problems. Assumption A4 can

be recovered if we assume A2 and the following condition holds

f (z, x) ≤ f (z, y) + f (y, x) ∀ x, y, z ∈ C,

which is considered, for instance, in [3].

We also note that Assumption A5 is a common requirement for E P( f, C)

(see, for example, [11, 18] and references therein).

Example 3.7. We consider the equilibrium problem defined by C = (−∞, 0]

and f (x, y) = x2(|y| − |x |). Let us observe that A1-A5 hold. In fact, x∗ = 0

is the unique solution of E P( f, C), f (y, x∗) = −|y|y2 ≤ 0 for all y ∈ C ,

f (x, y) is continuous and f (x, x∗) = f (x∗, x) = 0 implies that x = 0, that is,

x ∈ S( f, C).

Theorem 3.8. Assume that A1, A2, A3 or A3’, A4 and A5 are satisfied. Then,

the whole sequence {xk} converges to a solution of E P( f, C).

Proof. Let x∗ ∈ S( f, C). By Theorem 3.6, there exists a subsequence {xk j }

of {xk} such that

lim sup
k→+∞

f (xk, x∗) = lim
j→+∞

f (xk j , x∗). (29)

In view of Theorem 3.5, we have that {xk j } is bounded. So, there is x ∈ C and

a subsequence of {xk j }, without lost of generality, namely {xk j }, such that

lim
j→+∞

xk j = x . (30)
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Combining assumption A5 together with Theorem 3.6 it follows

f (x, x∗) ≥ lim sup j→+∞ f (xk j , x∗)

= lim j→+∞ f (xk j , x∗)

= lim supk→+∞ f (xk, x∗)

= 0.

(31)

From assumption A2 we have f (x, x∗) ≤ 0, so, it results

f (x, x∗) = 0. (32)

Therefore, A4 implies that x ∈ S( f, C). Using again Theorem 3.5 we obtain

that the sequence {‖xk − x‖2} is convergent, which together with (30) it yields

lim
k→+∞

xk = x, x ∈ S( f, C). �

Notice that Theorem 3.8 remains valid if we replace assumptions A2, A4 and

A5 by the τ -strongly pseudomonotone condition on f with respect to x∗ ∈

S( f, C), that is,

f (x∗, y) ≥ 0 ⇒ f (y, x∗) ≤ −τ‖x∗ − y‖2 ∀ y ∈ C.

This condition is weaker than the strong monotonicity of f which has been

assumed in [15] for solving equilibrium problems.

4 Numerical results

In this section we illustrate the algorithm IPSM. Some comparisons are also

reported. In the two first examples we compare the iterates of IPSM with such

one obtained by the Relaxation Algorithm given in [6], where a constrained opti-

mization problem and a line search have been solved at each iteration. Example

4.3 shows the computational time of IPSM versus our implementation of the

Extragradient method given in [21], where a constrained optimization problem,

a line search and a projection, have been performed at each iteration. Also, we

present a nonsmooth example verifying our assumptions. We take ξk = εk = 0,

for all k ∈ N, in order to compare the performance of the algorithms.

The algorithm has been coded in MATLAB 7.8 on a 2GB RAM Pentium

Dual Core.
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Example 4.1. Consider the River Basin Pollution Problem given in [6] which

consists of three players with payoff functions:

φ j (x) = u j x
2
j + 0.01x j (x1 + x2 + x3) − v j x j , j = 1, 2, 3

where u = (0.01, 0.05, 0.01) and v = (2.90, 2.88, 2.85), and the constraints are

given by {
3.25x1 + 1.25x2 + 4.125x3 ≤ 100

2.291x1 + 1.5625x2 + 2.8125x3 ≤ 100.

We take γk = max{3, ‖gk‖}, βk = 168
k for all k ∈ N.

Table 1 gives the results obtained by IPSM algorithm and by the Relaxation

Algorithm (RA) used in [6].

RA IPSM

Iter.(k) xk
1 xk

2 xk
3 xk

1 xk
2 xk

3

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 19.3258 17.1746 3.8115 17.4819 42.9394 −2.5431
2 20.7043 16.1053 3.0495 26.3436 −22.0781 10.1772
3 21.0366 16.0367 2.8084 21.0333 16.8576 2.5623
4 21.1181 16.0295 2.7464 21.2024 16.6129 2.8023
5 21.1382 16.0282 2.7310 21.1349 16.1052 2.7103
6 21.1431 16.0279 2.7272 21.1452 16.0284 2.7255
7 21.1444 16.0278 2.7262 21.1452 16.0279 2.7257

Table 1 – Example 4.1: Iterations of RA [6] and IPSM, where x∗ = (21.149, 16.028, 2, 722).

Table 1 shows that both algorithms give similar approximations to x∗ at itera-

tion 7, involving different computational effort. In fact, an optimization problem

and an inexact line search are considered at each iteration of RA.

Example 4.2. Consider the Cournot oligopoly problem with shared constraints

and nonlinear cost functions as described in [6]. The bifunction is defined by

f (x, y) =
∑5

i [θi (y−i , xi ) − θi (x−i , xi )],

θ j (x) = f j (x j ) − 5000
1
η x j (x1 + ∙ ∙ ∙ + x5)

−1
η

f j (x j ) = c j x j + β j

β j +1 K
(− 1

β j
)

j x
(

β j +1
β j

)

j

Comp. Appl. Math., Vol. 30, N. 1, 2011
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where, η = 1.1, c = (10, 8, . . . , 2), K = (5, 5, . . . , 5), β = (1.2,

1.1, . . . , 0.8) and C = Rn
+.

For this problem, we consider βk = 30
k , ρk = 1 for all k ∈ N.

In Table 2, we show the first three components of each iterate for sake of

comparison of IPSM with the relaxation algorithm RA given in [6].

RA IPSM

Iter.(k) xk
1 xk

2 xk
3 xk

1 xk
2 xk

3

0 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
1 55.0181 56.1830 55.7512 22.2998 23.8567 23.4060
2 27.2067 33.0054 36.1694 27.9168 29.1315 30.2456
3 42.6043 46.7481 47.9981 31.5732 33.4380 35.0173
4 33.5762 38.8631 41.1775 34.3174 36.8889 38.8577
5 38.8777 43.5262 45.1860 36.5254 40.0134 42.2881

10 36.7970 41.6992 43.6040 36.8336 41.7204 43.6016
20 36.9318 41.8175 43.7060 36.9325 41.8181 43.7065

Table 2 – Example 4.2: Iterations of RA and IPSM, where

x∗ = (36.912, 41.842, 43.705, 42.665, 39.182).

Again, despite the algorithms RA and IPSM obtain similar results at iteration

20, the computational effort is different.

Example 4.3. Consider two equilibrium problems given in [21], where

C =

{

x ∈ R5 :
5∑

i=1

x1 ≥ −1, −5 ≤ xi ≤ 5, i = 1, . . . , 5

}

and the bifunction is of the form

f (x, y) = 〈Px + Qy + q, y − x〉. (33)

The matrices P, Q and the vector q are defined by

P1 =











3.1 2 0 0 0

2 3.6 0 0 0

0 0 3.5 2 0

0 0 2 3.3 0

0 0 0 0 2











, P2 =











3.1 2 0 0 0

2 3.6 0 0 0

0 0 3.5 2 0

0 0 2 3.3 0

0 0 0 0 3











,
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Q =











1.6 1 0 0 0

1 1.6 0 0 0

0 0 1.5 1 0

0 0 1 1.5 0

0 0 0 0 2











and q =











1

−2

−1

2

−1











,

where the i-th problem considers P = Pi , i = 1, 2.

For the first problem, we take βk = 7
2k and ρk = 3 for all k ∈ N. Like in [21],

we use tol = 10−3 and x0 = (1, 3, 1, 1, 2).

In Table 3, we compare IPSM with two Extragradient Algorithms (EA) given

in [21].

Scheme Iter.(k) Ls. step cpu(s)

EA-a 8 7 0.0562
EA-b 25 − 0.1148
IPSM 10 − 0.0006

Table 3 – Example 4.3: Problem 1.

In the second problem, we use P = P2, βk = 10
3k and ρk = 3 for all k ∈ N.

Like in [21], we take tol = 10−3 and x0 = (1, 3, 1, 1, 2).

In Table 4, we compare IPSM with algorithm EA given in [21].

Scheme Iter.(k) Ls. step cpu(s)

EA-a 10 9 0.0605
IPSM 10 − 0.0006

Table 4 – Example 4.3: Problem 2.

Tables 3 and 4 show a good performance of algorithm IPSM.

Example 4.4. Consider the nonsmooth equilibrium problem defined by the

bifunction f (x, y) = |y1| − |x1| + y2
2 − x2

2 and the constraint set C =
{

x ∈ R2
+ : x1 + x2 = 1

}
. The optimal point is x∗ = ( 1

2 , 1
2 ) and the partial

subdifferential of the equilibrium bifunction f is given by

∂2 f (x, x) =






(1, 2x2) if x1 > 0,

([−1, 1], 2x2) if x1 = 0,

(−1, 2x2) if x1 < 0.
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We use γk = max{1, ‖gk‖} and ‖xk − x∗‖ ≤ 10−4 as stop criteria.

In Table 5, we show our results by considering different initial points.

x0
1 x0

2 βk Iter.(k) cpu(s)

0.0000 1.0000 1/k 1 0.0057
0.1111 0.8889 9/k 8 0.0563
0.3333 0.6667 9/k 8 0.0560
0.6667 0.3333 4/k 5 0.0359
0.8889 0.1111 8/k 7 0.0478
1.0000 0.0000 1/k 1 0.0061

Table 5 – Example 4.4.

5 Concluding remarks

In this paper we have presented a subgradient-type method, denoted by IPSM,

for solving equilibrium problems and established its convergence under mild

assumptions.

Numerical results were reported for test problems given in the literature of

computational methods for solving nonsmooth equilibrium problems. The com-

parison with other two schemes has shown a satisfactory behavior of the algo-

rithm IPSM in terms of the computational time.

Acknowledgements. We would like to thank two anonymous referees whose
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[16] A. Nedić and A. Ozdaglar, Subgradient Methods for Saddle-Point Problems.
Journal of Optimization Theory and Applications, 142 (2009), 205–228.

[17] Y. Nesterov, Primal-dual Subgradient Methods for convex problems. Mathemat-
ical Programming, 120 (2009), 221–259.

Comp. Appl. Math., Vol. 30, N. 1, 2011



“main” — 2011/2/28 — 13:03 — page 107 — #17

PAULO SANTOS and SUSANA SCHEIMBERG 107

[18] T.T. Nguyen, J.J. Strodiot and V.H. Nguyen, The interior proximal extragra-
dient method for solving equilibrium problems. Journal of Global Optimization,
44 (2009), 175–192.

[19] T.T. Nguyen, J.J. Strodiot and V.H. Nguyen, A bundle method for solving equilib-
rium problems. Mathematical Programming, 116 (2009), 529–552.

[20] S. Scheimberg and F.M. Jacinto, An extension of FKKM Lemma with an appli-
cation to generalized equilibrium problems. Pacific Journal of Optimization, 6
(2010), 243–253.

[21] D.Q. Tran, L.M. Dung and V.H. Nguyen, Extragradient algorithms extended to

equilibrium problems. Optimization, 57 (2008), 749–776.

Comp. Appl. Math., Vol. 30, N. 1, 2011


