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1 Introduction

Bilevel programming problems model two-level hierarchical systems and have

been studied since the seventies. In [5, 6, 7], history, applications, algorithms,

theoretical questions and almost all relevant references can be found.

In this paper we address the following bilevel programming problem:

max
x,s,u

W (x, u)

s.t. q(x, s) = 0

0 ≤ x ≤ xU

s ≥ 0

u = arg min
ũ

g(x, ũ)

s.t. uL ≤ ũ ≤ uU ,

(1)
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where x ∈ Rn, s ∈ R. u, ũ ∈ Rm , and W, q and g are real functions.

The truss topology optimization problem with frictionless unilateral contact

is naturally formulated as the mathematical bilevel problem stated above. In

this problem, we wish to maximize the stiffness of a truss, given a bound on

the material volume. This volume depends on the cross section area of the

bars, that are the design variables of the problem. In the lower level problem,

whose variables are the displacements of the nodes in the structure, the potential

energy of the truss is minimized, given a fixed area for each bar. The truss

structure may come in frictionless unilateral contact with some given supports,

which is modeled defining bounds on the displacements.

For details on contact problems see [11]. See [4] for the general truss opti-

mization problem, [12, 13] and references therein for more details on the truss

optimization problem with unilateral frictionless contact. The methods used

to solve this problem involve essentially non-differentiable techniques for the

bilevel problem or SQP algorithms for the reformulation of the problem that

results after substituting the lower level problem by its KKT conditions. In

the latter case, the fact that the lower level problem is a minimization prob-

lem is ignored, increasing the chances to find stationary points that are not

minimizers.

In [2] the authors studied the resolution of bilevel programming problems

using the inexact restoration (IR) algorithm introduced in [15]. In this paper

we follow the approach for the IR algorithm introduced in [8].

The present paper is organized as follows. In Section 2, we describe the IR

algorithm and discuss its application for solving bilevel problems. In Section

3, we state and comment the truss topology optimization problem that will be

solved. Since the resolution of bilevel problems requires specifications that are

problem dependent, we discuss in Section 4 how this IR algorithm can be adapted

to our problems. In Section 5, we present numerical experiments and we state

some conclusions in Section 6.
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2 The line-search IR algorithm

A general nonlinear programming problem can be stated as

Minimize
z

f (z)

s.t. C(z) = 0

l ≤ z ≤ u,

(2)

where f : Rn → R and C : Rn → Rm .

Inexact restoration algorithms for nonlinear programming (see [9, 15])

belong to the class of feasible algorithms because they emphasize the impor-

tance of the feasibility of an approximate solution. They were introduced to

avoid the excessive computational effort that must be spent to achieve constraint

fulfillment at iterations that are still very far from optimality, in problems with

strongly nonlinear constraints.

In [8], the authors introduce a line search IR algorithm that captures the

essential features of the IR technique. Moreover, its convergence theory is

straightforward and allows for considerable freedom in the choice of imple-

mentation details.

The basic steps of the algorithm presented in [8] are shown below, assuming

that r ∈ [0, 1), β, γ, τ > 0 are fixed parameters, h : [l, u] → [0, ∞) is a

function such that ‖C(z)‖ ≤ h(z), and 8(z, p) = f (z) + (1 − p)h(z).

Algorithm 1

• Step 0: Initialization.

Choose l ≤ z0 ≤ u and p0 ∈ (0, 1). Set k := 0.

• Step 1: Inexact restoration.

Compute yk ∈ [l, u] so that

h(yk) ≤ rh(zk),

f (yk) ≤ f (zk) + βh(zk).

• Step 2: Penalty parameter determination.

Determine pk+1 ∈ {2−i pk, i = 0, 1, . . .} as large as possible so that

8(yk, pk+1) − 8(zk, pk+1) ≤
1

2
(1 − r)(h(yk) − h(zk)).

Comp. Appl. Math., Vol. 30, N. 1, 2011



“main” — 2011/2/24 — 17:59 — page 112 — #4

112 BILEVEL PROGRAMMING BY AN INEXACT RESTORATION METHOD

• Step 3: Computation of the search direction.

Compute dk so that yk + dk ∈ [l, u] and the following inequalities hold

for t ∈ [0, τ ],

f (yk + tdk) ≤ f (yk) − γ t‖dk‖2

h(yk + tdk) ≤ h(yk) + γ t2‖dk‖2

• Step 4: Line search.

Determine tk ∈ {2−i , i = 0, 1, . . .} as large as possible so that the first

inequality in Step 3 holds and

8(yk + tkdk, pk+1) − 8(zk, pk+1) ≤
1

2
(1 − r)(h(yk) − h(zk)).

• Step 5: Step update.

Set zk+1 := yk + tdk and k := k + 1. Go to Step 1.

The equality constraints that define the feasible region of the bilevel problem

(1) are given by
q(x, s) = 0

u = arg min
ũ

g(x, ũ)

s.t. uL ≤ ũ ≤ uU .

(3)

At the inexact restoration step, we need to determine a point that is more

feasible than (x, s, u)T . For q(x, s), this is clearly stated in Step 1 of the algo-

rithm. However, for the low level problem

u = arg min
ũ

g(x, ũ)

s.t. uL ≤ ũ ≤ uU ,
(4)

we have to explain carefully what we mean by a better value of u.

At the beginning of iteration k, the point zk = (xk, sk, uk, μk
L , μk

U )T is avail-

able, where μk
L and μk

U are estimates of the Lagrange multipliers associated with

the bounds on ũ. For a fixed value of the first two variables, we can use uk as

an initial point and apply an adequate minimization algorithm to solve problem

(4). The choice of the algorithm is problem dependent. For the truss topology

optimization problem presented in Section 3, we discuss this issue in Section 4.
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The inexact restoration step of the algorithm does not require full feasibility.

Instead, a sufficient decrease of the feasibility error measured by a majorant of

the norm of the constraint vector C(z) given in (2) is required. In the definition

of C(z), the infeasibility related to (4) is measured by equalities in the KKT

optimality conditions of this minimization problem, i.e.

C(z) = C(x, s, u, μL , μU ) =








q(x, s)

∇gu(x, s, u) − μL + μU

(u − uL)μL

(uU − u)μU








. (5)

It is very important to realize that the lower lever problem (4) is not replaced

by its KKT conditions. For given values of x , we minimize the original problem

in u and use the satisfaction of the KKT conditions with an adaptive tolerance

as a stopping criterion for this minimization process.

The bound constraints and the non-negativeness of the Lagrange multipliers

are forced at each iteration. Other details of the algorithm, such as the choice

of h, the search direction in Step 3 and the line search in Step 4 are problem

dependent and will be presented in Section 4.

3 The truss topology problem

The simplest truss topology optimization problem consists in finding the stiffest

truss for a given volume. Various formulations of this problem can be found in

[1] and [3]. More sophisticated problems can be generated if, for example, we

include upper limits on the displacements and on the stresses, or multiple loads.

In this work, we consider the optimization of a truss subject to external loads

and frictionless contact supports. We restrict our analysis to a rectangular bidi-

mensional domain discretized into a mesh with nx × ny nodes. The truss bars

are generated connecting nodes from this mesh. The set of potentials bars is

called the ground structure. The size of the ground structure depends on the

connectivity level adopted, that determines to which other nodes each node can

be connected.

If a node can only be connected to its immediate neighbors, the connectivity

level, hereafter denoted n p, is set to one. If a node can also be connected
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to the nodes in the neighborhood of its immediate neighbors, then n p = 2.

Generalizing this idea, n p can assume any value between 1 and the maximum

of {nx − 1, ny − 1}. In the latter case, the ground structure is said to be fully

connected. Figure 1 shows all of the bars of a ground structure that connect one

node to its neighbors in the NE quadrant, for n p = 4.

Figure 1 – The bars that connect a node to all of its northeast neighbors, for n p = 4.

Table 1 shows the growth of the number of bars as a function of the number

of nodes and the connectivity level, for a square structure. The number of bars

of a fully connected base structure with nx = ny = 100 is 30398894. Thus, for

highly discretized structures, it is important to keep n p small.

nx
n p

1 2 3 4 5

10 342 630 1106 1490 2090

100 39402 78210 154646 229910 378110

1000 3994002 7982010 15946046 23898110 39778310

Table 1 – The number of bars as a function of nx and n p, for a square structure.

3.1 The truss topology problem with frictionless contact as a bilevel program-

ming problem

In the topology optimization of a truss formed by m potential bars that link n

potential nodes, we consider two sets of variables: the vector of cross sectional

areas of the bars, x ∈ Rm , and the vector of horizontal and vertical displacements

Comp. Appl. Math., Vol. 30, N. 1, 2011
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of the nodes, u ∈ R2n . The objective is to maximize the stiffness of the structure,

i.e. minimize the compliance, subject to volume and contact constraints.

Following the min-max formulation of the standard truss topology optimization

problem presented in [3, 4], the problem with frictionless contact conditions can

be stated as
max
x,s,u

W (x, u) = 1
2 uT K (x)u − PT u

s.t. `T x + s = V

0 ≤ x ≤ xU

s ≥ 0

u = arg min
ũ

1
2 ũT K (x)ũ − PT ũ

s.t. uL ≤ ũ ≤ uU ,

(6)

where the vector ` contains the lengths of the bars, V is the upper limit for

the structure volume, s is the slack variable of the volume constraint, xU is the

vector of upper limits for the cross sectional areas of the bars, uL and uU are

the lower and upper limits for the nodal displacements and P is the vector of

nodal forces. The global stiffness matrix K (x) is given by K (x) =
∑m

j=1 K j (x),

where K j (x) = ( E
` j

)x j b j bT
j , E is the Young’s modulus of the material and b j is

the j-th column of the compatibility matrix B that relates the nodal forces to the

bar forces. More information on the formulation of the truss topology problem

can be found in [3].

The optimal solution of (6) contains only a few of the ground structure bars.

Therefore many components of vector x are expected to vanish near the optimum.

However, to avoid numerical difficulties that arise when the cross sectional areas

of the truss bars are allowed to become zero, it is a common practice to define a

positive lower level xmin for these areas. Following this practice, we also require

that xi ∈ [xmin, xmax ], for i = 1, . . . , m.

4 The algorithm of inexact restoration for truss optimization with friction-

less contact

The crucial steps of Algorithm 1 are the inexact restoration, the definition of the

search direction and the line search. In this section, we show how these steps

may be efficiently computed for the bilevel problem (6).
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4.1 The inexact restoration step

An approximate solution z for (6) is said to be feasible if

C(z) = 0,

z ∈ �
(7)

where z = (x, s, u, μL , μU )T , μL and μU are the Lagrange multipliers of the

lower level problem in (6), s is the slack variable of the volume constraint,

C(z) =








`T x + s − V

K (x)u − P − μL + μU

ML(u − uL)

MU (uU − u)








,

and

� = z ∈ Rm+1+6n | s, μL , μU ≥ 0, 0 ≤ x ≤ xU , uL ≤ u ≤ uU }.

Here, ML and MU are the diagonal matrices containing μL and μU , respec-

tively. One may notice that the first component of C(z) is the volume constraint,

while the remaining components are the equalities in the KKT conditions of

the lower level problem.

In the inexact restoration phase, we seek a solution that satisfies the conditions

stated at Step 1 of the algorithm. In [8] the authors suggest that this can be

accomplished defining

h(z) = ‖C(z)‖ +
√

μT
l (u − uL) + μT

u (uU − u) (8)

and requiring the restored point at iteration k (the point yk) to satisfy

h(yk) ≤ rh(zk) and

‖yk − zk‖ ≤ βh(zk).

The bounds on the variables defined by � and the linear volume constraint

are forced at each iteration. Therefore, the components xk and sk of the restored

step yk take the same values as in zk . This implies that the restoration is restricted

to find a vector of nodal displacements u R that solves the problem

min
u

1
2 uT K (xk)u − PT u

s.t. uL ≤ u ≤ uU

‖u − uk‖∞ ≤ βh(zk).

(9)
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After obtaining u R , the Lagrange multipliers are estimated and forced to

verify ‖μR
L − μk

L‖∞ ≤ βh(zk) and ‖μR
U − μk

U‖∞ ≤ βh(zk).

If we define a positive lower bound for the cross sectional areas of the bars,

(9) turns out to be a box constrained strictly convex quadratic programming

problem that can be easily solved.

4.2 The search direction

Algorithm 1 requires the search direction dk = (dx , ds, du, dμL , dμU ) to satisfy

f (yk + tdk) ≤ f (yk) − γ t‖dk‖2 (10)

and

h(yk + tdk) ≤ h(yk) + γ t2‖dk‖2. (11)

In [8], the authors show that this can be obtained taking dk as the projection

of −∇W (xk, u R) onto the set of tangent directions

T = {d ∈ Rm+1+6n | ∇C(yk)T d = 0, yk + d ∈ �}.

In this case, dk is the solution of the quadratic programming problem

min 1
2 dT d + ∇W (xk, u R)T d

s.t. ∇C(yk)d = 0

yk + d ∈ �,

(12)

where

∇C(yk) =








`T 1 0 0 0

∇2
xu W (xk, u R) 0 K (xk) −I I

0 0 ML (U R − UL) 0

0 0 −MU 0 (UU − u R)








,

and U R , UL and UU are diagonal matrices containing u R , uL and uU , respectively.

Instead of using this sort of Cauchy step, in our algorithm, an improved direc-

tion vector is obtained replacing the objective function of (12) by the quadratic

approximation of W (xk + dx , u R + du), given by

q(d) =
1

2
(yk + d)T B(yk)(yk + d) + ∇W (xk, u R)T d + W (xk, u R),

Comp. Appl. Math., Vol. 30, N. 1, 2011
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where

B(yk) =











0 0 −∇2
xu W (xk, u R)T 0 0

0 0 0 0 0

−∇2
xu W (xk, u R) 0 −K (xk) 0 0

0 0 0 0 0

0 0 0 0 0











.

Since the solution of this problem may not satisfy (11), we include a trust region

constraint, so the step is recomputed whenever it fails to verify this condition.

Thus, our search direction is the solution of

min 1
2 (yk + d)T B(yk)(yk + d) + ∇W (xk, u R)T d

s.t. ∇C(yk)d = 0

yk + d ∈ �

‖d‖∞ ≤ 1k .

(13)

With this strategy all the convergence results are essentially preserved as

shown in [10].

The solution of (13) may be obtained using any quadratic programming li-

brary that works with sparse matrices. However, if the routine requires the

decomposition of a matrix formed of some or all of the columns of ∇C(yk) or

∇C(yk)T ∇C(yk), it is better to reorder the variables in a way that the factors

generated by the decomposition will remain very sparse. A good reordering can

be obtained if we replace dk by d̄k = (dμL , dμU , du, ds, dx). Moreover, a good

node ordering should also be used, in order to reduce the fill-in produced by

the factorization of K (xk).

Following the usual approach of IR algorithms (see [9] and [15], for exam-

ple), we also tried to define dk as the solution of the nonlinear programming

problem that consists in minimizing the original objective function subject to a

linearization of the constraints, i.e.

max 1
2 (u R + du)

T K (xk + dx)(u R + du) − PT (u R + du)

s.t. ∇C(yk)d = 0

yk + d ∈ �

‖d‖∞ ≤ 1k

(14)
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However, the direction generated by this problem, besides being more difficult

to obtain, did not show a better performance than the one computed solving (13).

4.3 The line search

The backtracking scheme adopted in Algorithm 1 seems to be quite simple to

code. However, to compute a step length that satisfies the condition stated at

Step 4 of the algorithm, we need to evaluate the objective function at some

intermediate points (x+, u+) = (xk + λdx , u R + λdu). This task may be costly

if a naive approach is adopted, since it requires the computation of the stiffness

matrix K (x+), that depends on the number of bars. Fortunately, K varies linearly

with x , so we may write

K (x+) = K (xk) + λK (dx). (15)

Thus, once we have computed K (dx), we can avoid building K from scratch

each time λ is changed. Moreover, we can also reduce the cost of obtaining

W+ = W (x+, u+) if we write

W+ =
1

2
(u R + λdu)

T (K (xk) + λK (dx))(u
R + λdu) + PT (u R + λdu)

=
1

2
uT

+[K (xk)u R +λ(K (xk)du +K (dx)u
R +λK (dx)du)]+ PT u+

=
1

2
uT

+[v1 + λ(v2 + λv3)] + PT u+.

Vector v1 = K (xk)u R is already available, since it was used to calculate

W (xk, u R). Therefore, after computing vectors u+, v2 = K (xk)du + K (dx)u R

and v3 = K (dx)du , the objective function value may be obtained with two saxpys

and two inner products.

After determining the optimal value for λ, the stiffness matrix may also be

updated using (15). To keep the roundoff errors under control, K should be

recomputed from scratch once in a while. In our algorithm, this recalculation is

done at each 50 iterations.

If λ = 1 satisfies the condition defined in Step 4, then the approach presented

here is more expensive than computing K (x+) directly. However, usually the
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step length needs to be reduced, so it pays for computing three extra matrix-vector

products and a matrix update.

Finally, it must be noticed that due to the linearity of the volume constraint

and the fact that ∇C(yk)d = 0, vector x+ will always satisfy this constraint

whenever it is satisfied by xk , independently of the value of λ. This property of

the problem allows us to perform an inexact restoration based only on the nodal

displacements.

5 Numerical results

In this section, we show the results obtained using the algorithm for nonlinear

bilevel problems presented above to optimize the topology of some plane trusses

supported by a frictionless contact foundation.

In all of the examples, the material used in the trusses has elasticity modulus

E = 200000N/mm2. The cross sectional areas of the bars are required to

belong to the interval [0.00001mm2, 4mm2]. The parameters used in the inexact

restoration step are r = 0.5 and β = 10.0.

5.1 First problem

The ground structure of our first problem is shown in Figure 2. Due to symmetry,

only the right half of the frame is considered. The structure has 668 potential

bars and 189 potential nodes. The connectivity level is one.

Figure 2 – First problem.
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Only one external vertical force of magnitude 10N is applied at node 9. The

volume is limited to 2% of the ground structure’s volume. The foundation is

not parallel to the bottom line of the structure. In fact, the gap between node

91 and the foundation is equal to 10 mm, and this distance is linearly reduced

to 0 mm at node 181 (the bottom right node). It must be noticed that no fixed

supports are defined for the structure, but only the frictionless foundation that

limits downward node displacements.

The solution of the first problem is shown in Figure 3. The truss obtained

resembles the MBB beam that is usually obtained solving the topology opti-

mization problem where the lower right corner of the structure is fixed.

Increasing the connectivity level to 2, we obtain the structure shown in Figure 4.

Figure 3 – Solution of the first problem for n p = 1.

Figure 4 – Solution of the first problem for n p = 2.

5.2 Second problem

The domain of the second problem is the same of the first problem. However,

an external vertical force of magnitude 1N is applied at node 1, instead of at

node 9. The volume is limited to 2% of the ground structure’s volume. Also,

Comp. Appl. Math., Vol. 30, N. 1, 2011
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the frictionless foundation is flat and covers only one fourth of the ground

structure basis.

A schematic representation of the problem is presented in Figure 5. The

solution obtained after applying Algorithm 1 is shown in Figure 6. Again, the

truss obtained is similar to the usual MBB beam with a fixed lower right node.

However, the structure is shorter, due to the presence of the flat foundation.

Figure 5 – Second problem.

Figure 6 – Solution of the second problem.

5.3 Third problem

In the third problem, there are two external forces applied at the lower corners

of the structure. A small frictionless foundation prevents the downward dis-

placement of one single node of the structure’s basis. The volume is limited to

0,05% of the ground structure’s volume. The connectivity level is set to 2.
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The problem is shown in Figure 7 and the solution obtained after applying

Algorithm 1 is given in Figure 8. As we can see, the upper right border of the

structure is curved, and is linked to the node that is in contact with the foundation

by a group of thin bars.

Figure 7 – Third problem.

Figure 8 – Solution of the third problem.

It must be noticed that, due to the less stringent boundary conditions adopted

for the problems presented in this section, the stiffness matrix is singular. In fact,

the global stiffness matrix always has one redundant row, but this row is usually

eliminated when the boundary conditions are applied. Since this is not the case

here, the problems above are harder to solve than usual truss topology problems.

Even though, the structures shown in Figures 3, 4, 6 and 8 are quite reasonable.
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6 Conclusions

The IR approach for solving bilevel problems allows for a lot of freedom in the

choice of the method used to solve the lower level optimization problem. For

particular problems, some special nonlinear programming algorithms may be

devised. In this paper, we illustrate this fact dealing with a simple truss topology

optimization problem.

We do not claim that the lower level strategy presented in Section 4 is better than

others. Another strategy can be used in this framework. It is worth to mention

that the feasibility of the iterates can be explicitly controlled at all iterations. We

do not need to solve for feasibility when we are far from optimality. On the other

hand, when we judge that we are sufficiently near to the optimal value, we may

solve the problems in Step 1 with stronger stopping criteria by taking smaller

values of the parameter r . This may be important in practice if these constraints

need to be satisfied at an approximate solution.

With our approach, we were able to solve truss topology optimization problems

with singular stiffness matrices and frictionless contact conditions. Besides, it

would be easy to include other constraints on the bar volumes, on the displace-

ments or even on the stresses. It would also be possible to consider other bilevel

formulations of the truss topology problem, such as the one presented in [14].

We plan to extend this approach for truss problems with nonlinear elastic ma-

terials, that include nonlinear stiffness matrices. At least theoretically, these

problems will pose no extra difficulty. The implementation, of course, has to be

done very carefully.
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