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Abstract. An alternative strategy to solve the subproblems of the Method of Moving Asymp-

totes (MMA) is presented, based on a trust-region scheme applied to the dual of the MMA

subproblem. At each iteration, the objective function of the dual problem is approximated by a

regularized spectral model. A globally convergent modification to the MMA is also suggested, in

which the conservative condition is relaxed by means of a summable controlled forcing sequence.

Another modification to the MMA previously proposed by the authors [Optim. Methods Softw.,

25 (2010), pp. 883–893] is recalled to be used in the numerical tests. This modification is based

on the spectral parameter for updating the MMA models, so as to improve their quality. The per-

formed numerical experiments confirm the efficiency of the indicated modifications, especially

when jointly combined.
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1 Introduction

This study proposes a new strategy for solving the subproblems of the Method

of Moving Asymptotes (MMA) by means of its dual formulation, using a trust-

region technique. The MMA is a very popular method within the structural
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optimization community and applies to the inequality constrained nonlinear pro-

gramming problem with simple bounds as follows:

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . , m,

xmin
j ≤ x j ≤ xmax

j , j = 1, . . . , n,

(1)

where x = (x1, . . . , xn)
T ∈ Rn is the vector of the variables, xmin

j and xmax
j

are given real numbers for each j and f0, f1, . . . , fm are real-valued twice

continuously differentiable functions.

The original version of the MMA [16] was introduced in 1987 by Svanberg,

as a generalization of the convex linearization method (CONLIN) [9], with-

out global convergence. In 1995, Svanberg [17] proposed a globally conver-

gent version. Several other MMA versions have appeared since then, see for

instance [5, 20, 22, 23] and references therein. In 1998, Svanberg [18] devel-

oped a primal-dual interior-point method for solving the subproblems, in which

a sequence of relaxed Karush-Kuhn-Tucker (KKT) conditions are solved by

Newton’s method. In 2003, Ni [15] proposed a globally convergent algorithm

that combines the method of moving asymptotes with a trust-region technique,

in order to solve bound-constrained problems. In its more recent version [19],

the MMA was merged into the Conservative Convex and Separable Approx-

imation (CCSA) class of methods, which are globally convergent.

In the current work, the dual problem associated with the MMA subproblem

is stated and analyzed. The explicit expression of the dual objective function

is accessible due to the separability of the rational models of the MMA. The

intrinsic features of such a function are highlighted, namely being concave and

continuously differentiable. The discontinuities of the second-order derivatives

are discussed as well. Motivated by such features, we have proposed a trust-

region approach for solving the dual of the MMA subproblem by means of

a quadratic model that has a spectral regularization term. The solution of the

trust-region subproblem has a closed form.

Another contribution of this work is related to the conservative condition

responsible for defining the current outer iterate and ensuring the global con-

vergence of the method. A relaxed conservative condition is proposed, based

Comp. Appl. Math., Vol. 30, N. 1, 2011



“main” — 2011/2/24 — 19:38 — page 153 — #3

MÁRCIA A. GOMES-RUGGIERO, MAEL SACHINE and SANDRA A. SANTOS 153

on a summable controlled forcing sequence [13], so that the maintenance of

global convergence of the MMA with this modification is proved. The modified

MMA algorithm together with its convergence results are presented in [11].

In the numerical experiments, a third modification of the MMA previously

proposed by the authors [10] is incorporated. This modification, also consid-

ered in the algorithm and theoretical results of [11], is based on the spectral

parameter for the updating of a key parameter of the method, that ensures strict

convexity of the model functions. The second-order information provided by

the spectral parameter is included in the model functions that define the ratio-

nal approximations of both the objective function and the nonlinear constraints

at the beginning of each iteration, so as to improve the quality of the models.

The computational results corroborate the proposed modifications, especially

when jointly combined.

The structure of this paper is as follows. In Section 2, the basic ideas of

the MMA are presented, and the relaxed conservative condition is described.

In Section 3, a discussion of the dual problem associated with the MMA sub-

problem is provided together with details of our trust-region approach applied

to the dual of the MMA subproblem. The numerical results are given in Sec-

tion 4, and final remarks, in Section 5, conclude the text.

2 The Method of Moving Asymptotes and our modifications

Following Svanberg’s approach [16], artificial variables y = (y1, . . . , ym)T are

introduced in problem (1), so that the following enlarged problem is addressed:

minimize f0(x) +
m∑

i=1

(
ci yi + 1

2 di y2
i

)

subject to fi (x) − yi ≤ 0, i = 1, . . . , m,

x ∈ X, y ≥ 0,

(2)

where X = {x ∈ Rn; xmin
j ≤ x j ≤ xmax

j , j = 1, . . . , n} and ci and di are real

numbers such that ci ≥ 0 and di > 0 for i = 1, . . . , m. The constants ci must

be chosen large enough so that the variables yi are zero at the optimal solution,

in case the original problem has a nonempty feasible set and fulfills a constraint

qualification (e.g. Mangasarian-Fromovitz [14]).
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The 2002 version of MMA for solving problem (2) performs outer and inner

iterations. The indices (k, `) are used to denote the `-th inner iteration within

the k-th outer iteration.

To start, it is necessary to choose x (1) ∈ X , and then to compute y(1), obtaining

an initial feasible estimate (x (1), y(1)) for problem (2).

Thus, given (x (k), y(k)), a subproblem is generated and solved. This subprob-

lem is obtained from (2), replacing the objective function and the functions

that define the inequality constraints by separable strictly convex models g(k,`)
i .

Moreover, the original box is reduced, being defined around the current point

with the aid of the parameter σ (k). This subproblem is given next

minimize g(k,`)

0 (x) +
m∑

i=1

(
ci yi + 1

2 di y2
i

)

subject to g(k,`)
i (x) − yi ≤ 0, i = 1, . . . , m,

x ∈ X (k), y ≥ 0,

(3)

for k ∈ {1, 2, 3, . . . } and ` ∈ {0, 1, 2, . . . }, where

X (k) =
{

x ∈ X | x j ∈
[
x (k)

j − 0.9σ
(k)
j , x (k)

j + 0.9σ
(k)
j

]
, j = 1, . . . , n

}
.

The vector σ (k) = (σ
(k)

1 , . . . , σ (k)
n )T contains strictly positive parameters and its

updating is done as in [19].

Denoting the optimal solution of subproblem (3) by (x̂ (k,`), ŷ(k,`)), at the `-th

inner iteration, if the conservative condition holds at x̂ (k,`) for all functions of

the problem, that is,

fi (x̂ (k,`)) ≤ g(k,`)
i (x̂ (k,`)), ∀ i ∈ {0, 1, . . . , m}, (4)

then we set (x (k+1), y(k+1)) = (x̂ (k,`), ŷ(k,`)), and the k-th outer iteration is com-

pleted, after ` inner iterations. Otherwise, if g(k,`)
i (x̂ (k,`)) < fi (x̂ (k,`)) for at

least an index i ∈ {0, 1, . . . , m}, another inner iteration must be performed.

The model for the function fi is maintained the same for the index i such

that the approximation is conservative in x̂ (k,`), that is, g(k,`)
i (x) ≡ g(k,`+1)

i (x).

For the indices for which the approximation g(k,`)
i does not fulfill the conserva-

tive condition (4) in x̂ (k,`), the model is modified so that the new approximation

g(k,`+1)
i may satisfy the conservative condition in x̂ (k,`+1).
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It is worth mentioning that the conservative condition is demanded for both

the objective function and the constraints, producing, with regards to prob-

lem (2), strict reduction of the objective function value and feasible iterates,

respectively.

In the MMA, the approximating functions are stated as

g(k,`)
i (x) =

n∑

j=1

(
p(k,`)

i j

u(k)
j − x j

+
q(k,`)

i j

x j − l(k)
j

)

+ r (k,`)
i ,

where the poles of the moving asymptotes l(k)
j and u(k)

j are

l(k)
j = x (k)

j − σ
(k)
j and u(k)

j = x (k)
j + σ

(k)
j ,

and the coefficients p(k,`)
i j , q(k,`)

i j and r (k,`)
i are given by

p(k,`)
i j = (σ

(k)
j )2 max

{
0,

∂ fi

∂x j
(x (k))

}
+

ρ
(k,`)
i σ

(k)
j

4
,

q(k,`)
i j = (σ

(k)
j )2 max

{
0, −

∂ fi

∂x j
(x (k))

}
+

ρ
(k,`)
i σ

(k)
j

4
,

r (k,`)
i = fi (x (k)) −

n∑

j=1

(
p(k,`)

i j + q(k,`)
i j

σ
(k)
j

)

.

Within an outer iteration k, the only difference between two inner iterations

are the values of the parameters ρ
(k,`)
i . These parameters are strictly positive, so

that all the approximating functions g(k,`)
i are strictly convex and every subprob-

lem has a single global optimum. The updating of parameters ρ
(k,`)
i is the one

suggested in [19].

The model functions g(k,`)
i are first-order approximations to the original func-

tions fi at the current estimate, that is, conditions

g(k,`)
i (x (k)) = fi (x (k)) and ∇g(k,`)

i (x (k)) = ∇ fi (x (k))

must hold for all i = 0, 1, . . . , m. Another condition that must be satisfied by

the approximating functions is separability, that is,

g(k,`)
i (x) = g(k,`)

i0 +
n∑

j=1

g(k,`)
i j (x j ).
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Such a property is crucial in practice, because the Hessian matrices of the ap-

proximations are diagonal ones, allowing us to address large-scale problems.

The model proposed in [19] satisfies such a condition with g(k,`)

i0 = r (k,`)
i and

g(k,`)
i j (x j ) =

(
p(k,`)

i j

u(k)
j − x j

+
q(k,`)

i j

x j − l(k)
j

)

.

In [10], a modified version of the MMA is proposed based on the spectral

parameter, used in the updating of the parameters ρ
(k,`)
i . The second-order in-

formation provided by the spectral parameter is included in the model functions

g(k,`)
i that define the rational approximations of the objective function and of the

nonlinear constraints at the beginning of each outer iteration. The motivation for

proposing this idea came from the numerical observation that in many cases the

algorithm with Svanberg’s original updating stops making significant progress

in the solution of the sequence of solved subproblems. By improving the qual-

ity of the approximations this drawback was overcome. Moreover, the idea

preserves the global convergence property of the CCSA class, as proved in [11].

We have devised another modification for the MMA, based on relaxing the

conservative condition, by means of a summable controlled forcing sequence.

In this sense, we say that the relaxed conservative condition holds at the iterate

x̂ (k,`) if

fi (x̂ (k,`)) ≤ g(k,`)
i (x̂ (k,`)) + μk max

{
1,

∣
∣
∣g(k,`)

i (x̂ (k,`))

∣
∣
∣
}

, (5)

for all i ∈ {0, 1, . . . , m}, where

∞∑

k=1

μk ≤ μ < ∞. (6)

Therefore, the conservative condition is more relaxed at the beginning of the

generated sequence, and ultimately achieved in the end. The original conserva-

tive condition is recovered if μk ≡ 0, ∀k.

When it comes to the global convergence analysis, the arguments follow the

outline of the presented in [19], with the main modifications briefly described

bellow. The whole sequence of steps of this procedure is described in detail,

together with the convergence results, and presented in [11].
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Let the functions Fi be defined, for x ∈ X and y ∈ Rm , by

F0(x, y) = f0(x) +
m∑

i=1

(ci yi + 1
2 di y2

i ),

and

Fi (x, y) = fi (x) − yi , for all i = 1, . . . , m.

The original conservative condition (4) provides strict reduction in the objec-

tive function value F0 and feasible iterates for problem (2). In Lemma 5 of [11]

we prove that, adopting the relaxed conservative condition (5), the outer iterates

of problem (2) might be infeasible and the values F0 might increase. How-

ever, the most important remark of Lemma 5 is that this occurs in a controlled

way, i.e.: Fi (x (k), y(k)) ≤ μ̄k−1,i for i ≥ 1 and k ≥ 2 and F0(x (k+1), y(k+1)) <

F0(x (k), y(k)) + μ̄k,0 for k ≥ 1, where μ̄k,i = μk max{1, |g(k,`)
i (x̂ (k,`))|}.

After this lemma we have also proved that

∞∑

k=1

μ̄k,i < ∞, for all i = 0, 1, . . . , m.

Due to these results, in Lemma 7 of [11], we prove that the sequence {F0(x (k),

y(k))} is convergent. This result is the same one stated by Lemma 7.8 of [19],

in which the monotonicity had a crucial role on the proof. Considering this, the

whole reasoning of [19] remains valid based on the fact that μk → 0 as k → ∞,

so that the global convergence of the MMA modified algorithm is maintained.

The actual choice for the sequence {μk}∞k=1 is provided in Section 4, within the

description of the numerical results.

In the section that follows, a brief analysis of the dual of the MMA sub-

problem and its properties will motivate a new strategy for solving the MMA

subproblems.

3 Solving the MMA subproblems: interior-point methods versus a trust-

region strategy

In this section, we propose a new strategy for solving the MMA subproblems

by means of the associated dual problem, using a trust-region technique. This
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new strategy is an alternative for both approaches already devised by Svanberg:

the dual and the primal-dual interior-point ones. The dual approach is based on

Lagrangian relaxation duality and was implemented with a linesearch technique

[16]. In the primal-dual interior-point approach, a sequence of relaxed KKT

conditions are solved by Newton’s method [18]. We have devised a regularized

quadratic model for the dual subproblem with the solution expressed in a closed

form.

To simplify the notation, we omit the indices k and ` of the outer and inner

iterations, respectively. We denote the bounds of the variables by the values

α j and β j , i.e., α j = max { xmin
j , x (k)

j − 0.9σ
(k)
j } and β j = min { xmax

j , x (k)
j +

0.9σ
(k)
j }, for j = 1, . . . , n, so that the box constraints of the MMA sub-

problems are: α j ≤ x j ≤ β j for j = 1, . . . , n and yi ≥ 0 for i = 1, . . . , m.

Initially, we show how to obtain an explicit expression of the dual objective

function, thereby generating the dual problem corresponding to the MMA sub-

problem. We highlight some properties associated with the dual function. Then,

we propose a trust-region scheme and present the algorithm.

3.1 The dual problem associated with the MMA subproblem

Considering only the main constraints, since the simple box and the non-negat-

ivity constraints will be incorporated in the minimization process, the Lagran-

gian corresponding to subproblem (3) is given by:

L(x, y, λ) = g0(x) +
m∑

i=1

λi gi (x) +
m∑

i=1

(
ci yi + 1

2 di y2
i

)
−

m∑

i=1

λi yi

=
n∑

j=1

L j (x j , λ) + r0 + λT r +
m∑

i=1

(
ci yi + 1

2 di y2
i − λi yi

)

where

r = (r1, . . . , rm)T , p j = (p1 j , . . . , pmj )
T , q j = (q1 j , . . . , qmj )

T ,

L j (x j , λ) =
p0 j + λT p j

u j − x j
+

q0 j + λT q j

x j − l j
,

and λ = (λ1, . . . , λm)T is the vector of Lagrange multipliers.

Comp. Appl. Math., Vol. 30, N. 1, 2011
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The dual objective function W is defined, for λ ≥ 0, as follows:

W (λ) = minx, y
{
L(x, y, λ); α j ≤ x j ≤ β j , yi ≥ 0, ∀i, ∀ j

}

= r0 + λT r +
n∑

j=1

Ŵ j (λ) +
m∑

i=1

W̃i (λ)
(7)

where

Ŵ j (λ) = min
x j

{
L j (x j , λ); α j ≤ x j ≤ β j

}
, j = 1, . . . , n, (8)

W̃i (λ) = min
yi

{
ci yi + 1

2 di y2
i − λi yi ; yi ≥ 0

}
, i = 1, . . . , m. (9)

Note that the separability of the MMA primal approximations allows the

Lagrangian function L(x, y, λ) to be written as the sum of n + m individual

functions and therefore, the (n + m)-dimensional minimization problem (7)

can be split into the n + m minimization problems (8) and (9). The use of the

minimum instead of the infimum in expressions (7)-(9) is justified by the exis-

tence of the minimizers of (8) and (9). The expressions of these minimizers,

which we denote by x j (λ) and yi (λi ), respectively, are:

x j (λ) = max
{
α j , min

{
β j , x∗

j (λ)
}}

, for j = 1, . . . , n, (10)

where

x∗
j (λ) =

(p0 j + λT p j )
1/2l j + (q0 j + λT q j )

1/2u j

(p0 j + λT p j )1/2 + (q0 j + λT q j )1/2
(11)

and

yi (λi ) = max
{

0,
λi − ci

di

}
, for i = 1, . . . , m. (12)

Note that x j : Rm → R and yi : R → R are continuous functions of λ, but

not differentiable at the points λ such that x j (λ) = α j and x j (λ) = β j , for all

j = 1, . . . , n, and λi = ci , for all i = 1, . . . , m, respectively. Because there

are explicit expressions for the minimizers x j (λ) of (8) and yi (λi ) of (9), there

is also an explicit expression for the dual objective function (7), which is:

W (λ) = r0 + λT r +
n∑

j=1

(
p0 j + λT p j

u j − x j (λ)
+

q0 j + λT q j

x j (λ) − l j

)

+
m∑

i=1

(
ci yi (λi ) + 1

2 di y2
i (λi ) − λi yi (λi )

)
.
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Thus, the dual problem corresponding to the MMA subproblem (3) is given

by
maximize W (λ)

subject to λ ≥ 0.
(13)

Once the dual problem (13) is solved, the optimal solution of the MMA (pri-

mal) subproblem (3) is obtained by replacing the dual optimal solution in the

expressions of x j (λ) and yi (λi ).

3.2 Properties of the dual function

Before proposing our approach to solve the dual problem (13) corresponding to

the MMA subproblem (3), we comment on some properties associated with the

dual function W .

First, note that the function W : Rm → R is concave, since it is the pointwise

minimum of a collection of functions which are linear in λ. Moreover, it is

continuous because x j (λ) and yi (λi ) depend continuously on λ and l j < α j ≤

x j (λ) ≤ β j < u j . More than that, the functionW is continuously differentiable

and its first-order partial derivatives with respect to the dual variables λi are given

by the constraints of the primal subproblem evaluated at x j (λ) and yi (λi ), i.e.,

∂W

∂λi
(λ) = gi (x(λ)) − yi (λ)

=
n∑

j=1

(
pi j

u j − x j (λ)
+

qi j

x j (λ) − l j

)
+ ri − yi (λi ),

for all i = 1, . . . , m and λ ∈ Rm , as stated in Proposition 6.1.1 of [2]. Note

that, although y does not belong to a compact set, the existence of the mini-

mizer (12) justifies the usage of such a proposition.

Since the dual problem can be written explicitly, and the associated primal

problem displays a relatively simple algebraic form, the second-order partial

derivatives of the dual function can be written in a closed form:

∂2W

∂λi∂λk
(λ) =

n∑

j=1

[(
pi j

(u j − x j (λ))2
−

qi j

(x j (λ) − l j )2

)(
∂x j

∂λk
(λ)

)]
− y′

i (λi ),

where we have abused on the notation by referring to ∂x j/∂λk(λ), as x j (λ) is

not differentiable at all points. The value of such a derivative assumed by a free

Comp. Appl. Math., Vol. 30, N. 1, 2011
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variable x j (λ), i.e., α j < x j (λ) < β j , may be different from the value of this

derivative when the variable x j (λ) is fixed, i.e., x j (λ) = α j or x j (λ) = β j , which

is obviously zero. This means that the second derivatives of the dual function

are discontinuous whenever a free primal variable becomes fixed, or vice versa.

From the primal-dual relationships (10), we see that the dual space is partitioned

in several regions separated by second-order hypersurfaces of discontinuity.

These surfaces are defined by x∗
j (λ) = α j and x∗

j (λ) = β j , where x∗
j (λ) is

given by (11).

3.3 Trust-region method

In this subsection we present a strategy to solve the dual subproblems of the

MMA, using a trust-region scheme. Consider then the dual problem corre-

sponding to the MMA subproblem as the minimization of function W (λ) subject

to no other constraints than non-negativity requirements on the dual variables:

minimize W (λ)

subject to λ ≥ 0,
(14)

where W (λ) = −W (λ). The quadratic model for the function W , adopted at

each iteration k̄ of the trust-region algorithm is:

mk̄(λ) = W (λ(k̄)) + ∇W (λ(k̄))T (λ − λ(k̄)) + 1
2η(k̄)‖λ − λ(k̄)‖2

2, (15)

where η(k̄) is the spectral parameter associated with the function W at the cur-

rent iterate, that is,

η(k̄) =
(s(k̄))T t (k̄)

(s(k̄))T s(k̄)
(16)

with

s(k̄) = λ(k̄) − λ(k̄−1) and t (k̄) = ∇W (λ(k̄)) − ∇W (λ(k̄−1)).

The second-order term in the quadratic model mk̄ can be interpreted as a quad-

ratic regularization term of a linear model of the function W in the proximal

sense, where the spectral parameter η(k̄) has the flavour of an adaptive regular-

ization parameter [12]. This interpretation justifies the second-order term of the

model, since the Hessian matrix ∇2W is discontinuous. Furthermore, models
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similar to (15) have been considered, as in [1] where the quadratic term of the

model includes the spectral parameter in order to speed up a procedure based on

the projected gradient, and in [21] where spherical quadratic convex approxima-

tions are employed in gradient-only optimization methods.

At each iteration k̄, we should minimize the model mk̄ subject to a trust region

and to the nonnegativity of the dual variables. Any norm may be used to define

the trust region, but since the feasible set of (14) is an orthant, the choice || ∙ ||∞
fits better in the sense that the constraints of the trust-region subproblem are

simple-bounded ones.

Therefore, we obtain the problem

minimize mk̄(λ)

subject to λ(k̄) ≤ λ ≤ λ
(k̄)

,
(17)

where λ
(k̄)
i = max{0, λ

(k̄)
i − 1(k̄)}, λ

(k̄)

i = λ
(k̄)
i + 1(k̄) and 1(k̄) > 0 is the

trust-region radius. The solution λ̂ ∈ Rm of problem (17) is given by the closed

form

λ̂ = min
{
λ

(k̄)
, max

{
λ(k̄), λ(k̄) −

1

η(k̄)
∇W (λ(k̄))

}}
. (18)

A model algorithm based on the trust-region framework is given next for

completeness.

Algorithm: A trust-region approach applied to the dual of the MMA sub-

problem

Given λ(1), 1(1) > 0, 0 < υ < ω < 1, 0 < γ0 ≤ γ1 < 1 ≤ γ2, for

k̄ = 1, 2, . . . until convergence

1. Compute η(k̄) using (16) and λ̂ as in (18).

2. Compute W (λ̂) and

θk̄ =
W (λ(k̄)) − W (λ̂)

mk̄(λ
(k̄)) − mk̄(λ̂)

.

3. Set

λ(k̄+1) =

{
λ̂, if θk̄ > υ

λ(k̄), otherwise.

Comp. Appl. Math., Vol. 30, N. 1, 2011



“main” — 2011/2/24 — 19:38 — page 163 — #13

MÁRCIA A. GOMES-RUGGIERO, MAEL SACHINE and SANDRA A. SANTOS 163

4. Set

1(k̄+1) ∈






[1(k̄), γ21
(k̄)], if θk̄ ≥ ω [very successful iteration]

1(k̄), if υ < θk̄ < ω [successful iteration]

[γ01
(k̄), γ11

(k̄)], otherwise. [unsuccessful iteration]

In the first iteration of our algorithm, to compute the spectral parameter η(1),

we need another estimate λ(0) distinct from the initial estimate λ(1). This estimate

λ(0) is computed by perturbing λ(1), i.e., λ(0) = λ(1) + ε. In the numerical tests,

we have used ε = 10−3.

We have stated a summary of the algorithm used in the numerical experiments.

The choice adopted in this work for updating the trust-region radius is based on

[6, 7]. For further algorithmic details, see [11].

Despite not being our primary motivation, it is worth mentioning that (18)

coincides with the first Spectral Projected Gradient (SPG) trial point (cf. [3])

for problem (14) within the bound constraints of (17). For further details on

the SPG, see also [4] and references therein. Instead of adopting the linesearch

procedure of the SPG algorithm, we use a trust-region scheme. As usual in

methods that employ spectral gradients, better practical results are obtained by

not imposing sufficient functional decrease at every iteration. In this sense, the

acceptance condition of the Step 3 provides a nonmonotone decrease for the

function W because θk̄ > υ may be seen as the relaxed Armijo-like condition

W (λ̂) < W (λ(k̄)) + υ∇W (λ(k̄))T (λ̂ − λ(k̄)) +
υ

2
η(k̄)||λ̂ − λ(k̄)||22,

whenever mk̄(λ
(k̄)) > mk̄(λ̂).

4 Numerical results

This section is concerned with the description of the computational tests of

modified versions of the MMA, based on the spectral updating, the relaxed con-

servative condition, and our trust-region approach applied to the dual of the

MMA subproblem. The code was implemented in Matlab and the experi-

ments were run in a Mac Pro with two Xeon E5462 processors of 2.8 Ghz and

12 GB of RAM memory (without multiprocessing).
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Two families of academic problems were addressed, parameterized by the

number of variables n > 1, and suggested in [19]. Their general structure re-

sembles that of topology optimization problems, namely nonconvex problems

with a large number of variables, upper and lower bounds on all variables, and a

relatively small number of general inequality constraints.

Problem 1 has a strictly convex objective function and nonlinear constraints

defined by means of strictly concave functions, so that the feasible region is

nonconvex. Problem 2, on the other hand, has a strictly concave objective func-

tion and the functions that define the feasible region are strictly convex. They

are stated as

Academic problem 1:

minimize xT Sx

s.t.
n

2
− xT Px ≤ 0,

n

2
− xT Qx ≤ 0,

−1 ≤ x j ≤ 1, ∀ j,

Academic problem 2:

minimize −xT Sx

s.t. xT Px −
n

2
≤ 0,

xT Qx −
n

2
≤ 0,

−1 ≤ x j ≤ 1, ∀ j,

where the square matrices S, P and Q of dimension n are symmetric and positive

definite. Their elements are given by

Si j =
2 + sen(4παi j )

(1 + |i − j |) ln n
, Pi j =

1 + 2αi j

(1 + |i − j |) ln n
, Qi j =

3 − 2αi j

(1 + |i − j |) ln n
,

where

αi j =
(i + j − 2)

(2n − 2)
∈ [0, 1]

for all i and j . The feasible starting points for Problems 1 and 2 are x (1) =

(0.5, . . . , 0.5)T ∈ Rn and x (1) = (0.25, . . . , 0.25)T ∈ Rn , respectively.

The problem dimension n varied in {100, 500, 1000, 2000} for both prob-

lems. Problems 1 and 2 are formulated as in (1), so they were initially written

in the format (2) with di = 1 and ci = 1000, for i = 1, . . . , m. These choices

have produced y ≡ 0 for each outer iterate.

To establish the stopping criteria, note that the KKT conditions of the con-

sidered problems may be stated as follows, using the notation a+ = max{0, a}
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and a− = max{0, −a}:

(1 + x j )

(
∂ f0

∂x j
(x) + λ1

∂ f1

∂x j
(x) + λ2

∂ f2

∂x j
(x)

)+

= 0, j = 1, . . . , n,

(1 − x j )

(
∂ f0

∂x j
(x) + λ1

∂ f1

∂x j
(x) + λ2

∂ f2

∂x j
(x)

)−

= 0, j = 1, . . . , n,

fi (x)+ = 0, i = 1, 2,

λi fi (x)− = 0, i = 1, 2,

λi ≥ 0, i = 1, 2,

−1 ≤ x j ≤ 1, j = 1, . . . , n.

The 2n+4 equalities displayed previously may be concisely stated as rϕ(x, λ) =

0, ϕ = 1, . . . , 2n + 4. As a by-product of the strategies employed to solve the

problems, the inequalities of the KKT system are always fulfilled by the primal

and dual variables, x j and λi , respectively. The outer loop finishes successfully

whenever x and λ are such that

1

n

2n+4∑

ϕ=1

(
rϕ(x, λ)

)2
≤ 10−10.

The sequence {μk}∞k=1 used in (5) to relax the conservative condition was

chosen as follows:

μk =
Nk

(k + 1)1.1
,

with

N1 = ||r (1)
ϕ ||2, N2 = min

{
||r (1)

ϕ ||2, ||r
(2)
ϕ ||2

}
,

and for k ≥ 3

Nk = min
{
||r (k−2)

ϕ ||2, ||r (k−1)
ϕ ||2, ||r (k)

ϕ ||2
}
,

where r (k)
ϕ ≡ rϕ(x (k), λ(k)) is the residue of the KKT conditions of problem (2)

at the k-th outer iteration. To ensure that the sequence Nk is bounded, we take

Nk = min{Nk, Nmax}. However, the value Nmax, set at 1012 in the numerical

tests, was never reached. In this way, the sequence {μk}∞k=1 naturally fulfills the

assumption (6).
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Three strategies were adopted to solve the problems: in Strategy 1 the spec-

tral parameter was used to update the parameters ρ
(k,`)
i at the beginning of

each outer iteration; in Strategy 2 the relaxed conservative condition (5) was

employed as the acceptance criterion so that the solution of the MMA sub-

problem becomes the next outer iterate; in Strategy 3 both strategies 1 and 2

are combined.

We have compared eight distinct instances: Svanberg’s primal-dual approach

(PD), our dual trust-region approach (TR), and the combination of these

approaches with each of the three strategies described above.

From the whole set of comparative results involving all these combinations,

and thoroughly described in [11], we have noticed that the strategies that used

the dual trust-region approach are competitive in terms of the demanded num-

ber of iterations, and more efficient when it comes to the CPU time spent, in

comparison with those that rely upon the primal-dual approach.

Among the instances that used the dual trust-region approach, we have ob-

served that in most of the cases Strategy 1 usually needs slightly more outer

iterations to reach convergence than the pure algorithm without any modifica-

tion. However, the amount of additional inner iterations decreases in a larger

proportion, so that for both problems, the total number of solved subproblems

is smaller for the spectral strategy than for the method without further modi-

fications.

Analyzing Strategy 2, for Problem 1, we have noticed that despite the increase

in the number of outer iterations, the additional inner iterations demanded were

so few that the total number of solved subproblems is even smaller than in

Strategy 1. For Problem 2, although the additional amount of inner iterations

performed is not so small, all in all, the total effort decreases when compared

with Strategy 1 and with the original algorithm.

Focusing now on Strategy 3, the results obtained were excellent. The number

of both outer and additional inner iteration decreased by a large amount, and

consequently the CPU time spent is the least among the four instances that used

the dual trust-region approach for solving the MMA subproblem.

Additional tests were produced by randomly generating ten initial points with-

in the simple bounds of the problems, for each of the dimensions under con-
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sideration. Thus, eighty tests were solved, forty for Problem 1 and forty for

Problem 2. Each strategy was used for solving these tests, and the results cor-

roborate the previous ones. It is important to note that for each test, including

the aforementioned, with the initial point from the literature, all the strategies

achieved the same optimal solution.

In Figure 1 we depict the performance profiles [8] of the results correspond-

ing to the eighty generated tests. Figure 1(a) is concerned with the number of

solved subproblems, whereas Figure 1(b), with the CPU time spent. In both

profiles we notice that Strategies 3 PD and 3 TR are the most efficient. From

Figure 1(a) it is evident that Svanberg’s PD is more efficient in terms of the

number of solved subproblems. Nevertheless, both approaches (PD and TR) for

solving the subproblems are competitive, when compared pairwise with each of

the three strategies. When it comes to the CPU time spent, the strategies that

rely upon the dual trust-region approach were more efficient, as can be seen in

Figure 1(b).

5 Conclusions

We have proposed a new strategy for solving the MMA subproblems by means

of its dual formulation, using a trust-region technique. This alternative approach

deals with the dual problem associated with the MMA subproblem, that is a

maximization problem of a concave function under nonnegativity constraints.

We have taken advantage of the dual objective function properties, such as be-

ing concave and continuously differentiable up to first-order, together with the

existence of a closed form for the solution of the subproblem obtained with a

regularized spectral model within a trust-region scheme. Such a globalization

strategy was the key point in recasting, in a simpler way, the dual approach orig-

inally adopted by Svanberg [16], and replaced by the primal-dual approach [18].

We have also presented a modification for the MMA, based on relaxing the con-

servative condition by means of a summable controlled forcing sequence, so that

the maintenance of global convergence is proved [11]. Another modification for

the MMA, previously proposed by the authors, was recalled to be used in the

numerical tests. It is based on the spectral parameter for updating the parameters

ρ
(k,`)
i , so as to improve the quality of the MMA models.
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Figure 1 – Performance profiles for Problems 1 and 2.

The numerical experiments revealed that the suggested dual approach is sim-

pler and more efficient than Svanberg’s primal-dual strategy for solving the

family of test problems under consideration. Indeed, we have noticed that the

performance of our dual trust-region approach was quite similar to the one of

Svanberg’s primal-dual approach in terms of the employed number of itera-

tions, but when it comes to the CPU time demanded, our approach was by far

superior. Additionally, the performances of both the trust-region dual and the

primal-dual approaches were improved in an increasing pattern with the addi-

tion of each suggested modification, namely using the spectral updating (Strat-
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egy 1), the relaxed conservative condition (Strategy 2) and the combination of

these two ideas (Strategy 3), pointing out the potential contribution of such

modifications for the original algorithm.

Acknowledgements. This work is partially supported by FAPESP (06/52846-

7, 06/53768-0, 10/09773-4), CNPq (303465/2007-7, 306220/2009-1) and PRO-

NEX-Optimization. The authors are grateful for the comments and suggestions

of the anonymous referees, which helped to improve the presentation of the

original manuscript.

REFERENCES

[1] A. Auslender, P.J.S. Silva and M. Teboulle, Nonmonotone projected gradient
methods based on barrier and Euclidean distances. Comput. Optim. Appl.,
38 (2007), 305–327.

[2] D.P. Bertsekas, Nonlinear Programming: Second Edition. Athena Scientific,
Belmont (2003). (Second Printing).

[3] E.G. Birgin, J.M. Martínez and M. Raydan, Nonmonotone spectral projected
gradient methods on convex sets. SIAM J. Optim., 10 (2000), 1196–1211.

[4] E.G. Birgin, J.M. Martínez and M. Raydan, Spectral Projected Gradient Methods.
In Encyclopedia of Optimization, C.A. Floudas and P.M. Pardalos, editors. Second
Edition. Springer (2009), 3652–3659.

[5] M. Bruyneel, P. Duysinx and C. Fleury, A family of MMA approximations for
structural optimization. Struct. Multidiscip. Optim., 24 (2002), 263–276.

[6] A R. Conn, N.I.M. Gould and Ph.L. Toint, LANCELOT: A Fortran Package for
Large-Scale Nonlinear Optimization (Release A). Springer-Verlag, Berlin, Hei-
delberg (1992).

[7] A.R. Conn, N.I.M. Gould and Ph.L. Toint, Trust-Region Methods. SIAM,
Philadelphia (2000).

[8] E.D. Dolan and J.J. Moré, Benchmarking optimization software with perfor-
mance profiles. Math. Program., 91 (2002), 201–213.

[9] C. Fleury and V. Braibant, Structural optimization: A new dual method using
mixed variables. Internat. J. Numer. Methods Engrg., 23 (1986), 409–428.

[10] M.A. Gomes-Ruggiero, M. Sachine and S.A. Santos, A spectral updating for the
method of moving asymptotes. Optim. Methods Softw., 25(6) (2010), 883–893.

Comp. Appl. Math., Vol. 30, N. 1, 2011



“main” — 2011/2/24 — 19:38 — page 170 — #20

170 SOLVING THE DUAL SUBPROBLEM OF THE MMA

[11] M.A. Gomes-Ruggiero, M. Sachine and S.A. Santos, Globally convergent modi-
fications to the Method of Moving Asymptotes and the solution of the subproblems
using trust regions: theoretical and numerical results. Technical Report RP 15/10,
IMECC, Unicamp, revised in November (2010), 44 p. Available at
http://www.ime.unicamp.br/rel_pesq/relatorio.html.

[12] O. Güler, New proximal point algorithms for convex minimization. SIAM J. Op-
tim., 2(4) (1992), 649–664.

[13] D.H. Li and M. Fukushima, A derivative-free line search and global convergence
of Broyden-like method for nonlinear equations. Optim. Methods Softw., 13(3)
(2000), 181–201.

[14] O.L. Mangasarian and S. Fromovitz, The Fritz John necessary optimality condi-
tions in the presence of equality and inequality constraints. J. Math. Anal. Appl.,
17 (1967), 37–47.

[15] Q. Ni, A globally convergent method of moving asymptotes with trust region
technique. Optim. Methods Softw., 18(3) (2003), 283–297.

[16] K. Svanberg, The method of moving asymptotes – a new method for structural
optimization. Internat. J. Numer. Methods Engrg., 24 (1987), 359–373.

[17] K. Svanberg, A Globally Convergent Version of MMA without Linesearch. In:
G.I.N. Rozvany and N. Olhoff (eds). Proceedings of the First World Congress of
Structural and Multidisciplinary Optimization, (1995), 9–16.

[18] K. Svanberg, The Method of Moving Asymptotes – Modelling aspects and solution
schemes. Lecture Notes for the DCAMM course Advanced Topics in Structural
Optimization, (1998), 24 p.

[19] K. Svanberg, A class of globally convergent optimization methods based on con-
servative convex separable approximations. SIAM J. Optim., 12 (2002), 555–573.

[20] H. Wang and Q. Ni, A new method of moving asymptotes for large-scale uncon-
strained optimization. Appl. Math. Comput., 203 (2008), 62–71.

[21] D.N. Wilke, S. Kok and A.A. Groenwold, The application of gradient-only op-
timization methods for problems discretized using non-constant methods. Struct.
Multidiscip. Optim., 40 (2010), 433–451.

[22] W.H. Zhang and C. Fleury, A modification of convex approximation methods for
structural optimization. Comput. & Structures, 64 (1997), 89–95.

[23] C. Zillober, Global convergence of a nonlinear programming method using con-

vex approximations. Numer. Algorithms, 27 (2001), 256–289.

Comp. Appl. Math., Vol. 30, N. 1, 2011


