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Abstract. We consider one-parameter families of 2-dimensional vector fields Xμ having in a

convenient region R a semistable limit cycle of multiplicity 2m when μ = 0, no limit cycles if

μ / 0, and two limit cycles one stable and the other unstable if μ ' 0.

We show, analytically for some particular families and numerically for others, that associated to

the semistable limit cycle and for positive integers n sufficiently large there is a power law in the

parameter μ of the form μn ≈ Cnα < 0 with C, α ∈ R, such that the orbit of Xμn through a

point of p ∈ R reaches the position of the semistable limit cycle of X0 after given n turns.

The exponent α of this power law depends only on the multiplicity of the semistable limit cycle,

and is independent of the initial point p ∈ R and of the family Xμ. In fact α = −2m/(2m − 1).

Moreover the constant C is independent of the initial point p ∈ R, but it depends on the family

Xμ and on the multiplicity 2m of the limit cycle 0.
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1 Introduction and statement of the main results

Let Xμ be an one-parameter family of 2-dimensional vector fields. An isolated

periodic orbit of Xμ in the set of all periodic orbits of Xμ is called a limit cycle.

For a definition of stable or unstable limit cycle, semistable limit cycle and

multiplicity of a limit cycle, see for instance [3, 6].

Suppose that X0 has a semistable limit cycle 0, that Xμ for μ / 0 has no

limit cycles in a given annular neighborhood A of 0, and that Xμ for μ ' 0 has

two limit cycles near 0 in A, one stable and the other unstable. So the family

Xμ exhibits a bifurcation at μ = 0. We also assume that the flow of every Xμ

with μ / 0 enters into A through one of its boundaries B ≈ S1 = R/(2πR)

and exits through the other. We denote by R the annular subregion of A limited

by B and 0.

We take the annular region R sufficiently narrow in such a way that for a

point p ∈ R we can choose as coordinates (r, θ), where θ is the angular vari-

able along the periodic orbit γ with θ ∈ S1, and r is the distance along the

orthogonal segment to γ through p.

We now fix a point p = (r, θ) ∈ R \ 0. For μ / 0 the orbit γμ of Xμ through

p crosses γ in positive time. We define μn as the value of μ / 0 for which γμ

reaches the point q = (0, θ + 2πn) ∈ 0, i.e. the orbit γμn starting at p reaches

0 at the point q after doing exactly n turns. In this way we have a sequence of

increasing values of the parameter μ:

μl < μl+1 < ∙ ∙ ∙ < μn < ∙ ∙ ∙ < 0 ,

tending to 0. We have the following conjecture.

Conjecture 1. Assume that we have an one-parameter family of 2-dimensional

vector fields Xμ satisfying all the previous assumptions stated in this section.

Then for positive integers n sufficiently large we have that

μn ≈ Cnα with α = −
2m

2m − 1
,

with C ∈ R. Moreover the constant C is independent of the initial point p ∈ R,

but depends on the family Xμ and on the multiplicity 2m of the limit cycle 0.
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The expression Cnα for μn is called a power law with constant C and expo-

nent α. Note that in particular the conjecture says that the exponent α depends

only on the multiplicity of the semistable limit cycle 0, and is independent of

the initial point p ∈ R and of the family Xμ. In this sense the exponent α is a

universal constant for the semistable limit cycles.

Conjecture 1 is supported by some analytical and numerical results. The

analytical result is the following one.

Theorem 2. Let (r, θ) be the polar coordinates on the cylinder R × S1. Con-

sider the one-parameter family of 2-dimensional vector fields

Xμ = (ṙ , θ̇ ) = (kr2m − μ, 1) with k > 0 and μ ∈ R.

Such a family for μ = 0 has the semistable limit cycle r = 0 of multiplicity

2m. Then we have that μn ≈ Cnα where

α = −
2m

2m − 1
and C = −k− 1

2m−1

(
4m sin

( π

2m

))− 2m
2m−1

.

Theorem 2 is proved in Section 2.

Note that in Theorem 2 the constant C depends on the vector fields Xμ

through the constant k, and also depends on the multiplicity of the semistable

limit cycle, but it is independent on the initial point p ∈ R used for computing

the values μn . All this will be detailed in the proof of Theorem 2.

The numerical results giving support to Conjecture 1 are described in Sec-

tion 3.

It easy to check that when μn follows a power law Cnα the value of the limit

lim
n→∞

μn − μn−1

μn+1 − μn
,

is always equal to 1. This quotient is the one studied by Feigembaum [4, 5]

when he found the universal constant for a cascade of period doubling bifurca-

tions. But for power laws this limit does not provide any information.

In this paper we have restricted our attention to one-parameter families of

2-dimensional vector fields Xμ, but if we consider the return map f0 : I → I

associated to the semistable limit cycle 0 of X0, and extend it to Xμ for μ in a
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neighborhood of μ = 0, we get an one-parameter family fμ : I → I of interval

maps. Here I is a small segment transversal to the flow of X0 which intersects

the semistable limit cycle 0 at a point q in the interior of I . We denote by qi

with i = 1, 2 the endpoints of the segment I .

By construction the family of interval maps fμ has a semistable fixed point of

multiplicity 2m at μ = 0, no fixed points if μ / 0, and two fixed points one

stable and the other unstable if μ ' 0. We can translate the results obtained for

the studied families of 2-dimensional vector fields Xμ, to their corresponding

families of interval maps fμ.

We denote by R the subsegment of I with endpoints either q1 and q, or q

and q2, such that the ω-limit of all the points of R under f0 are equal to q.

As for Xμ we get for the semistable fixed point q and for positive integers n

sufficiently large a power law in the parameter μ of the form μn ≈ Cnα < 0

with C, α ∈ R, such that the orbit of fμn through a point of p ∈ R reaches

the position q of the semistable fixed point of f0 after n iterates. Translating

Conjecture 1 from the family of vector fields Xμ to the family of interval maps

fμ we have the conjecture.

Conjecture 3. Assume that we have an one-parameter family of interval maps

fμ satisfying the previous assumptions. Then for positive integers n sufficiently

large we have that

μn ≈ Cnα with α = −
2m

2m − 1
,

with C ∈ R. Moreover C is independent of the initial point p ∈ R, but depends

on the family fμ and on the multiplicity 2m of the semistable fixed point q.

Some open questions are:

(1) How to prove Conjectures 1 or 3?

(2) Does there exist a similar result or conjecture on the stable manifold

of semistable limit cycles for one-parameter families of vector fields in

dimension larger than 2?

(3) Does there exist a similar result or conjecture on the stable manifold of

semistable fixed points for one-parameter families of functions in dimen-

sion larger than 1?
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2 Proof of Theorem 2

The solutions of the vector field Xμ = (ṙ , θ̇ ) = (kr2m −μ, 1) with k > 0 on the

cylinder (r, θ) ∈ R× S1 can be studied solving the differential equation

dr

dθ
= kr2m − μ. (1)

Clearly for μ < 0 we have that dr/dθ > 0, therefore the differential equa-

tion (1) has no periodic orbits. For μ = 0 the unique periodic orbit is r(θ) = 0,

that is a semistable limit cycle of multiplicity 2m. It attracts the orbits of the

half-cylinder r < 0, and repels the orbits of the other half-cylinder r > 0.

Finally when μ > 0 equation (1) has exactly two limit cycles, namely r±(θ) =

±(μ/k)1/(2m). The limit cycle r−(θ) is stable, and the limit cycle r+(θ) is

unstable.

The differential equation (1) is of separable variables, so we can solve it and

get that the solution r(θ) such that r(0) = r0 is

θ =
r0

μ
F

(
1

2m
, 1; 1 +

1

2m
;

kr2m
0

μ

)

−
r(θ)

μ
F

(
1

2m
, 1; 1 +

1

2m
;

kr(θ)2m

μ

)
, (2)

where F(a, b; c; x) is the hypergeometric function

F(a, b; c; x) =
∞∑

k=0

(a)k(b)k

(c)k

xk

k!
.

Here we have used the notation

(a)k =

{
1 if k = 0,

a(a + 1)(a + 2) ∙ ∙ ∙ (a + k − 1) if k > 0.

For more details on this hypergeometric function see [1].

In order to compute μn we must find the value of μ satisfying equation (2)

when θ = 2πn and r(2πn) = 0 for a given value of r0 < 0, i.e. we must

solve

θ =
r0

μn
F

(
1

2m
, 1; 1 +

1

2m
;

kr2m
0

μn

)
, (3)

with respect to μn . Developing equation (3) in Laurent series with respect to

the small parameter μn we obtain

2πn =
π

2m
csc

( π

2m

)
k− 1

2m (−μn)
1−2m

2m −
r1−2m

0

k(1 − 2m)
+ O(μn).
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Since μn → 0 when n → ∞, for n sufficiently large we have that

2πn ≈
π

2m
csc

( π

2m

)
k− 1

2m (−μn)
1−2m

2m .

From this expression the power law stated in Theorem 2 follows.

3 Numerical results for vector fields

In this section we shall compute the sequence (μn) numerically for several dif-

ferent kind of planar polynomial vector fields, and we shall see that all the

sequences obtained provide support to Conjecture 1.

Once we have the numerical values of the sequence (μn) if for n sufficiently

large this sequence follows a power law Cnα, we can compute α and C

as follows

α = lim
n→∞

αn = lim
n→∞

log |μn+1| − log |μn|

log(n + 1) − log n
,

C = − exp( lim
n→∞

Cn) = − exp( lim
n→∞

(log |μn| − α log n)).

(4)

We divide the rest of this section in five subsections. In every one we study

Conjecture 1 for a different family of polynomial vector fields Xμ.

3.1 A polynomial vector field of degree 5

In all this subsection X = (P, Q) will denote the following polynomial vector

field of degree 5

X (x, y) = (P(x, y), Q(x, y))

=
(
−y + x(x2 + y2 − 1)2, x + y(x2 + y2 − 1)2

)
.

Since in polar coordinates (r, θ), defined by (x, y) = (r cos θ, r sin θ), the

vector field becomes

X (r, θ) = (r(r2 − 1)2, 1),

it follows that the phase portrait of X is formed by an unstable focus at the

origin O and a semistable limit cycle 0 at r = 1 of multiplicity 2, see Figure 1.

If an orbit is contained in the annulus 0 < r < 1, then its α-limit is O and
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Figure 1 – Phase portrait in the Poincaré disc of the vector field X .

its ω-limit is 0. If an orbit is contained in the annulus r > 1, then its α-limit

is 0 and its ω-limit is at infinity. Moreover, in the Poincaré compactification

the circle of infinity is formed by a continuum of singular points. For more

details on the Poincaré compactification see Chapter 5 of [3]. When we work

with the Poincaré compactification of a polynomial vector field we shall use

the notation introduced in that chapter. Thus the continuum of singular points

at infinity follows from the fact that the polynomials F(z1) and G(z1) (defined

in the mentioned Chapter 5) and whose zeros provide the singular points at

infinity are identically zero.

See Chapter 7 of [3] for a summary on the dependence of the limit cycles with

respect to the parameter of a rotated family of vector fields. The family of vector

fields

Xμ(x, y) = (P(x, y), Q(x, y, μ)) = (P(x, y), Q(x, y) + μP(x, y)) ,

forms a rotated parameter family with respect to the parameter μ ∈ R, because

the singular points of Xμ remain the same for all μ, the determinant
∣
∣
∣
∣
∣
P(x, y) Q(x, y, μ1)

P(x, y) Q(x, y, μ2)

∣
∣
∣
∣
∣
= (μ2 − μ1)P(x, y)2 ≥ 0,

if μ1 < μ2; and the equality cannot hold on an entire periodic orbit of Xμ

with μ = μi , for i = 1, 2. To verify this, it is sufficient to see that the curve

P(x, y) = 0 cannot contain an oval. Since in polar coordinates this curve be-

comes the origin union the curve tan θ = (r2 − 1)2, it follows that it cannot
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contain an oval surrounding the origin, the unique singular point of the system,

because tan θ cannot take negative values. We note that in the definition of our

rotated family of vector fields the interval coincides with the real line.

Of course X0 = X . So, by the semistable property (see Chapter 7 of [3]),

μ = 0 is a bifurcation value of the parameter μ because for μ ' 0 there are

two limit cycles (one stable and the other unstable) since the multiplicity of

the semistable limit cycle x2 + y2 = 1 of the vector field X is two, and for

μ / 0 there are no limit cycles.

Using the program P4 see the last chapter of [3] (which allows to draw the

compactified phase portrait of a polynomial vector field in the Poincaré disc),

we know that for μ < 0 small (from now on small means sufficiently small) the

vector field Xμ has no limit cycles in the whole plane R2.

We are only interested in studying the phase portrait of Xμ for μ < 0 and

small. For μ < 0 and small every orbit starting at a point (x, y) with x2 +

y2 > 0 goes to infinity in forward time giving finitely many turns around the

origin, and goes to the origin in backwards time giving infinitely many turns

around it. Now we will prove this claim.

First we study the infinity of Xμ with μ < 0 and small. Using the notation of

Chapter 5 of [3] we have that

F
(
z1

)
= b

(
1 + z2

1

)2
, G

(
z1

)
= −bz2

1

(
1 + z2

1

)2
.

Therefore the unique infinite singular points of Xμ are the origins of the lo-

cal charts U2 and V2; i.e. the endpoints of the y-axis. The eigenvalues at these

singular points are −1 and 0. Therefore, applying Theorem 2.19 of [3], we

know that these singular points only can be a node, a saddle or a saddle-node

with topological indices 1, −1 and 0, respectively. Of course, since the local

phase portrait at these two diametrally opposite singular points at infinity are

symmetric with respect the origin of the Poincaré sphere S2 (due to the con-

struction of the Poincaré compactification), they have the same topological

index.

By the Poincaré-Hopf Theorem (see, for instance, Chapter 6 of [3]), if

p(Xμ) on S2 has finitely many singular points (as it is the case for μ < 0),

then the sum of all their topological indices is 2. Now, the sum of the topo-

logical indices of the finite singular point of Xμ is 1, because it is a focus for
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μ < 0 and small. Therefore the sum of the indices of the Poincaré compact-

ification p(Xμ) in S2 \ S1 is 2. Consequently the sum of the indices of the

two infinite singular points must be zero. Hence, the indices of those points

are 0, and consequently they are saddle-nodes. Again, using Theorem 2.19

of [3], we get that their local phase portraits are those of Figure 2.

γ

γ

Figure 2 – Phase portrait in the Poincaré disc of the vector field Xμ with μ < 0 small.

In short we know for all the singular points of Xμ, located at infinity or not,

their local phase portraits, we also know that the vector fields Xμ form a rotated

family with respect to μ, consequently the phase portrait of Xμ for μ < 0 and

small has no limit cycles near x2 + y2 = 1 (the unique possible place for the

limit cycles). Hence the phase portrait of Xμ for μ < 0 and small is the one

given in Figure 2. Therefore the claim is proved.

From Figure 2 it is clear that Xμ for μ < 0 and small has only two separa-

trices γ 1
μ and γ 2

μ contained in R2, the stable ones of the saddle-nodes located

at the origins of the local charts U2 and V2; i.e. at the endpoints of the y-axis.

Here a separatrix is an orbit in the boundary of a hyperbolic sector, see for

more details [3]. Of course, the ω-limit of γ 1
b is the origin of U2, while the

ω-limit of γ 2
b is the origin of V2, and their α-limit is the origin O of R2.

Since Xμ for μ = 0 has a semistable limit cycle 0 at x2 + y2 = 1, for μ < 0

and μ small it follows that the number of turns of γ 1
μ or γ 2

μ around O from the

infinity to a point of the annulus R = {(x, y) : 1/2 ≤ x2 + y2 < 1} increases

when μ increases, and tends to ∞ when μ ↗ 0.
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Now we fix a point p0 = (x0, y0) ∈ R and we shall use the separatrix

γμ = γ 1
μ run in backward time for computing the sequences (μn). More pre-

cisely, we compute the intersection point rμ of separatrix γμ with the circle

x2 + y2 = 1, i.e. with 0. After we look for the value μn such γμ runs in

backward time from rμ to the point p0 given n turns and less than n + 1. Due

to the existence of the semistable limit cycle for μ = 0, there is a sequence

of increasing values

μ1 < μ2 < ∙ ∙ ∙ < μn < ∙ ∙ ∙ < 0 ,

tending to 0 for which γμn passes through p0 exactly after doing n turns

around O and less than n + 1. Of course, these μn does not coincide exactly

with the ones defined in Section 1, but their differences tend to zero when

n tends to infinity.

n μn αn Cn

1 –2,881632841 ∙ 10−2

2 –7,901508033 ∙ 10−3 –1,866687 –0,028816

3 –3,577475828 ∙ 10−3 –1,954289 –0,030620

4 –2,021534899 ∙ 10−3 –1,984136 –0,031641

5 –1,294524787 ∙ 10−3 –1,997429 –0,032229

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

401 –1,957431584 ∙ 10−7 –2,001752 –0,031649

402 –1,947672191 ∙ 10−7 –2,001812 –0,031661

403 –1,937985601 ∙ 10−7 –2,001809 –0,031660

404 –1,928371089 ∙ 10−7 –2,001805 –0,031660

405 –1,918827943 ∙ 10−7 –2,001802 –0,031659

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

Table 1 – Values of μn for the point p0 = (0, 3/4).

We estimate the values μn and (4) for different points p0, and there is nu-

merical evidence that the limit α of the sequence αn is −2 = −2/1, indepen-

dently of the point p0. More precisely, for the point p0 = (0,3/4) the values

of μn , αn and Cn appear in Table 1, and for p0 = (0,1/2) in Table 2. We

have also done the study starting from the point (0,7/8) but we do not add the

table here. We will just summarize the results of all them in Table 5 at the
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end of the paper. Just to note that for this last case α404 = −2,000650974

and C404 = −0,031405.

Similar results to those of Tables 1 and 2 are obtained if we do the com-

putations with the other separatrix or with any other initial point p0.

n μn αn Cn

1 –3,988226061 ∙ 10−2

2 –9,468261118 ∙ 10−3 –2,074576 –0,039882

3 –4,046251050 ∙ 10−3 –2,096739 –0,040500

4 –2,218353717 ∙ 10−3 –2,089200 –0,040166

5 –1,394597364 ∙ 10−3 –2,080094 –0,039662

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

401 –1,959227559 ∙ 10−7 –2,002671 –0,031853

402 –1,949454750 ∙ 10−7 –2,002729 –0,031864

403 –1,939754875 ∙ 10−7 –2,002723 –0,031863

404 –1,930127212 ∙ 10−7 –2,002718 –0,031862

405 –1,920571044 ∙ 10−7 –2,002712 –0,031861

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

Table 2 – Values of μn for the point p0 = (0, 1/2).

Looking to these results one could think that α may be −2 for all the con-

sidered cases independently of the initial point, and also we can think that the

constant C is independent of the initial point p0. When we compare this con-

stant C with the ones obtained for different families of vector fields, we will

see that it must depend on the family and/or the multiplicity. This dependence

becomes clear in the analytic example of Section 2. But again the constant C

looks independent of the initial point p0, this can be see clearly in Table 5 where

we summarize the results of the first three subsections.

3.2 A polynomial vector field of degree 9

In this subsection X = (P, Q) will denote the polynomial vector field of

degree 9 given by

X (x, y) = (P(x, y), Q(x, y))

=
(
−y + x(x2 + y2 − 1)4, x + y(x2 + y2 − 1)4

)
.
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n μn αn Cn

1 –1,233572 ∙ 10−1

2 –4,656607 ∙ 10−2 –1,405490 –0,123357

3 –2,604312 ∙ 10−2 –1,433214 –0,125751

4 –1,722170 ∙ 10−2 –1,437642 –0,126364

5 –1,249909 ∙ 10−2 –1,436358 –0,126139

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

401 –2,841841 ∙ 10−5 –1,355451 –0,095623

402 –2,832239 ∙ 10−5 –1,355387 –0,095587

403 –2,822694 ∙ 10−5 –1,355409 –0,095600

404 –2,813205 ∙ 10−5 –1,355389 –0,095588

405 –2,803771 ∙ 10−5 –1,355368 –0,095576

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

Table 3 – Values of μn for the point p0 = (0, 1/2).

In polar coordinates (r, θ) the vector field becomes

X (r, θ) = (r(r2 − 1)4, 1).

Therefore the phase portrait of X is formed by an unstable focus O at the

origin and a semistable limit cycle 0 at r = 1 of multiplicity 4. This phase

portrait is topologically equivalent to the one of Figure 1.

Repeating the arguments of Subsection 3.1, we obtain that the vector fields

Xμ(x, y) = (P(x, y), Q(x, y) + μP(x, y)) form a rotated family with respect

to the parameter μ ∈ R. Again, X0 = X , and μ = 0 is a bifurcation value for

the parameter μ in such a way that for μ < 0 and small the vector field Xμ has

no limit cycles. For μ < 0 and small every orbit starting at a point (x, y) with

x2 + y2 > 0 goes to infinity in forward time giving finitely many turns around

the origin and goes to the origin in backward time giving infinitely many turns

around it, see Figure 2. From this figure, it is clear that Xμ for μ < 0 and small

has only two separatrices γ 1
μ and γ 2

μ contained in R2.

We fix a point p0 = (x0, y0) in R = {(x, y) : 1/2 ≤ x2 + y2 < 1} and we

compute the sequence (μn) as in the previous subsection.
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Again for different points p0, there is numerical evidence that the limit of

α as n → ∞ can be −4/3 = −1.33333... depending only on the multiplic-

ity 4 of 0. If we start from p = (0,3/4) (respectively p = (0,7/8)) we get

that α404 = −1,353415... (respectively α404 = −1,345133...). Increasing the

multiplicity of the semistable limit cycle increases the time of the computa-

tions for obtaining the same precision in the values of μn .

3.3 A polynomial vector field of degree 13

In this subsection X = (P, Q) will denote the polynomial vector field of

degree 13 given by

X (x, y) = (P(x, y), Q(x, y))

=
(
−y + x(x2 + y2 − 1)6, x + y(x2 + y2 − 1)6

)
.

In polar coordinates (r, θ) the vector field becomes

X (r, θ) =
(
r(r2 − 1)6, 1

)
.

Therefore the phase portrait of X is formed by an unstable focus O at the

origin and a semistable limit cycle 0 at r = 1 of multiplicity 6. This phase

portrait is topologically equivalent to the one of Figure 1.

We construct the family of vector fields Xμ with X0 = X as in Subsec-

tion 3.2, and compute the sequence (μn) as in that subsection.

Again for different points p0, there is numerical evidence that the limit of

μn is −6/5 = −1.2 as n → ∞ depending only on the multiplicity 6 of

the semistable limit cycle, because α404 = −1, 234375.... If we start from

p = (0, 3/4) (respectively p = (0, 7/8)) we get that α404 = −1, 228354...

(respectively α404 = −1, 159198...). Now the differences between them be-

come more evident, but we think that if we go to bigger values in n for αn ,

when the multiplicity increases these differences in αn changing the initial

point p0 will disappear. In any case increasing n and the multiplicity the time

for the computations increases strongly.

Gathering all the results from Subsections 3.1 to 3.3 we get Table 5.
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n μn αn Cn

1 –1,684320 ∙ 10−1

2 –7,177137 ∙ 10−2 –1,230686 –0,168432

3 –4,299420 ∙ 10−2 –1,263784 –0,172341

4 –2,977758 ∙ 10−2 –1,276789 –0,174821

5 –2,236696 ∙ 10−3 –1,282453 –0,176199

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

401 –8,837415 ∙ 10−5 –1,234466 –0,144483

402 –8,810286 ∙ 10−5 –1,234404 –0,144430

403 –8,783307 ∙ 10−5 –1,234421 –0,144444

404 –8,756478 ∙ 10−5 –1,234398 –0,144425

405 –8,729798 ∙ 10−5 –1,234375 –0,144405

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

Table 4 – Values of μn for the point p0 = (0, 1/2).

α C

Mult. 2 γ 1
μ γ 2

μ γ 1
μ γ 2

μ

p = (0,1/2) –2,002706 –2,000427 –0,031860 –0,031343

p = (0,3/4) –2,001798 –1,999850 –0,031658 –0,031217

p = (0,7/8) –2,000651 –1,999054 –0,031405 –0,031043

Mult. 4

p = (0,1/2) –1,355347 –1,347251 –0,095564 –0,128737

p = (0,3/4) –1,353415 –1,344790 –0,094281 –0,126525

p = (0,7/8) –1,345133 –1,327778 –0,088967 –0,112284

Mult. 6

p = (0,1/2) –1,234375 –0,144405

p = (0,3/4) –1,228354 –0,138444

p = (0,7/8) –1,159198 –0,084398

Table 5 – Values of α and C for the cases studied in Subsections 3.1–3.3.
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3.4 A polynomial vector field of degree 7

In order to not limit our study to a single family of phase portraits with a mul-

tiple semistable limit cycles, we will study now a completely different system

which has more singular points than the origin.

In this subsection X = (P, Q) will denote the polynomial vector field of

degree 7 given by

P = 4x + 2x2 − 8x3 − 4x4 + 4x5 + 2x6 − 4y − 4xy + 2x2 y

+ 8x3 y − x4 y − 4x5 y − 2x6 y + 6y2 − 8xy2 − 12x2 y2 + 8x3 y2

+ 10x4 y2 + 2y3 + 8xy3 − 2x2 y3 − 8x3 y3 − 6x4 y3 − 8y4 + 4xy4

+ 14x2 y4 − y5 − 4xy5 − 6x2 y5 + 6y6 − 2y7,

Q = 4x + 2x2 − 2x3 − 4x4 + x5 + 2x6 + 2x7 + 4y − 4xy − 8x2 y

+ 4x3 y + 4x4 y − 4x5 y − 2y2 − 2xy2 + 2x3 y2 + 2x4 y2 + 6x5 y2

− 8y3 + 4xy3 + 8x2 y3 − 8x3 y3 + 4y4 + xy4 − 2x2 y4 + 6x3 y4

+ 4y5 − 4xy5 − 2y6 + 2xy6.

It is easy to check that

H =
1

x2 + y2 − 1
+ 2 arctan

(
2 − y

x

)
+ 2 arctan

( y

x

)

− log
(
(x2 + (y − 2)2)(x2 + y2)

)

is a first integral of X ; i.e.

∂ H

∂x
P +

∂ H

∂y
Q = 0 ,

and consequently H is constant on the orbits of the vector field X . This first

integral or the program P4 allows to show that the phase portrait of X in the

Poincaré disc is the one of Figure 3. We note that X has exactly three singular

points, an unstable focus at the origin (0, 0), a stable focus at (0, 2), and a

saddle at

S = (−0.600233563294595..., 1.399766436705378...).
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γ

Figure 3 – Phase portrait in the Poincaré disc of the vector field X .

Since f = x2 + y2 − 1 satisfies the equality

∂ f

∂x
P +

∂ f

∂y
Q = 4(x − y + 2)

(
x2 + y2

)
f 2 ,

it follows that f = 0 is an algebraic solution of X . Due to the fact that on

f = 0 there are no singular points, f = 0 is a periodic orbit. Using the first

integral we can see that it is isolated in the set of all periodic orbits, so it is a

limit cycle, that we denote by 0. Again, using the first integral, we can check

that 0 is a semistable limit cycle. Using results of [2] we can show that 0 has

multiplicity 2.

Repeating the arguments of Subsection 3.1, we obtain that the vector fields

Xμ(x, y) = (P(x, y), Q(x, y) + μP(x, y)) form a rotated family with respect

to the parameter μ ∈ R. Again, X0 = X , and μ = 0 is a bifurcation value

for the parameter μ in such a way that for bμ < 0 and small the vector field

Xμ has no limit cycles. By the non-intersection property (see Chapter 7 of [3]),

there are no periodic orbits of Xμ in the region occupied by the period annulus

around the infinity of system X0.

In fact using the program P4 we see that the phase portrait of Xμ for μ < 0

and small is the one given in Figure 4. For these vector fields the infinity is

a periodic orbit, this follows using Chapter 5 of [3] and checking that there

are no infinite singular points.

Looking at Figure 4, we denote by γ0 the stable separatrix of the saddle S

whose α-limit for X0 is the semistable limit cycle f = 0. Then, for μ < 0 and
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small, we denote by γμ the stable separatrix of the saddle S whose α-limit for

Xμ is the origin and such that γμ tends to γ0 when μ ↗ 0, see Figure 4.

γμ

Figure 4 – Phase portrait in the Poincaré disc of the vector field Xμ with μ < 0 and

small.

n μn αn Cn

1 –3,794376 ∙ 10−2

2 –8,410108 ∙ 10−3 –2,173666 –0,037944

3 –3,648280 ∙ 10−3 –2,059804 –0,035064

4 –2,027845 ∙ 10−3 –2,041427 –0,034363

5 –1,288488 ∙ 10−3 –2,032344 –0,033933

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

401 –1,944170 ∙ 10−7 –2,000366 –0,031331

402 –1,934507 ∙ 10−7 –2,000436 –0,031344

403 –1,924917 ∙ 10−7 –2,000362 -0,031330

404 –1,915398 ∙ 10−7 –2,000384 –0,031335

405 –1,905949 ∙ 10−7 –2,000427 –0,031343

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

Table 6 – Values of Bn for the point p0 = (0, 1/2).

We fix a point p0 = (x0, y0) in R = {(x, y) : 1/2 ≤ x2 + y2 < 1}, and use

the separatrix γμ as we have used the separatrix γ 1
μ in Subsection 3.1 for com-

puting the sequence (μn).
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For different points p0 there is numerical evidence that the limit of μn is

−2 as n → ∞ independently of the point p0, because α404 = −2,000427....

If we start from p = (0,3/4) (respectively p = (0,7/8)) we get that α404 =

−1,999850... (respectively α404 = −1,999054...). Again these numbers indi-

cate that α seems to be independent of the differential system we take, and

only depends on the multiplicity of the semistable limit cycle.

3.5 A polynomial vector field of degree 11

Finally we take a new example similar to the previous one, but this time having

a semistable limit cycle of multiplicity 4.

In this section X = (P, Q) will denote the polynomial vector field of degree

11 given by

P = 4x − 2x2 − 14x3 + 8x4 + 16x5 − 12x6 − 4x7 + 8x8 − 4x9

− 2x10 + 2x11 + 4y − 4xy − 30x2 y + 16x3 y + 24x4 y − 24x5 y

− 13x6 y + 16x7 y − 3x8 y − 4x9 y + 3x10 y − 6y2 − 14xy2

+ 48x2 y2 + 32x3 y2 − 72x4 y2 − 12x5 y2 + 60x6 y2

− 16x7 y2 − 18x8 y2 + 10x9 y2 − 30y3 + 16xy3 + 48x2 y3

− 48x3 y3 − 39x4 y3 + 48x5 y3 − 12x6 y3 − 16x7 y3 + 15x8 y3

+ 40y4 + 16xy4 − 108x2 y4 − 12x3 y4 + 132x4 y4 − 24x5 y4

− 52x6 y4 + 20x7 y4 + 24y5 − 24xy5 − 39x2 y5 + 48x3 y5

− 18x4 y5 − 24x5 y5 + 30x6 y5 − 48y6 − 4xy6 + 116x2 y6

− 16x3 y6 − 68x4 y6 + 20x5 y6 − 13y7 + 16xy7 − 12x2 y7

− 16x3 y7 + 30x4 y7 + 36y8 − 4xy8 − 42x2 y8 + 10x3 y8

− 3y9 − 4xy9 + 15x2 y9 − 10y10 + 2xy10 + 3y11,

Q = −4x − 2x2 + 30x3 + 8x4 − 24x5 − 12x6 + 13x7 + 8x8 + 3x9

− 2x10 − 3x11 + 4y + 4xy − 14x2 y − 32x3 y + 16x4 y + 36x5 y

− 4x6 y − 28x7 y − 4x8 y + 8x9 y + 2x10 y − 6y2 + 30xy2 + 32x2 y2

− 48x3 y2 − 60x4 y2 + 39x5 y2 + 48x6 y2 + 12x7 y2 − 14x8 y2

− 15x9 y2 − 14y3 − 32xy3 + 32x2 y3 + 72x3 y3 − 12x4 y3
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− 84x5 y3 − 16x6 y3 + 32x7 y3 + 10x8 y3 + 24y4 − 24xy4

− 84x2 y4 + 39x3 y4 + 96x4 y4 + 18x5 y4 − 36x6 y4 − 30x7 y4

+ 16y5 + 36xy5 − 12x2 y5 − 84x3 y5 − 24x4 y5 + 48x5 y5

+ 20x6 y5 − 36y6 + 13xy6 + 80x2 y6 + 12x3 y6 − 44x4 y6

− 30x5 y6 − 4y7 − 28xy7 − 16x2 y7 + 32x3 y7 + 20x4 y7 + 24y8

+ 3xy8 − 26x2 y8 − 15x3 y8 − 4y9 + 8xy9 + 10x2 y9 − 6y10

− 3xy10 + 2y11.

It is easy to check that

H =
(
−1 + x2 + y2

)−3
+ 2 arctan

(
x

−2 + y

)
+ 2 arctan

(
x

y

)

+ log
(
x2 + y2

)
+ log

(
4 + x2 − 4y + y2

)
+ log

(
| − 1 + x2 + y2|

)

is a first integral of X ; i.e.

∂ H

∂x
P +

∂ H

∂y
Q = 0 ,

and consequently H is constant on the orbits of the vector field X .

This system is already too complicated for P4 to study it but we know for

sure (from the first integral) that it has a limit cycle of multiplicity 4 at the unity

circle and thus we can do the same study as we have done up to now.

Since f = x2 + y2 − 1 satisfies the equality

∂ f

∂x
P +

∂ f

∂y
Q = 8

(
2 − x + x2 − 3y + y2

)(
x2 + y2

)
f 4 ,

it follows that f = 0 is an algebraic solution of X . Due to the fact that on

f = 0 there are no singular points, f = 0 is a periodic orbit. Using the first

integral we can see that it is isolated in the set of all periodic orbits, so it is a

limit cycle, that we denote by 0. Again, using the first integral, we can check

that 0 is a semistable limit cycle. Using results of [2] we can show that 0 has

multiplicity 4.

Repeating the arguments of Subsection 3.1, we obtain that the vector fields

Xμ(x, y) = (P(x, y), Q(x, y) + μP(x, y)) form a rotated family with respect

Comp. Appl. Math., Vol. 30, N. 2, 2011



“main” — 2011/7/11 — 19:06 — page 482 — #20

482 A UNIVERSAL CONSTANT FOR SEMISTABLE LIMIT CYCLES

n μn αn Cn

1 –1,292490 ∙ 10−1

2 –5,194300 ∙ 10−2 –1,315151 –0,129249

3 –3,036667 ∙ 10−2 –1,323915 –0,130036

4 –2,066923 ∙ 10−2 –1,337239 –0,131954

5 –1,530841 ∙ 10−2 –1,345516 –0,133477

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

401 –4,005103 ∙ 10−5 –1,347385 –0,128840

402 –3,991685 ∙ 10−5 –1,347405 –0,128855

403 –3,978346 ∙ 10−5 –1,347267 –0,128749

404 –3,965084 ∙ 10−5 –1,347350 –0,128813

405 –3,951899 ∙ 10−5 –1,347251 –0,128737

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

Table 7 – Values of μn for the point p0 = (0, 1/2).

to the parameter μ ∈ R. Again, X0 = X , and μ = 0 is a bifurcation value

for the parameter μ in such a way that for μ < 0 and small the vector field

Xμ has no limit cycles. By the non-intersection property, there are no periodic

orbits of Xμ in the region occupied by the period annulus around the infinity

of system X0.

We fix a point p0 = (x0, y0) in R = {(x, y) : 1/2 ≤ x2 + y2 < 1}, and uses

as in the previous subsection the separatrix γμ in backward time for computing

the sequence (μn).

Again for different points p0, there is numerical evidence that the limit

of αn is −4/3 as n → ∞ independently of the point p0, because α404 =

−1,347251.... If we start from p = (0,3/4) (respectively p = (0,7/8)) we

get that α404 = −1,344790... (respectively α404 = −1,327778...).
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