
“main” — 2011/11/25 — 14:20 — page 675 — #1

Volume 30, N. 3, pp. 675–699, 2011
Copyright © 2011 SBMAC
ISSN 0101-8205
www.scielo.br/cam

Weak Allee effect in a predator-prey system
involving distributed delays

PAULO C.C. TABARES1∗
, JOCIREI D. FERREIRA2∗∗

and V. SREE HARI RAO3∗∗,∗∗∗

1Universidad del Quindío, Facultad de Ciencias Básicas y Tecnologías
Armenia, Quindío – Colombia

2Universidade Federal de Mato Grosso, Instituto de Ciências Exatas e da Terra
Pontal do Araguaia – MT – Brasil

3On leave from Jawaharlal Nehru Technological University
Hyderabad-500 085, India

E-mails: paulocct@uniquindio.edu.co / jocirei@ufmt.br / vshrao@jntuh.ac.in

Abstract. In this paper we study the influence of weak Allee effect in a predator-prey system

model. This effect is included in the prey equation and we determine conditions for the occur-

rence of Hopf bifurcation. The stability properties of the system and the biological issues of the

memory and Allee models on the coexistence of the two species are studied. Finally we present

some simulations which allow one to verify the analytical conclusions obtained.

Mathematical subject classification: Primary: 34C25; Secondary: 92B05.

Key words: weak Allee effect, population dynamics, Hopf bifurcation, predator-prey model,

distributed delay.

#CAM-302/10. Received: 01/XII/10. Accepted: 19/IV/11.
∗Research supported by Master program of Biomathematics, UNIQUINDIO, Colombia
∗∗Research supported by FAPEMAT – Fundação de Amparo à Pesquisa do Estado de Mato

Grosso, Grant Number 462997/2009.
∗∗∗Research supported by a grant from the Foundation for Scientific Research and Tech-

nological Innovation – A division of Sri Vadrevu Seshagiri Rao Memorial Charitable Trust,
Hyderabad India.



“main” — 2011/11/25 — 14:20 — page 676 — #2

676 WEAK ALLEE EFFECT IN A PREDATOR PREY SYSTEM

1 Introduction

It is well known that in nature some species often co-operate amongst them-
selves in their search for food or when they try to escape from predators. Allee
[15, 16], has studied extensively the aspects of aggregation and associated
co-operative and social characteristics among the members of a species. In
population biology Allee effect refers to a population that has a maximal
per capita growth rate at intermediate density. This occurs when the per capita
growth rate increases with the increase in the density and decreases when the
density passes through a critical value. Clearly this situation is different from
the logistic growth in which the per capita growth rate is a decreasing func-
tion of the density. Even more, when considering coexistence for a single
prey species with one or more predator species, then the Allee effect zone is
modified, because it depends also on the functional response (see in [6]).

The Allee effect is called weak if there exists no critical density population,
below which the per capita rate becomes negative. Taking into account the
carrying capacity of the environment with respect to the prey in the per capita
growth rate of the population, the weak Allee effect has been modeled in [4]
by the following differential equation

Ṅ (t) =
ε

K
N 2(t)

(
1 −

N (t)

K

)
(1)

in which N (t) denotes the prey population at time t , 0 < ε < 1 is the per
capita growth rate of the population and K > 0 is the carrying capacity of
the environment.

In this study we propose and analyze the following system of equations

Ṅ (t) =
4ε

K
N 2(t)

(
1 −

N (t)

K

)
− αN (t) P (t)

Ṗ (t) = −γ P (t) + aβ P (t)
∫ t

−∞
N (τ ) exp (−a (t − τ )) dτ (2)

as a model to describe the dynamical behavior of the predator-prey system in-
corporating a weak Allee effect in the prey populations N (t) and a distributed
delay in the predator populations P(t), at time t . The parameters K , ε, α, γ ,
β and a are positive. K represents the carrying capacity of the environment
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with respect to the prey, ε is the intrinsic growth rate of the prey, α is the rate
of predation, γ is the predator mortality in the absence of prey, β is the con-
version rate and a is the delay parameter. Since ε is small, we have considered
a magnification of ε by denoting it as 4ε in the model equations (2) and in the
subsequent simulations. This magnification renders clarity to the simulations
carried in this paper.

It is well known in biology that group defence helps decrease (or even pre-
vent) the predation due to the enrichment in the ability of the prey to defend
or escape from the predators. In view of the considerations in Freedman and
Wolkowicz [11], the model equations (2) may also be viewed as a predator-
prey system with group defence exhibited by the prey.

The models considered in earlier studies ([1, 2, 3, 5, 7, 8, 10, 12, 14]) though
similar, but our model differs from those in terms of incorporating weak Allee
effect as opposed to a logistic functional response in the prey dynamics. Though
our study in this paper allows one to replace the density function ae−at by a
more general function G : [0, ∞) → [0, ∞), that satisfies G(t) ≥ 0 and
∫ ∞

0 G(t)dt = 1, we prefer to retain the second equation in the system (2) in its
present form, as no new ideas would be introduced by this replacement.

The present paper is organized as follows: In Section 2, we determine the
equilibria and present the local stability of the equilibrium points that do not
depend on the parameters of the system. The conditions for occurrence of
Hopf bifurcation for the parameter dependent equilibrium and the related
analysis are discussed in Section 3. The simulation results are carried using
Maple 9 and are described in Section 4. A pseudo Maple code that facil-
itates the simulations is presented in Section 6. A discussion follows in the
final section.

2 Equilibria and the linear analysis

In order to determine the equilibria for the system (2), we rewrite (2) in the
following form

Ṅ (t) =
4ε

K
N 2 (t)

(
1 −

N (t)
K

)
− αN (t) P (t)

Ṗ (t) = −γ P (t) + β P (t) Q (t)

Q̇ (t) = a (N (t) − Q (t)) , (3)
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in which

Q (t) = a
∫ t

−∞
N (τ ) exp (−a (t − τ )) dτ.

The change of variables,

N = K n, P = K p, Q = K q and t =
s

ε
,

transforms the system (3) into

x′ = f (x, K ) =
(

4n2 (1 − n) −
αK

ε
np, −

γ

ε
p +

βK

ε
pq,

a

ε
(n − q)

)
, (4)

where the prime represents the derivative respect to s, x = (n, p, q) ∈ R3 and
K ∈ (0, ∞). It is easy to see that system (4) has the following equilibria

(n1, p1, q1) = (0, 0, 0) , (n2, p2, q2) = (1, 0, 1) and

(n3, p3, q3) =
(

γ

βK
,

4εγ (βK − γ )

αβ2 K 3
,

γ

βK

)
.

The following result provides sufficient conditions for the local stability and
equilibria (n1, p1, q1) and (n2, p2, q2).

Proposition 2.1. For the system (4) the equilibrium (n1, p1, q1) is unstable
for all K > 0. On the other hand, the equilibrium (n2, p2, q2) is locally
asymptotically stable if K <

γ

β
and unstable if K >

γ

β
.

Proof. We establish this result by considering the Jacobian matrix of system
(4), which may be written as

J (n, p, q) =











−12εn2 + 8εn − αK p

ε

−αK

ε
n 0

0
−γ + βK q

ε

βK

ε
p

a

ε
0 −

a

ε











. (5)

The Jacobian matrix J (n1, p1, q1) has eigenvalues 0, − γ

ε
and − a

ε
and by

reduction procedure to center manifold ([13]), we obtain ṅ = 4n2 and from
this it follows that the equilibrium (n1, p1, q1) is unstable for all K > 0.
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Similarly the eigenvalues associated with J (n2, p2, q2) are given by −1,
− a

ε
and −γ+βK

ε
. Thus (n2, p2, q2) is locally asymptotically stable provided

K <
γ

β
and unstable when K >

γ

β
. �

Remark 2.2. The instability of the origin (n1, p1, q1) may be interpreted as

the non vanishing of the species simultaneously in increasing time. On the

other hand the instability of the equilibrium (n2, p2, q2) implies that the car-

rying capacity of the environment K and the conversion rate β of the predators

do not support the predator population which vanishes in time. This conclu-

sion is the same as observed in ([9]). The equilibrium
(

γ

βK ,
4εγ (βK−γ )

αβ2 K 3 ,
γ

βK

)
is

biologically meaningful only if

βK − γ > 0 or
γ

βK
< 1. (6)

The condition (6) means that the dependence on time of the predator growth
rate is positive, at least when Q assumes the value K (see [9]). Moreover,
0 <

γ

βK < 1 implies 0 <
γ

K < β, provided that the mortality rate γ of the
predator species with respect to the maximum capacity of prey K , must be
less than the conversion rate β. However, for large enough K , it is always true
and necessarily (for small populations of prey), this does not ensure the survival
of the predator species.

We shall discuss the stability of this equilibrium in the next section.

3 Stability analysis of the equilibrium (n3, p3, q3)

In this section we study the stability properties of the equilibrium (n3, p3, q3) =(
γ

βK ,
4εγ (βK−γ )

αβ2 K 3 ,
γ

βK

)
. We study the local codimension one Hopf bifur-

cation which occurs in the system (4) and also determine the direction of the
bifurcation.

The Jacobian matrix in (n3, p3, q3) is given by

J (n3, p3, q3) =











4γ (βK − 2γ )

β2 K 2
−

αγ

βε
0

0 0
4γ (βK − γ )

αβK 2

a

ε
0 −

a

ε










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and the characteristic equation associated with J (n3, p3, q3) is

λ3 +
aβ2 K 2 + 4γ ε (2γ − βK )

β2εK 2
λ2

+
4aγ (2γ − βK )

β2εK 2
λ +

4aγ 2 (βK − γ )

β2ε2 K 2
= 0. (7)

The following proposition is a direct consequence of the Routh-Hurwitz stabil-
ity criterion (see [8]).

Proposition 3.1. The critical point (n3, p3, q3) is locally asymptotically stable

for the system (4) if the following inequalities are satisfied

βK − γ > 0 (8)

2γ − βK > 0 (9)

aβ2 K 2 + 4γ ε (2γ − βK )

β2εK 2
×

4aγ (2γ − βK )

β2εK 2
−

4aγ 2 (βK − γ )

β2ε2 K 2
> 0. (10)

Remark 3.2. The condition (8) coincide with (6). The same is observed in [8].

From (8) and (9), it follows that

β

2
<

γ

K
< β.

Clearly this inequality highlights the contribution of the weak Allee effect, i.e.
the refinement in the relationship between β, γ and K .

A rearrangement of terms in (10) yields

a >
γ

(
16βγ εK − 16γ 2ε − 4β2εK 2 + β3 K 3 − β2γ K 2

)

β2 K 2 (2γ − βK )
. (11)

and this inequality is trivially satisfied if the right hand side of (11) is either
zero or negative, in which case the equilibrium (n3, p3, q3) is locally asymp-
totically stable for all a > 0. The case of interest for us would be when

a0 =
γ

(
16βγ εK − 16γ 2ε − 4β2εK 2 + β3 K 3 − β2γ K 2

)

β2 K 2 (2γ − βK )
> 0. (12)

Comp. Appl. Math., Vol. 30, N. 3, 2011



“main” — 2011/11/25 — 14:20 — page 681 — #7

PAULO C.C. TABARES, JOCIREI D. FERREIRA and V. SREE HARI RAO 681

Figure 1 – Critical value of the bifurcation parameter a.

In this case, (n3, p3, q3) loses its stability at a = a0 (see Fig. 1). We study
the local codimension one Hopf bifurcation which occurs in the system (4)
for the state variables (n, p, q) ∈ R3 and the parameter a ∈ R+.

To simplify the calculations we introduce the notation b =
1

βK
and rewrite

conditions (8)-(10) respectively as

1

2
< γ b < 1 (13)

16εγ 2b3 + 4εb − 16εγ b2 − 1 + γ b < 0 (14)

a0 =
γ

1 − 2γ b

(
16εγ 2b3 + 4εb − 16εγ b2 − 1 + γ b

)
. (15)

At a = a0 the eigenvalues of system (4) are given by

λ0 (a0) =
γ (γ b − 1)

ε (2γ b − 1)
< 0, λ1,2 (a0) = ±iω (16)

in which

ω =
2γ

ε

√
εb

(
−16εγ 2b3 − 4εb + 16εγ b2 + 1 − γ b

)
. (17)

We have the following result

Theorem 3.3. With the notation and conditions (13)-(17) the real part of the

eigenvalue λ1 (a) that is Re (λ(a)) satisfies the conditions that

d

dλ

(
Re

(
λ1(a0)

))
6= 0.
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Proof. Note that λ1(a0) = iω and define the function

F (λ, a) = λ3 +
a − 4εγ b + 8εγ 2b2

ε
λ2 +

4aγ b (2γ b − 1)

ε
λ

+
4aγ 2b (1 − γ b)

ε2
(18)

obtained from the right hand side of (7) in which b =
1

βK
.

Since F (λ1 (a0) , a0) = F (iω, a0) = 0 and iω is a simple root of F (λ, a0);
by the implicit function theorem exist a unique one λ = λ(a) in a neighborhood
of a0 such that

λ′
1 (a0) = −

F ′
a (iω, a0)

F ′
λ (iω, a0)

,

where

F ′
a (λ, a) =

λ2

ε
+

4γ b (2γ b − 1)

ε
λ +

4γ 2b (1 − γ b)

ε2

and

F ′
λ (λ, a) = 3λ2 +

2
(
a − 4εγ b + 8εγ 2b2

)

ε
λ +

4aγ b (2γ b − 1)

ε
.

Thus

F ′
a (iω, a0) = (2γ b − 1)

(
−ω2ε − 4iωεγ b + 8iωεγ 2b2 + 4γ 2b − 4γ 3b2

)

and

F ′
λ (iω, a0) = ε(−3ω2ε + 6ω2εγ b − 2iωγ + 2iωγ 2b − 192εγ 4b4

+ 128εγ 5b5 − 16εγ 2b2 + 96εγ 3b3 + 4γ 2b

− 12γ 3b2 + 8γ 4b3).

Since
d

da

(
Re (λ1 (a0))

)
= Re

(
d

da
(λ1 (a0))

)
,

substituting

ω2 =
4γ 2b

ε

(
−16εγ 2b3 − 4εb + 16εγ b2 + 1 − γ b

)
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in Re
(

d

da
(λ1 (a0))

)
we have

Re
(

d

da
(λ1 (a0))

)
=

−2b (2γ b − 1)2 (
16εγ 2b3 + 4εb − 16εγ b2 − 1 + γ b

)

G (ε,∙)
, (19)

where

G (ε,∙) = 256ε2γ 4b6 − 512ε2γ 3b5 + 16εγ 3b4 + 384ε2γ 2b4 − 32εγ 2b3

− γ 2b2 − 128ε2γ b3 + 20εγ b2 + 2γ b + 16ε2b2 − 4εb − 1.

From (14) the numerator in the right hand side of (19) is positive. To complete
the proof we need to show that G (ε,∙) 6= 0. To this end, consider the equation
G(ε) = 0, and observe that

ε1 =

(√
5 − 1

)
(γ b − 1)

8b (2γ b − 1)2 < 0 and ε2 =

(√
5 + 1

)
(1 − γ b)

8b (2γ b − 1)2 > 0,

are its roots. Since G
′′
(ε,∙) = 32b2 (2γ b − 1)4 > 0, G has a minimum in the

interval (ε1, ε2). Rewriting (14) as

0 < ε <
1 − γ b

4b (2γ b − 1)2 ,

we have

0 < ε <
1 − γ b

4b (2γ b − 1)2 <

(√
5 + 1

)
(1 − γ b)

8b (2γ b − 1)2 = ε2.

So, G (ε,∙) < 0 which implies Re
(

d

da
[λ1 (a0)]

)
< 0, and this proves the

Theorem.
Now we introduce the new bifurcation parameter μ by

a (μ) =
a0

1 + a0μ
(20)

(see Fig. 1). In this case, the equilibrium (n3, p3, q3) is locally asymptotically
stable for μ < 0 and looses its stability at μ = 0, that is, μ = 0 is the new
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bifurcation point. Further,

Re
(

d

dμ
[λ1 (a (μ))]

)⌋

μ=0

=
2γ 2b

(
16εγ 2b3 − 16εγ b2 + γ b + 4εb − 1

)3

G (ε, ∙)
> 0.

3.1 Projection to the center manifold

At beginning of this section we show that the eigenvalues curve of system (4)
satisfies the transversality conditions of the Hopf’s Theorem. In the following,
we will restrict system (4) to the center manifold, that is, we will project the
vector field associated to system (4) to the center manifold. So, the ODE system
given by (4) will behave as a system on plane.

To reach this purpose, we consider the change of variables b = 1
βK to

convert the equilibrium (n3, p3, q3) to the form
(
γ b,

4εγ b(1−γ b)

αK , γ b
)

. Further-
more, we move this equilibrium to origin introducing the variables

x = n − γ b, y = p −
4εγ b (1 − γ b)

αK
, z = q − γ b. (21)

Thus, with the new variables we carried out system (4) to the equivalent system

ẋ = 4 (x + γ b)2 (1 − (x + γ b)) −
αK

ε
(x + γ b)

(
y +

4εγ b (1 − γ b)

αK

)

ẏ =
−γ

ε

(
y +

4εγ b (1 − γ b)

αK

)
+

1

εb

(
y +

4εγ b (1 − γ b)

αK

)

(z + γ b)

ż =
a0

ε (1 + a0μ)
(x + γ b − (z + γ b))

At μ = 0 (i.e. at a = a0) we have

ẋ = −4x3 − 12γ bx2 + 4x2 − 8γ 2b2x + 4γ bx −
αK

ε
xy −

αKγ b

ε
y

ẏ =
4γ

αK
z −

4γ 2b

αK
z +

1

εb
yz

ż =
ω2

4γ b (2γ b − 1)
(x − z) .
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The eigenvectors of the above system associated with the eigenvalues

λ0 (a0) =
γ (γ b − 1)

ε (2γ b − 1)
and λ1,2 (a0) = ±iω are

s0 =












4γ 2b2 (2γ b − 1)

ω2

ε

αK
−1

4 (2γ b − 1)












and s1,2 =









1

0

1









± i










4γ b (2γ b − 1)

ω

4γ (γ b − 1)

αωK

0










respectively.
We take s0 and the real and imaginary parts of s1,2 as a new basis for R3.

So, with the change of coordinate





x
y
z




 = A






x1

x2

x3




 (22)

where

A =












1
4γ b (2γ b − 1)

ω

4γ 2b2 (2γ b − 1)

ω2

0
4γ (γ b − 1)

ωαK

−ε

αK

1 0
−1

4 (2γ b − 1)












we transform system (22) to an equivalent system

ẋ1 = ωx2 + U1,2 (x) + U1,3 (x)

ẋ2 = −ωx1 + U2,2 (x) + U2,3 (x) (23)

ẋ3 =
γ (γ b − 1)

ε (2γ b − 1)
x1 + U3,2 (x) + U3,3 (x) ,

for x = (x1, x2, x3) and

U1,2 (x) = −
4ω2

D
(γ b − 1) (3γ b − 1) x2

1

−
16γ 2b

εD
(γ b − 1) (2γ b − 1)

(
24εγ 2b3 − 20εγ b2 + γ b
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+ 4εb − 1
)
x2

2 +
γ 2b

4ω2ε2 D

(
16εγ 3b3 + 4γ 3b3 − 4γ 2b

− 7ω2εγ b − 4ω2ε2b + 8ω2ε + 3εD
)
x2

3

−
ω

εγ bD
(γ b − 1)

(
48εγ 2b3 − 40εγ b2 + 3γ b

+ 8εb − 2
)
x1x2 +

4γ 2b

εD

(
8εγ 2b3 + 3γ 2b2 − 4εγ b2

− 5γ b + 2
)
x1x3 −

4γ b

ωε2 D
(γ b − 1)

(
4εγ 3b2 + γ 3b

− 4ω2ε2γ b − γ 2 + ε2ω2
)
x2x3

U1,3 (x) = −
4ω2

D
(γ b − 1) x3

1 −
256γ 3b3

ωD
(γ b − 1) (2γ b − 1)3 x3

2

−
256γ 6b6

ω4 D
(γ b − 1) (2γ b − 1)3 x3

3

−
48ωγ b

D
(γ b − 1) (2γ b − 1) x2

1 x2

−
48γ 2b2

D
(γ b − 1) (2γ b − 1) x2

1 x3

−
192γ 2b2

D
(γ b − 1) (2γ b − 1)2 x1x2

2

−
768γ 4b4

ω2 D
(γ b − 1) (2γ b − 1)3 x2

2 x3

−
192γ 4b4

ω2 D
(γ b − 1) (2γ b − 1)2 x1x2

3

−
768γ 5b5

ω3 D
(γ b − 1) (2γ b − 1)3 x2x2

3

−
384γ 3b3

ωD
(γ b − 1) (2γ b − 1) x1x2x3

U2,2 (x) =
4ω3ε

D
(2γ b − 1) (3γ b − 1) x2

1
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+
16ωγ b

D
(2γ b − 1)2

(
24εγ 2b3 − 20εγ b2 + γ b + 4εb − 1

)
x2

2

−
γ

16ωε2 D (2γ b − 1)
(28γ 4b3 − 60γ 3b2 − 16εγ 2b2

+ 16ω2ε2γ b2 − 16ε2γ b2 D + 32γ 2b − 4ω2ε2b

+ 3εD − ω2ε)x2
3 −

1

2ε2bD
(16εγ 3b3 + 8ω2ε2γ b2 + 4γ 3b2

+ 48ε2γ b2 D − 4γ 2b − 3ω2εγ b − 4ω2ε2b − 16ε2bD

+ 4ω2ε + εD)x1x2 +
ω

8εγ bD
(64εγ 3b3 + 4γ 3b2 − 16εγ 2b2

− 32ω2ε2γ b2 − 4γ 2b + 8ω2ε2b + 3ω2ε)x1x3

−
1

8ε2bD (2γ b − 1)
(16γ 4b3 − 36γ 3b2 − 16εγ 2b2 − 32ε2γ b2 D

+ 8ω2ε2γ b2 + 20γ 2b + 4ω2εγ b + 8ε2bD + 2εD − 5ω2ε)x2x3,

U2,3 (x) =
4ω3ε

γ D
(2γ b − 1) x3

1 +
256εγ 2b3

D
(2γ b − 1)4 x3

2

+
256εγ 5b6

ω3 D
(2γ b − 1)4 x3

3 +
48ω2b

D
(2γ b − 1)2 x2

1 x2

+
48ωεγ b2

D
(2γ b − 1)2 x2

1 x3

+
192ωεγ b2

D
(2γ b − 1)3 x1x2

2 +
768εγ 3b4

ωD
(2γ b − 1)4 x2

2 x3

+
192εγ 3b4

ωD
(2γ b − 1)3 x1x2

3 +
768εγ 4b5

ω2 D
(2γ b − 1)4 x2x2

3

+
384εγ 2b3

D
(2γ b − 1)3 x1x2x3

U3,2 (x) = −
16ω2

D
(γ b − 1) (2γ b − 1) (3γ b − 1) x2

1

−
64γ 2b

εD
(γ b − 1) (2γ b − 1)2 (24εγ 2b3 − 20εγ b2
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+ γ b + 4εb − 1)x2
2 +

γ 2b

ω2ε2 D
(2γ b − 1) (16εγ 3b3 + 4γ 3b2

− 4γ 2b − 7ω2εγ b − 4ω2ε2b + 8ω2ε + 3εD)x2
3

−
4ω

εγ bD
(γ b − 1) (2γ b − 1) (32εγ 3b3 − 16εγ 2b2 + 4γ 2b

− 3ω2ε)x1x2 +
2

εD
(2γ b − 1) (32εγ 3b3 + 24γ 4b3 − 16εγ 2b2

− 44γ 3b2 + 20γ 2b − ω2ε)x1x3 −
16γ b

ωε2 D
(2γ b − 1) (4εγ 3b2

+ γ 3b − 4ω2ε2γ b − γ 2 + ω2ε2)x2x3

U3,3 (x) = −
16ω2

D
(γ b − 1) (2γ b − 1) x3

1

−
1024γ 3b3

ωD
(γ b − 1) (2γ b − 1)4 x3

2

−
1024γ 6b6

ω4 D
(γ b − 1) (2γ b − 1)4 x3

3

−
192ωγ b

D
(γ b − 1) (2γ b − 1)2 x2

1 x2

−
192γ 2b2

D
(γ b − 1) (2γ b − 1)2 x2

1 x3

−
768γ 2b2

D
(γ b − 1) (2γ b − 1)3 x1x2

2

−
3072γ 4b4

ωD
(γ b − 1) (2γ b − 1)4 x2

2 x3

−
768γ 4b4

ω2 D
(γ b − 1) (2γ b − 1)3 x1x2

3

−
3072γ 5b5

ω3 D
(γ b − 1) (2γ b − 1)4 x2x2

3

−
1536γ 3b3

ωD
(γ b − 1) (2γ b − 1)3 x1x2x3,
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with

D = ω2
(
−16εγ 2b3 + 16εγ b2 + γ b − 4εb − 1

)

+ 16γ 2b2 (γ b − 1) (2γ b − 1)2 =
4γ 2b

ε
× G (ε, ∙) .

Now we project the system (23) to the center manifold M which is character-
ized by the fact that it is tangent to the x1 x2 plane at the origin (the eigenspace
corresponding to λ1,2 = ±iω) and is locally invariant with respect to the flow
of system (23). Note that this center manifold can be parameterized by the
variables x1 and x2 in the form x3 = h (x1, x2) where h : R2 → R admits a
Taylor expansion of the form

h (x1, x2) =
1

2

(
h11x2

1 + 2h12x1x2 + h22x2
2

)
+ O

((√
x2

1 + x2
2

)3
)

,

and, the Center Manifold Theorem implies that h must satisfy

0 = h (0, 0) = h′
x1

(0, 0) = h′
x2

(0, 0) ,

where h ∈ Ck , k ∈ N with k > 3.
If (x1 (s) , x2 (s) , x3 (s)) is a solution of system (23) near the origin with

initial conditions starting on M then the flow of system (23) remains locally
on M for all time, that is x3 (s) ≡ h (x1 (s) , x2 (s)). Consequently

ẋ3 (s) − h′
x1

(x1 (s) , x2 (s)) ẋ1 (s) − h′
x2

(x1 (s) , x2 (s)) ẋ2 (s) ≡ 0.

Using system (23) the above identity turns out to be

γ (γ b − 1)

ε (2γ b − 1)
x3 + U3,2 (x1, x2, x3) + U3,3 (x1, x2, x3) − h′

x1
(x1, x2)

−

(

h11x1 + h12x2 + O

((√
x2

1 + x2
2

)2
)) (

ωx2 + U1,2 (x1, x2, x3)

+ U1,3 (x1, x2, x3)

)
−

(

h12x1 + h22x2 + O

((√
x2

1 + x2
2

)2
))

×
(

− ωx1 + U2,2 (x1, x2, x3) + U2,3 (x1, x2, x3)

)
≡ 0;
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since

x3 = h (x1, x2) =
1

2

(
h11x2

1 + 2h12x1x2 + h22x2
2

)
+ O

((√
x2

1 + x2
2

)3
)

.

Omitting the terms of third and higher order we obtain

γ (γ b − 1)

2ε (2γ b − 1)

(
h11x2

1 + 2h12x1x2 + h22x2
2

)

−ωh11x1x2 − ωh12x2
2 + ωh12x2

1 + ωh22x1x2 ≡ 0.

A rearrangement of terms yields

(
γ (γ b − 1)

2ε (2γ b − 1)
h11 −

16ω2

D
(γ b − 1) (2γ b − 1) (3γ b − 1) + ωh12

)
x2

1

+
(

γ (γ b − 1)

2ε (2γ b − 1)
h22 −

64γ 2b

εD
(γ b − 1) (2γ b − 1)2

(
4εγ b2 (2γ b − 1)

−
ω2ε

4γ 2b

)
− ωh12

)
x2

2 +
(

γ (γ b − 1)

ε (2γ b − 1)
h12 −

16ωγ b

εD
(γ b − 1) (2γ b − 1)

×
(

γ b + 8εγ b2 (2γ b − 1) −
ω2ε

2γ 2b

)
− ωh11 + ωh22

)
x1x2 ≡ 0.

Equating the coefficient to zero and solving the resulting system we have

h11 =
32ω2εγ b(γ b − 1)(2γ b − 1)2

D × F

(
8εb(2γ b − 1)2(4γ b − 1)

+ 3γ 2b2 − 3γ b + 1
)

h12 =
−16(γ b − 1)(2γ b − 1)

D × F

(
ε
(
8γ 2b2(γ b − 1)(2γ b − 1)2(4γ b − 1)

− D(3γ b − 1)
)
− γ 2b(γ b − 1)(6γ 2b2 − 9γ b + 2)

)

h22 =
64γ b(γ b − 1)(2γ b − 1)3

D × F

(
ε
(
D + 8γ 2b2(2γ b − 1)(3γ 2b2

− 3γ b + 1)
)
+ 2γ 2b(4γ b − 3)(γ b − 1)

)
,

where
F = 3γ 4b3 − 6γ 3b2 + 3γ 2b + εD.
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Thus,

h (x1, x2) =
8 (γ b − 1) (2γ b − 1)

D × F

(
2T ω2εγ b (2γ b − 1) x2

1

− Rx1x2 + 4γ b (2γ b − 1)2 Sx2
2

)
,

where

T = 8εb (2γ b − 1)2 (4γ b − 1) + 3γ 2b2 − 3γ b + 1

R = ε(8γ 2b2 (γ b − 1) (2γ b − 1)2 (4γ b − 1) − D (3γ b − 1))

− γ 2b (γ b − 1) ×
(
6γ 2b2 − 9γ b + 2

)

S = ε
(
D + 8γ 2b2 (2γ b − 1)

(
3γ 2b2 − 3γ b + 1

))

+ 2γ 2b (4γ b − 3) (γ b − 1) .

Finally, to get to the restriction of system (23) to the μ = 0 section of the
center manifold M , we consider the new change of coordinates

y1 = x1, y2 = x2, y3 = x3 − h (x1, x2) .

In this new coordinate system, the equation of the μ = 0 section is y3 = 0 ,
that is the μ = 0 section is the y1, y2 plane. By this coordinate transformation,
system (23) becomes

ẏ1 = ωy2 + U1,2 (y1, y2, y3 + h (y1, y2)) + U1,3 (y1, y2, y3 + h (y1, y2))

ẏ2 = −ωy1 + U2,2 (y1, y2, y3 + h (y1, y2)) + U2,3 (y1, y2, y3 + h (y1, y2))

ẏ3 =
γ (γ b − 1)

ε (2γ b − 1)
y3 + U3,2 (y1, y2, y3 + h (y1, y2))

+ U3,3 (y1, y2, y3 + h (y1, y2)) .

Restricted to the center manifold M we can write y3 = 0 everywhere and taking
into that ẏ3 = 0. Hence, the system (23) restricted to the center manifold is
given by

ẏ1 = ωy2 −
4ω2

D
(γ b − 1) (3γ b − 1) y2

1 −
16γ 2b

εD
(γ b − 1) (2γ b − 1)

×
(
24εγ 2b3 − 20εγ b2 + γ b + 4εb − 1

)
y2

2 −
4ωγ

εD
(γ b − 1)

(
48εγ 2b3

Comp. Appl. Math., Vol. 30, N. 3, 2011



“main” — 2011/11/25 — 14:20 — page 692 — #18

692 WEAK ALLEE EFFECT IN A PREDATOR PREY SYSTEM

− 40εγ b2 + 3γ b + 8εb − 2
)
y1 y2 +

4γ 2b

εD

(
8εγ 2b3 + 3γ 2b2 − 4εγ b2

− 5γ b + 2
)
h (y1, y2) y1 −

4γ b

ωε2 D
(γ b − 1)

(
4εγ 3b2 + γ 3b − 4ω2ε2γ b

− γ 2 + ε2ω2
)
h (y1, y2) y2 −

4ω2

D
(γ b − 1) y3

1 −
256γ 3b3

ωD
(γ b − 1)

× (2γ b − 1)3 y3
2 −

48ωγ b

D
(γ b − 1) (2γ b − 1) y2

1 y2 −
192γ 2b2

D

× (γ b − 1) (2γ b − 1)2 y1 y2
2 + O

((√
y2

1 + y2
2

)4
)

ẏ2 = − ωy1 +
4ω3ε

D
(2γ b − 1) (3γ b − 1) y2

1 +
16ωγ b

D
(2γ b − 1)2

×
(
24εγ 2b3 − 20εγ b2 + γ b + 4εb − 1

)
y2

2 +
1

εbD

×
(

4ω2εb (2γ b − 1)
(
48εγ 2b3 − 40εγ b2 + γ b + 8εb − 1

)
(24)

−
4γ 2b (γ b − 1)2

ε

)
y1 y2 +

ω

4γ bD

(
ω2

(
−16εγ b2 + 4εb +

3

2

)

+
2γ 2b

(
16εγ b2 + γ b − 4εb − 1

)

ε

)
h (y1, y2) y1

+
γ 2

ε2 D (2γ b − 1)

(
64ε3b3 (2γ b − 1)4 (4γ b − 1)

+ (γ b − 1)2
)
h (y1, y2) y2 +

4ω3ε

γ D
(2γ b − 1) y3

1 +
256εγ 2b3

D

× (2γ b − 1)4 y3
2 +

48ω2b

D
(2γ b − 1)2 y2

1 y2

+
192ωεγ b2

D
(2γ b − 1)3 y1 y2

2 + O

((√
y2

1 + y2
2

)4
)

.

The calculations may be summarized in the next proposition, which provides
the direction of the Hopf bifurcation.

Proposition 3.4. Consider the one-parameter family of differential equations
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(4). The first Lyapunov coefficient associated with the equilibrium (n3, p3, q3)

is given by

G4 =
1

ωε2γ D2 F

(
− 1048576ωε6γ 6b8 (2γ b − 1)11 (3γ b − 1)2

− 32768ε5γ 6b7 (γ b − 1) × (2γ b − 1)9 ×
(
12γ 2b2 + 232ωγ 2b2

− 7γ b − 156ωγ b + 26ω + 1
)
− 4096ε4γ 6b6 (γ b − 1) (2γ b − 1)7

)

× (516ωγ 3b3 + 44γ 3b3 − 68γ 2b2 − 862ωγ 2b2 + 418ωγ b

+ 27γ b − 62ω − 3) − 512ε3γ 6b5 (γ b − 1) (2γ b − 1)5

×
(
720ωγ 4b4 − 24γ 4b4 − 1804ωγ 3b3 + 62γ 3b3 − 59γ 2b2

+ 1632ωγ 2b2 − 632ωγ b + 25γ b + 88ω − 4
)

− 128ε2γ 6b4 (γ b − 1)2 (2γ b − 1)4 ×
(
260ωγ 3b3 − 22γ 3b3

− 466ωγ 2b2 + 43γ 2b2 + 262ωγ b − 25γ b − 48ω + 4
)

− 32γ 6b3 (γ b − 1)4 (2γ b − 1)2 (44ωγ 2b2 + 6γ 2b2 (25)

− 38ωγ b − 7γ b + 4ω + 2) + 16ωγ 6b2 (γ b − 1)4

×
(
28γ 3b3 − 47γ 2b2 + 25γ b − 4

)
.

Proof. Consider the two dimensional ODE system

ẋ = −ωy + f2 (x, y) + f3 (x, y)

ẏ = ωx + g2 (x, y) + g3 (x, y) , (26)

where

f2 (x, y) = a1x2 + a2xy + a3 y2,

f3 (x, y) = b1x3 + b2x2 y + b3xy2 + b4 y4,

g2 (x, y) = c1x2 + c2xy + c3 y2

g3 (x, y) = d1x3 + d2x2 y + d3xy2 + d4 y4.
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In accordance with Bautin’s Lemma (see [8]) the first Poincaré-Lyapunov coef-
ficient for system (26) is given by

G4 =
1

4

(
3b1 + b3 + d2 + 3d4

)
+

1

4ω

×
(
a1a2 + a2a3 − c1c2 − c2c3 + 2(a3c3 − a1c1)

)
.

(27)

Comparing (26) with (24) and using (27), we obtain G4 as given by (25). �

With the results obtained in this section we can enunciate the following
Theorem.

Theorem 3.5. If (12) holds and G4 < 0 (respectively G4 > 0), then there
exists a δ > 0 such that for each a ∈

(
a0 − δ, a0

)
(respectively a ∈

(
a0, a0+

δ
)
), the system (4) (or equivalently system (3)) has a unique orbitally asymp-

totically stable (respectively unstable) periodic orbit around the equilibrium
(n3, p3, q3).

4 Simulation results

In this section we present some simulations carried in Maple 9 to verify the
veracity of the analytical results obtained for system (4).

The equilibrium point (0, 0, 0) is always unstable; to illustrate this case we
made the phase portrait in the case by choosing ε = 0.5, K = 1.4, α = 0.5,
γ = 0.7, β = 0.8 y a = 0.25 (see Fig. 2).

The equilibrium point (1, 0, 1) is stable if βK − γ < 0 and unstable if
βK − γ > 0. So, to see the stability of this equilibrium we take ε = 0.5,
K = 1.4, α = 0.5, γ = 0.7, β = 0.3 and a = 0.25 (see Fig. 3-(a)); on
the other hand, the instability is obtained when ε = 0.5, K = 1.4 , α = 0.5,
γ = 0.7, β = 0.8 and a = 0.25 (see Fig. 3-(b)).

Finally, we illustrate the stability properties of the equilibrium (n3, p3, q3).
If we consider the following values of the parameters ε = 0.2, K = 1.4,
α = 0.5, γ = 0.7, β = 0.8 and a = 0.985, the equilibrium (n3, p3, q3)

is asymptotically stable (see Fig. 4-(a)). Note that these values yield
(n3, p3, q3) = (0.625, 0.2678571428, 0.625) and the conditions (8), (9) and
(10) are equivalent to 0.42 > 0, −0.28 < 0 and a = 0.985 > a0 = 0.925
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(0,0,0)

q

n

p

Figure 2 – Instability of (0, 0, 0).

(a)

q

n

(1,0,1)

p

q

p

(1,0,1)

(b)

n

Figure 3 – Equilibrium (1, 0, 1): (a) Stable persistence. (b) Unstable persistence.

( n3 , p3 , q3 )

q

.

p

(a)

n n

( n3 , p3 , q3 )

p

.
q

(b)

Figure 4 – (a) Asymptotic stability at a = 0.985. (b) Stable weak focus at a0 = 0.925.
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respectively. Furthermore, decreasing the value of a up to a0 we see in
Figure 4-(b) that the equilibrium (n3, p3, q3) is a weak stable focus.

The parameters given in the above paragraph we obtain Figures 5 (a)
and (b) illustrating the occurrence of a periodic orbit around the equilibrium
(n3, p3, q3) at a = 0.825 and a = 0.414628 respectively. Note that in this
case we have G4 ≈ −2.595557406 which shows numerically that the periodic
orbit generated by the Hopf bifurcation is supercritical and a0 = 0.925 is the
bifurcation point. Finally, in Figure 6 we give a phase portrait for system (24),
the restriction of system (4) to the center manifold.

( n3 , p3 , q3 )

n

(a)

p

.
q

.( n3 , p3 , q3 )

(b)

p

n

q

Figure 5 – (a) Periodic orbit at a = 0.825. (b) Periodic orbit at a = 0.414628.

.

Y2

Y1

(0,0)

Figure 6 – System (4) restricted to the center manifold.
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5 Maple Code

In this section we include the main Maple code used to simulate Figure 2. The
same code is appropriately modified for simulating other figures

> restart:1

> with(plots):with(DEtools):with(plottools):with(RandomTools):2

> unprotect(gamma):epsilon:=0.5:K:=1.4:alpha:=0.5:gamma:=0.7:3

beta:=0.8:a:=0.25:4

> sist:={diff(x(t),t)=4*x(t)ˆ2*(1-x(t))-alpha*K/epsilon5

*x(t)*y(t),diff(y(t),t)=-gamma/epsilon*y(t)+1/(epsilon*b)6

*y(t)*z(t),diff(z(t),t)=a/epsilon*(x(t)-z(t))}:7

> amin:=0.05:amax:=0.4:8

> cond:=[[x(0)=Generate(float(range=amin..amax,digits=3)),9

y(0)=Generate(float(range=amin..amax,digits=3)),10

z(0)=Generate(float(range=amin..amax,digits=3))]]:11

> for i from 1 by 1 to 12 do12

cond:=[op(cond),[x(0)=Generate(float(range=amin..amax,13

digits=3)),y(0)=Generate(float(range=amin..amax,14

digits=3)),z(0)=Generate(float(range=amin..amax,15

digits=3))]]:end do:16

> xmax:=0.6:ymax:=0.6:zmax:=0.6:17

> opc:=x=-0.1..xmax+0.07,y=-0.1..ymax+0.07,z=0..zmax+0.07,18

stepsize=.05,axes=box,linecolor=black,color=grey:19

> tiempo:=t=-15..15:x1:=0:y1:=0:z1:=0:20

> espfase:=DEplot3d(sist,{x(t),y(t),z(t)},tiempo,cond,opc,21

thickness=2,labels=[n,p,q],orientation=[145,55]):22

> display(espfase,tickmarks=[2,2,2],axes=boxed);23

Discussion

In this paper we have studied a Lotka-Volterra predator-prey system introduc-
ing the weak Allee effect in the prey dynamics. A distributed delay is con-
sidered for the predator population. Aggregation and cooperation are common
among various species in the nature. These characteristics are observed
especially when the species search for food or when they try to escape from
predators. The model studied is formulated along these lines. It is observed that
this model exhibits interesting dynamics of the interacting populations due to
the presence of the weak Allee effect different from the logistic growth models.
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Stability analysis of the equilibrium states is carried out. Conditions are derived
for the occurrence of Hopf bifurcation of the equilibria of this model.

Farkas [8] has considered a predator-prey system similar to that of the pres-
ent model with logistic type functional response and with weak Allee effect.
The functional response considered in our model is different from that in [8].
Theorem 3.5 is an analogue of Theorem 7.3.1 (see [8]). It is observed that
though the weak Allee effect drives the system to instability, the parameters
associated with the memory will play a neutralizing role which is evident from
the presence of periodic orbits.
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