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1 Introduction

The linear theory of elasticity is of paramount importance in the stress analysis

of steel, which is the most common engineering structural material. To a lesser

extent linear elasticity describes the mechanical behavior of other common solid

materials, e.g., concrete, wood and coal. However, this theory does not apply

to the behavior of many new synthetic materials of the elastomer and polymer

type, e.g., polymethyl-methacrylate, polythylene, polyvinyl chloride.

Modern engineering structures are often made up of materials possessing an

internal structure. Polycrystalline materials, materials with fibrous or coarse

grain structure come in this category. Classical theory of elasticity is inadequate

to represent the behavior of such materials. The micropolar elasticity theory
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takes into consideration the granular character of the medium, and is intended to

be applied to materials for which the ordinary classical theory of elasticity fails

owing to the microstructure of the material. Within such a theory, solids can

undergo macro-deformations and micro-rotations. The motion in this kind of

solids is completely characterized by the displacement vector and the microrota-

tion vector, whereas in case of classical elasticity, the motion is characterized by

the displacement vector only. The micropolar theory have been extended to in-

clude thermal effects by Eringen (1970, 1999) and Nowacki (1966a,b,c). Boschi

and Iesan (1973) extended a generalized theory of micropolar thermoelasticity.

Iesan (1986) established a linear theory of thermoelastic materials with voids.

He presented the basic field equations and discussed the conditions of propa-

gation of acceleration waves in a homogeneous isotropic thermoelastic material

with voids. He showed that transverse wave propagates without effecting the

temperature and the porosity of the material. Iesan (1987) extended the thermoe-

lastic theory of elastic material with voids to include initial stress and the initial

heat-flux effects. Dhaliwal and Wang (1995) also formulated a thermoelasticity

theory for elastic material with voids to include heat flux among the consecutive

variables and assumed an evolution equation for the heat-flux. Chirita and Scalia

(2001) and Pompei and Scalia (2002) studied the spatial and temporial behavior

of the transient solutions for the initial-boundary value problems associated with

the linear theory of the thermoelastic materials with voids by using the time-

weighted surface power function method. Scalia, Pompei and Chirita (2004)

considered the steady time harmonic oscillations within the context of linear

thermoelasticity for materials with voids and derived the spatial decay results for

the amplitude of harmonic variations in a cylinder.

Scalia (1992) considered a grade consistent micropolar theory of thermoelastic-

ity for materials with voids. Passarella (1996) introduced a theory of micropolar

thermoelasticity for materials with voids based on the Lebon (1982) law for heat

conduction.

Diffusion is defined as the spontaneous movement of the particles from a high

concentration region to the low concentration region and it occurs in response

to a concentration gradient expressed as the change in the concentration due

to change in position. Thermal diffusion utilizes the transfer of heat across a
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thin liquid or gas to accomplish isotope separation. Today, thermal diffusion

remains a practical process to separate isotopes of noble gases (e.g. xexon)

and other light isotopes (e.g. carbon) for research purposes. In most of the

applications, the concentration is calculated using what is known as Fick’s law.

This is a simple law which does not take into consideration the mutual interaction

between the introduced substance and the medium into which it is introduced or

the effect of temperature on this interaction. However, there is a certain degree

of coupling with temperature and temperature gradients as temperature speeds

up the diffusion process. The thermodiffusion in elastic solids is due to coupling

of fields of temperature, mass diffusion and that of strain in addition to heat and

mass exchange with the environment.

Nowacki (1974a,b,c, 1976) developed the theory of thermoelastic diffusion

by using coupled thermoelastic model. Uniqueness and reciprocity theorems for

the equations of generalized thermoelastic diffusion problem, in isotropic media,

was proved by Sherief et al. (2004) on the basis of the variational principle equa-

tions, under restrictive assumptions on the elastic coefficients. Due to the inherit

complexity of the derivation of the variational principle equations, Aouadi (2007)

proved this theorem in the Laplace transform domain, under the assumption that

the functions of the problem are continuous and the inverse Laplace transform of

each is also unique. Aouadi (2008) derived the uniqueness and reciprocity theo-

rems for the generalized problem in anisotropic media, under the restriction that

the elastic, thermal conductivity and diffusion tensors are positive definite. Re-

cently, Aouadi (2009) derived the uniqueness and reciprocity theorems for the

generalized micropolar thermoelastic diffusion problem in anisotropic media.

Also, Aouadi (2010) derived the uniqueness, reciprocity and existence theorems

for the thermoelastic diffusion problem with voids in anisotropic media.

To investigate the boundary value problems of the theory of elasticity and

thermoelasticity by potential method, it is necessary to construct a fundamental

solution of systems of partial differential equations and to establish their basic

properties respectively. Hetnarski (1964a,b) was the first to study the fundamen-

tal solutions in the classical theory of coupled thermoelasticity. The fundamental

solutions in the theory of micropolar elasticity and thermoelasticity for materials

with voids are presented by Scarpetta (1990) and Svanadze et al. (2007) respec-
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tively. The fundamental solutions in the microcontinuum fields theories have

been constructed by Svanadze (1988, 1996, 2004) and Svanadze et al. (2006).

The information related to fundamental solutions of differential equations is

contained in the books of Hörmander (1963, 1983).

In this article, the fundamental solution of system of equations in the case

of steady oscillations is considered in terms of elementary functions and basic

properties of the fundamental solution are established. Some special cases of

interest are also discussed.

2 Basic equations

Let x = (x1, x2, x3) be the point of the Euclidean three-dimensional space E3,

|x| =
(
x2

1 + x2
2 + x2

3

) 1
2 , Dx =

(
∂

∂x1
,

∂

∂x2
,

∂

∂x3

)

and let t denote the time variable.

Following Aouadi (2009, 2010), the basic equations for homogeneous isotropic

generalized micropolar thermoelastic diffusion with voids in the absence of body

forces, body couples, heat and mass diffusive sources are:

(μ + K ∗)1ū + (λ + μ) grad div ū + K ∗ curl ϕ̄ + γ ∗ grad φ̄∗

− β1 grad T̄ − β2 grad C̄ = ρ ¨̄u,
(1)

( f ∗1 − 2K ∗)ϕ̄ + (α∗ + β∗) grad div ϕ̄ + K ∗ curl ū = ρ j ¨̄ϕ, (2)

(a∗1 − d∗)φ̄∗ − γ ∗div ū + ξ ∗ T̄ + ζ ∗ C̄ = ρχ
¨̄

φ∗, (3)

(1 + τ0
∂

∂t
)(β1T0 div ˙̄u + ξ ∗T0

˙̄
φ∗ + ρCE

˙̄T + aT0
˙̄C) = K1T̄ , (4)

Dβ21 div ū + Dζ ∗1φ̄∗ + Da1T̄ − Db1C̄ + ˙̄C + τ 0 ¨̄C = 0, (5)

where

β1 = (3λ + 2μ + K ∗)αt , β2 = (3λ + 2μ + K ∗)αc .

Here αt , αc are the coefficients of linear thermal expansion and diffusion expan-

sion respectively; ū = (ū1, ū2, ū3) is the displacement vector; ϕ̄ = (ϕ̄1, ϕ̄2, ϕ̄3)

is the microrotation vector; φ∗ is the volume fraction function; ρ, CE are, respec-

tively, the density and specific heat at constant strain; λ,μ, K , D, a, b, a∗, d∗,
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f ∗, ξ ∗, ζ ∗, α∗, β∗, K ∗, γ ∗ are constitutive coefficients; j is microintertia den-

sity; χ is equilibrated inertia; T̄ = 2 − T0 is small temperature increment; 2 is

the absolute temperature of the medium; T0 is the reference temperature of the

body chosen such that | T̄
T0

| � 1; C̄ is the concentration of the diffusive material

in the elastic body; τ 0 is diffusion relaxation time and τ0 is thermal relaxation

time; 1 is the Laplacian operator. If τ0 = τ 0 = 0, then from (1)-(5), we obtain

the basic equations for micropolar thermoelastic diffusion with voids based upon

the Fourier classical law of heat conduction.

We define the dimensionless quantities:

x′ =
w∗

1x

c1
, ū′ =

ρw∗
1c1ū

β1T0
, ϕ̄′ =

ρc2
1ϕ̄

β1T0
, φ̄∗

′

=
ρχw∗2

1 φ̄∗

β1T0
,

T̄
′
=

T̄

T0
, C̄

′
=

β2C̄

β1T̄0
, t

′
= w∗

1 t, τ
′

0 = w∗
1τ0, τ 0

′

= w∗
1τ

0,

δ1 =
μ + K ∗

λ + 2μ + K ∗
, δ2 =

λ + μ

λ + 2μ + K ∗
, δ3 =

K ∗

λ + 2μ + K ∗
,

δ4 =
γ ∗

ρχw∗2
1

, δ5 =
f ∗w∗2

1

ρc4
1

, δ6 =
(α∗ + β∗)w∗2

1

ρc4
1

,

δ7 =
jw∗2

1

c2
1

, δ8 =
a∗

χ(λ + 2μ + K ∗)
, δ9 =

d∗

ρχw∗2
1

,

δ10 =
γ ∗

λ + 2μ + K ∗
, δ11 =

ξ ∗

β1
, δ12 =

ζ ∗

β2
,

ζ1 =
aT0c2

1β1

w∗
1 Kβ2

, ζ2 =
β2

1 T0

ρKw∗
1

, ζ3 =
ξ ∗β1T0c2

1

ρχ Kw∗3
1

,

q∗
1 =

Dw∗
1β

2
2

ρc4
1

, q∗
2 =

Dw∗
1β2a

β1c2
1

, q∗
3 =

Dw∗
1b

c2
1

, q∗
4 =

Dζ ∗β2

ρχw∗
1c2

1

,

(6)

where

w∗
1 =

ρCE c2
1

K
, c1 =

√
λ + 2μ + K ∗

ρ
.
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Upon introducing the quantities (6) in the basic equations (1)-(5), after sup-

pressing the primes, we obtain

δ11ū + δ2 grad div ū + δ3 curl ϕ̄ + δ4 grad φ̄∗ − grad T̄ − grad C̄ = ¨̄u, (7)

(δ51 − 2δ3)ϕ̄ + δ6 grad div ϕ̄ + δ3 curl ū = δ7 ¨̄ϕ, (8)

(δ81 − δ9)φ̄∗ − δ10 div ū + δ11T̄ + δ12C̄ = ¨̄
φ∗, (9)

τ 0
t (ζ2 div ˙̄u + ζ3

˙̄
φ∗ + ˙̄T + ζ1

˙̄C) = 1T̄ , (10)

q∗
1 1 div ū + q∗

4 1φ̄∗ + q∗
2 1T̄ − q∗

3 1C̄ + τ 0
c

˙̄C = 0, (11)

where

τ 0
t = 1 + τ0

∂

∂t
, τ 0

c = 1 + τ 0 ∂

∂t
.

We assume the displacement vector, microrotation, volume fraction, temperature

change and concentration functions as

(
ū(x, t), ϕ̄(x, t), φ̄∗(x, t), T̄ (x, t), C̄(x, t)

)
= Re

[
(u, ϕ, φ∗, T, C)e−ιωt

]
(12)

Using equation (12) in the equations (7)-(11), we obtain the system of equations

of steady oscillations as

(δ11 + ω2)u + δ2 grad div u + δ3 curl ϕ

+ δ4 grad φ∗ − grad T − grad C = 0,
(13)

(δ51 + μ∗)ϕ + δ6 grad div ϕ + δ3 curl u = 0, (14)

−δ10 div u + (δ81 + χ∗)φ∗ + δ11T + δ12C = 0, (15)

−τ 10
t [ζ2 div u + ζ3φ

∗ + ζ1C] + (1 − τ 10
t )T = 0, (16)

q∗
1 1 div u + q∗

4 1φ∗ + q∗
2 1T − q∗

3 1C + τ 10
c C = 0, (17)

where

τ 10
t = −ιω(1 − ιωτ0), τ

10
c = −ιω(1 − ιωτ 0), μ∗ = δ7ω

2 − 2δ3, χ
∗ = ω2 − δ9.

We introduce the matrix differential operator

F(Dx) = ‖Fgh(Dx)‖9×9
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where

Fmn(Dx) = [δ11 + ω2]δmn + δ2
∂2

∂xm∂xn
,

Fm,n+3(Dx) = Fm+3,n(Dx) = δ3

3∑

r=1

εmrn
∂

∂xr
,

Fm7(Dx) = δ4
∂

∂xm
, Fm8(Dx) = Fm9(Dx) = −

∂

∂xm
,

Fm+3,n+3(Dx) = (δ51 + μ∗)δmn + δ6
∂2

∂xm∂xn
,

Fm+3,7(Dx) = F7,n+3(Dx) = Fm+3,8(Dx) = F8,n+3(Dx)

= Fm+3,9(Dx) = F9,n+3(Dx) = 0,

F7n(Dx) = −δ10
∂

∂xn
, F77(Dx) = δ81 + χ∗, F78(Dx) = δ11,

F79(Dx) = δ12, F8n(Dx) = −ζ2τ
10
t

∂

∂xn
,

F87(Dx) = −ζ3τ
10
t , F88(Dx) = 4 − τ 10

t , F89 = −ζ1τ
10
t ,

F9n(Dx) = q∗
1 1

∂

∂xn
, F97(Dx) = q∗

4 1, F98(Dx) = q∗
2 1,

F99(Dx) = −q∗
3 1 + τ 10

c , m, n = 1, 2, 3.

Here εmrn is alternating tensor and δmn is the Kronecker delta.

The system of equations (13)-(17) can be written as

F(Dx)U(x) = 0,

where U = (u, ϕ, φ∗, T, C) is a nine-component vector function on E3.

We assume that

−δ1q∗
3 δ5(δ5 + δ6)δ8 6= 0 (18)

If the condition (18) is satisfied, then F is an elliptic differential operator (Hör-

mander, 1963).
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Definition. The fundamental solution of the system of equations (13)-(17) (the

fundamental matrix of operator F) is the matrix G(x) = ‖Ggh(x)‖9×9 satisfying

condition (Hörmander, 1963)

F(Dx)G(x) = δ(x)I(x) (19)

where δ is the Dirac delta, I = ‖δgh‖9×9 is the unit matrix and x ε E3.

Now we construct G(x) in terms of elementary functions.

3 Fundamental solution of system of equations of steady oscillations

We consider the system of equations

δ11u + δ2 grad div u + δ3 curl ϕ − δ10 grad φ∗

−ζ2τ
10
t grad T + q∗

1 1 grad C + ω2u = H′,
(20)

(δ51 + μ∗)ϕ + δ6 grad div ϕ + δ3 curl u = H′′, (21)

δ4 div u + (δ81 + χ∗)φ∗ − ζ3τ
10
t T + q∗

4 1C = Z , (22)

− div u + δ11φ
∗ + (1 − τ 10

t )T + q∗
2 1C = L , (23)

−div u + δ12φ
∗ − ζ1τ

10
t T − q∗

3 1C + τ 10
c C = M, (24)

where H′ and H′′ are three-component vector functions on E3; Z , L and M are

scalar functions on E3.

The system of equations (20)-(24) may be written in the form

Ftr (Dx)U(x) = Q(x), (25)

where Ftr is the transpose of matrix F , Q = (H′, H′′, Z , L , M) and x ε E3.

Applying the operator div to the equations (20) and (21), we obtain

(1 + ω2) div u − δ101φ∗ − ζ2τ
10
t 1T + q∗

1 12C = div H′,

(ν∗1 + μ∗) div ϕ = div H′′,

δ4 div u + (δ81 + χ∗)φ∗ − ζ3τ
10
t T + q∗

4 1C = Z ,

− div u + δ11φ
∗ + (1 − τ 10

t )T + q∗
2 1C = L ,

−div u + δ12φ
∗ − ζ1τ

10
t T − q∗

3 1C + τ 10
c C = M,

(26)
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where ν∗ = δ5 + δ6.

The equations (26)1, (26)3, (26)4 and (26)5 may be expressed in the following

form

N(1)S = Q̄, (27)

where S = (div u, φ∗, T, C), Q̄ = (d1, d2, d3, d4) = (divH′, Z , L , M) and

N(1) =
∥
∥Nmn(1)

∥
∥

4×4

=

∥
∥
∥
∥
∥
∥
∥
∥
∥

1 + ω2 −δ101 −ζ2τ
10
t 1 q∗

1 12

δ4 δ81 + χ∗ −ζ3τ
10
t q∗

4 1

−1 δ11 1 − τ 10
t q∗

2 1

−1 δ12 −ζ1τ
10
t −q∗

3 1 + τ 10
c

∥
∥
∥
∥
∥
∥
∥
∥
∥

4×4

(28)

The equations (26)1, (26)3, (26)4 and (26)5 can be also written as

01(1)S = 9, (29)

where

9 = (91, 92, 93, 94),9n = e∗
4∑

m=1

N ∗
mndm,

01(1) = e∗ det N(1), e∗ = −
1

q∗
3 δ8

n = 1, 2, 3, 4 (30)

and N ∗
mn is the cofactor of the elements Nmn of the matrix N.

From equations (28) and (30), we see that

01(1) =
4∏

m=1

(1 + λ2
m)

where λ2
m, m = 1, 2, 3, 4 are the roots of the equation 01(−κ) = 0 (with

respect to κ).

From equation (26)2, it follows that

(1 + λ2
7) div ϕ =

1

ν∗
div H′′, (31)

where λ2
7 =

μ∗

ν∗
.

Comp. Appl. Math., Vol. 31, N. 1, 2012



“main” — 2012/4/9 — 13:33 — page 178 — #10

178 THEORY OF MICROPOLAR THERMOELASTIC DIFFUSION WITH VOIDS

Applying the operators δ51 + μ∗ and δ3 curl to the equations (20) and (21),

respectively, we obtain

(δ51 + μ∗)
[
δ11u + δ2 grad div u + ω2u

]
+ δ3(δ51 + μ∗) curl ϕ

= (δ51 + μ∗)
[
H′ + δ10 grad φ∗ + ζ2τ

10
t grad T − q∗

1 1 grad C
] (32)

and

δ3(δ51 + μ∗) curl ϕ = −δ2
3 curl curl u + δ3 curl H′′ (33)

Now

curl curl u = grad div u − 1u (34)

Using equations (33) and (34) in equation (32), we obtain

(δ51 + μ∗)
[
δ11u + δ2 grad div u + ω2u

]

+ δ2
31u − δ2

3 grad div u = (δ51 + μ∗)

×
[
H′ + δ10 grad φ∗ + ζ2τ

10
t grad T − q∗

1 1 grad C
]
− δ3 curl H′′

(35)

The above equation can also be written as

{[
(δ51 + μ∗)δ1 + δ2

3

]
1 + (δ51 + μ∗)ω2

}
u

= −
[
δ2(δ51 + μ∗) − δ2

3

]
grad div u + (δ51 + μ∗)

×
[
H′ + δ10 grad φ∗ + ζ2τ

10
t grad T − q∗

1 1 grad C
]
− δ3 curl H′′

(36)

Applying the operator 01(1) to the equation (36) and using equation (29),

we get

01(1)
[
δ5δ11

2 + (μ∗δ1 + δ5ω
2 + δ2

3)1 + μ∗ω2
]
u

= −
[
δ2(δ51 + μ∗) − δ2

3

]
grad 91 + (δ51 + μ∗)

×
[
01(1)H′ + δ10 grad 92 + ζ2τ

10
t grad 93 − q∗

1 1 grad 94
]

− δ301(1) curl H′′

(37)

The above equation may also be written in the following form

01(1)02(1)u = 9 ′, (38)

Comp. Appl. Math., Vol. 31, N. 1, 2012
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where

02(1) = f ∗ det

∥
∥
∥
∥
∥

δ11 + ω2 δ31

−δ3 δ51 + μ∗

∥
∥
∥
∥
∥

2×2

, f ∗ =
1

δ1δ5

and
9 ′ = f ∗

{
−

[
δ2(δ51 + μ∗) − δ2

3

]
grad 91 + (δ51 + μ∗)

×
[
01(1)H′ + δ10 grad 92 + ζ2τ

10
t grad 93 − q∗

1 1 grad 94
]

− δ301(1) curl H′′
}

(39)

It can be seen that

02(1) =
(
1 + λ2

5

)(
1 + λ2

6

)
,

where λ2
5, λ2

6 are the roots of the equation 02(−κ) = 0 (with respect to κ).

Applying the operators δ3 curl and δ11 + ω2 to the equations (20) and (21),

respectively, we obtain

δ3(δ11 + ω2) curl u = δ3 curl H′ − δ2
3 curl curl ϕ (40)

and
(δ11 + ω2)(δ51 + μ∗)ϕ + δ6(δ11 + ω2) grad div ϕ

+ δ3(δ11 + ω2) curl u = (δ11 + ω2)H′′
(41)

Now

curl curl ϕ = grad div ϕ − 1ϕ (42)

Using equations (40) and (42) in equation (41), we obtain

(δ11 + ω2)(δ51 + μ∗)ϕ + δ6(δ11 + ω2) grad div ϕ + δ2
31ϕ

− δ2
3 grad div ϕ = (δ11 + ω2)H′′ − δ3 curl H′

(43)

The above equation may also be rewritten as

{[(δ51 + μ∗)δ1 + δ2
3]1 + (δ51 + μ∗)ω2}ϕ

= −[δ6(δ11 + ω2) − δ2
3] grad div ϕ + (δ11 + ω2)H′′ − δ3 curl H′

(44)

Applying the operator 1 + λ2
7 to the equation (44) and using equation (31), we

get

(1 + λ2
7)[δ5δ11

2 + (μ∗δ1 + δ5ω
2 + δ2

3)1 + μ∗ω2]ϕ = −δ3(1 + λ2
7) curl H′

+ (δ11 + ω2)(1 + λ2
7)H

′′ − [δ6(δ11 + ω2) − δ2
3] grad 95
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The above equation may also be rewritten in the form

02(1)(1 + λ2
7)ϕ = 9 ′′, (45)

where

9 ′′ = f ∗
{

− δ3(1 + λ2
7) curl H′ + (δ11 + ω2)(1 + λ2

7)H
′′

−
[
δ6(δ11 + ω2) − δ2

3

]
grad 95

} (46)

From equations (29), (38) and (45), we obtain

2(1)U(x) = 9̂(x) (47)

where 9̂ = (9 ′, 9 ′′, 93, 94) and

2(1) = ‖2gh(1)‖9×9

2mm(1) = 01(1)02(1) =
6∏

q=1

(1 + λ2
q)

2m+3,m+3(1) = 02(1)(1 + λ2
7) =

7∏

q=5

(1 + λ2
q)

2gh(1) = 0, 277(1) = 288(1) = 299(1) = 01(1),

m = 1, 2, 3 g, h = 1, ....., 9 g 6= h

The equations (30), (39) and (46) can be rewritten in the form

9 ′ =
[

f ∗(δ51 + μ∗)01(1)J + q11(1) grad div
]
H′ + q21(1) curl H′′

+ q31(1) grad Z + q41(1) grad L + q51(1) grad M,
(48)

9 ′′ = q12(1) curl H′ +
{

f ∗(1+λ2
7)(δ11+ω2)J +q22(1) grad div

}
H′′, (49)

92 = q13(1) div H′ + q33(1)Z + q43(1)L + q53(1)M, (50)

93 = q14(1) div H′ + q34(1)Z + q44(1)L + q54(1)M, (51)

94 = q15(1) div H′ + q35(1)Z + q45(1)L + q55(1)M, (52)

where J = ‖δgh‖3×3 is the unit matrix.
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In the equations (48)-(52), we have used the following notations:

q11(1) = f ∗e∗{
(δ51 + μ∗)

[
δ10 N∗

12 + ζ2τ10
t N∗

13 − q∗
1 1N∗

14
]
− (δ2(δ51 + μ∗) − δ2

3)N∗
11

}
,

q21(1) = − f ∗δ301(1), q12(1) = − f ∗δ3(1 + λ2
7), q22(1) = −

f ∗

ν∗

[
δ6(δ11 + ω2) − δ2

3
]
,

q31(1) = f ∗e∗{
(δ51 + μ∗)

[
δ10 N∗

22 + ζ2τ10
t N∗

23 − q∗
1 1N∗

24
]
− (δ2(δ51 + μ∗) − δ2

3)N∗
21

}
,

q41(1) = f ∗e∗{
(δ51 + μ∗)

[
δ10 N∗

32 + ζ2τ10
t N∗

33 − q∗
1 1N∗

34
]
− (δ2(δ51 + μ∗) − δ2

3)N∗
31

}
,

q51(1) = f ∗e∗{
(δ51 + μ∗)

[
δ10 N∗

42 + ζ2τ10
t N∗

43 − q∗
1 1N∗

44
]
− (δ2(δ51 + μ∗) − δ2

3)N∗
41

}
,

q13(1) = e∗N∗
12, q14(1) = e∗N∗

13, q15(1) = e∗N∗
14, q33(1) = e∗N∗

22,

q34(1) = e∗N∗
23, q35(1) = e∗N∗

24, q43(1) = e∗N∗
32, q44(1) = e∗N∗

33,

q45(1) = e∗N∗
34, q53(1) = e∗N∗

42, q54(1) = e∗N∗
43, q55(1) = e∗N∗

44,

Now from equations (48)-(52), we have

9̂(x) = Rtr (Dx)Q(x) (53)

where

R = ‖Rgh‖9×9

Rmn(Dx) = f ∗(δ51 + μ∗)01(1)δmn + q11(1)
∂2

∂xm∂xn
,

Rm,n+3(Dx) = q12(1)

3∑

r=1

εmrn
∂

∂xr
, Rmp(Dx) = q1,p−4(1)

∂

∂xm
,

Rm+3,n(Dx) = q21(1)

3∑

r=1

εmrn
∂

∂xr
,

Rm+3,n+3(Dx) = f ∗(1 + λ2
7)(δ11 + ω2)δmn + q22(1)

∂2

∂xm∂xn
,

Rm+3,p(Dx) = Rp,m+3(Dx) = 0, Rpm(Dx) = qp−4,1(1)
∂

∂xm
,

Rps(Dx) = qp−4,s−4(1) m = 1, 2, 3 p, s = 7, 8, 9.

(54)

From equations (25), (47) and (53), we obtain

2U = Rtr Ftr U
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The above relation implies

Rtr Ftr = 2

Therefore, we obtain

F(Dx)R(Dx) = 2(1) (55)

We assume that

λ2
m 6= λ2

n 6= 0, m, n = 1, 2, 3, 4, 5, 6, 7 m 6= n

Let

Y(x) = ‖Yrs(x)‖9×9, Ymm(x) =
6∑

n=1

r1nςn(x), Ym+3,m+3(x) =
7∑

n=5

r2nςn(x),

Y77(x) = Y88(x) = Y99(x) =
4∑

n=1

r3nςn(x) ,

Yvw(x) = 0, m = 1, 2, 3 v,w = 1, 2, ....., 9 v 6= w

where

ςn(x) = −
1

4π |x|
exp

(
ιλn|x|

)
, n = 1, 2, ..., 7

r1l =
6∏

m=1,m 6=l

(
λ2

m − λ2
l

)−1
, l = 1, 2, 3, 4, 5, 6

r2v =
7∏

m=5,m 6=v

(
λ2

m − λ2
v

)−1
, v = 5, 6, 7

r3w =
4∏

m=1,m 6=w

(
λ2

m − λ2
w

)−1
, w = 1, 2, 3, 4

We will prove the following Lemma:

Lemma. The matrix Y defined above is the fundamental matrix of operator

2(1), that is

2(1)Y(x) = δ(x)I(x) (56)
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Proof. To prove the Lemma, it is sufficient to prove that

01(1)02(1)Y11(x) = δ(x), 02(1)(1 + λ2
7)Y44(x)

= δ(x), 01(1)Y77(x) = δ(x).
(57)

Consider

r31 + r32 + r33 + r34 =
− f1 + f2 − f3 + f4

f5
,

where

f1 =
(
λ2

2 − λ2
3

)(
λ2

2 − λ2
4

)(
λ2

3 − λ2
4

)
, f2 =

(
λ2

1 − λ2
3

)(
λ2

1 − λ2
4

)(
λ2

3 − λ2
4

)
,

f3 =
(
λ2

1 − λ2
2

)(
λ2

1 − λ2
4

)(
λ2

2 − λ2
4

)
, f4 =

(
λ2

1 − λ2
2

)(
λ2

1 − λ2
3

)(
λ2

2 − λ2
3

)
,

f5 =
(
λ2

1 − λ2
2

)(
λ2

1 − λ2
3

)(
λ2

1 − λ2
4

)(
λ2

2 − λ2
3

)(
λ2

2 − λ2
4

)(
λ2

3 − λ2
4

)
.

On simplifying the right hand side of above relation, we obtain

r31 + r32 + r33 + r34 = 0, (58)

Similarly, we find that

r32
(
λ2

1 − λ2
2

)
+ r33

(
λ2

1 − λ2
3

)
+ r34

(
λ2

1 − λ2
4

)
= 0, (59)

r33
(
λ2

1 − λ2
3

)(
λ2

2 − λ2
3

)
+ r34

(
λ2

1 − λ2
4

)(
λ2

2 − λ2
4

)
= 0, (60)

Also,

r34
(
λ2

1 − λ2
4

)(
λ2

2 − λ2
4

)(
λ2

3 − λ2
4

)
=

(
λ2

1 − λ2
4

)(
λ2

2 − λ2
4)

(
λ2

3 − λ2
4

)

(
λ2

1 − λ2
4

)(
λ2

2 − λ2
4

)(
λ2

3 − λ2
4

) = 1, (61)

(
1 + λ2

m

)
ςn(x) = δ(x) +

(
λ2

m − λ2
n

)
ςn(x), m, n = 1, 2, 3, 4. (62)

Now consider

01(1)Y77(x)

=
(
1 + λ2

1

)(
1 + λ2

2

)(
1 + λ2

3

)(
1 + λ2

4

) 4∑

n=1

r3nςn(x)

=
(
1 + λ2

2

)(
1 + λ2

3

)(
1 + λ2

4

) 4∑

n=1

r3n
[
δ(x) +

(
λ2

1 − λ2
n

)
ςn(x)

]

=
(
1 + λ2

2

)(
1 + λ2

3

)(
1 + λ2

4

)
[

δ(x)

4∑

n=1

r3n +
4∑

n=2

r3n(λ
2
1 − λ2

n)ςn(x)

]
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Using equation (58) in the above relation, we obtain

01(1)Y77(x) =
(
1 + λ2

2

)(
1 + λ2

3

)(
1 + λ2

4

) 4∑

n=2

r3n
(
λ2

1 − λ2
n

)
ςn(x)

=
(
1 + λ2

3

)(
1 + λ2

4

) 4∑

n=2

r3n
(
λ2

1 − λ2
n

)[
δ(x) +

(
λ2

2 − λ2
n

)
ςn(x)

]

=
(
1 + λ2

3

)(
1 + λ2

4

) 4∑

n=3

r3n
(
λ2

1 − λ2
n

)(
λ2

2 − λ2
n

)
ςn(x)

=
(
1 + λ2

4

) 4∑

n=3

r3n
(
λ2

1 − λ2
n

)(
λ2

2 − λ2
n

)[
δ(x) +

(
λ2

3 − λ2
n

)
ςn(x)

]

=
(
1 + λ2

4

) 4∑

n=4

r3n
(
λ2

1 − λ2
n

)(
λ2

2 − λ2
n

)(
λ2

3 − λ2
n

)
ςn(x)

=
(
1 + λ2

4

)
ς4(x) = δ(x)

Similarly, the equations (57)1 and (57)2 can be proved.

We introduce the matrix

G(x) = R(Dx)Y(x) (63)

From equations (55), (56) and (63), we obtain

F(Dx)G(x) = F(Dx)R(Dx)Y(x) = 2(1)Y(x) = δ(x)I(x)

Hence, G(x) is a solution to equation (19).

Therefore we have proved the following Theorem:

Theorem. The matrix G(x) defined by equation (63) is the fundamental solu-

tion of system of equations (13)-(17).

4 Basic properties of the matrix G (x)

Property 1. Each column of the matrix G(x) is the solution of the system of

equations (13)-(17) at every point x ε E3 except the origin.
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Property 2. The matrix G(x) can be written in the form

G = ‖Ggh‖9×9

Gmn(x) = Rmn(Dx)Y11(x),

Gm,n+3(x) = Rm,n+3(Dx)Y44(x),

Gmp(x) = Rmp(Dx)Y77(x) m = 1, 2....., 9 n = 1, 2, 3 p = 7, 8, 9.

5 Special cases

(i) Neglecting the diffusion effect in the equations (13)-(17), we obtain the

system of equations of steady oscillations for homogeneous isotropic generalized

micropolar thermoelasticity with voids as:

(
δ11 + ω2

)
u + δ2 grad div u + δ3 curl ϕ + δ4 grad φ∗ − grad T = 0, (64)

(
δ51 + μ∗

)
ϕ + δ6 grad div ϕ + δ3 curl u = 0, (65)

−δ10 div u +
(
δ81 + χ∗

)
φ∗ + δ11T = 0, (66)

−τ 10
t

[
ζ2 div u + ζ3φ

∗
]
+

(
1 − τ 10

t

)
T = 0. (67)

The fundamental solution of the system of equations (64)-(67) is similar as

obtained by Svanadze et al. (2007) by changing the dimensionless quantities

into physical quantities.

(ii) If we neglect the void effect in the equations (13)-(17), we obtain the sys-

tem of equations of steady oscillations for homogeneous isotropic generalized

micropolar thermoelastic diffusion as:

(
δ11 + ω2

)
u + δ2 grad div u + δ3 curl ϕ − grad T − grad C = 0, (68)
(
δ51 + μ∗

)
ϕ + δ6 grad div ϕ + δ3 curl u = 0, (69)

−τ 10
t

[
ζ2 div u + ζ1C

]
+

(
1 − τ 10

t

)
T = 0, (70)

q∗
1 1 div u + q∗

2 1T − q∗
3 1C + τ 10

c C = 0. (71)

The fundamental solution of the system of equations (68)-(71) is similar as

obtained by Kumar and Kansal (2012).
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(iii) If we neglect the micropolar effect in the equations (13)-(17), we obtain

the system of equations of steady oscillations for homogeneous isotropic gener-

alized thermoelastic diffusion with voids as:

(
δ11 + ω2

)
u + δ2 grad div u + δ4 grad φ∗ − grad T − grad C = 0, (72)

−δ10 div u +
(
δ81 + χ∗

)
φ∗ + δ11T + δ12C = 0, (73)

−τ 10
t

[
ζ2 div u + ζ3φ

∗ + ζ1C
]
+

(
1 − τ 10

t

)
T = 0, (74)

q∗
1 1 div u + q∗

4 1φ∗ + q∗
2 1T − q∗

3 1C + τ 10
c C = 0. (75)

The fundamental solution of the system of equations (72)-(75) is similar as

obtained by Kumar and Kansal (2012) based upon Lord-Shulman theory of

thermoelastic diffusion with voids.

(iv) If we neglect the micropolar and void effects in the equations (13)-(17), we

obtain the system of equations of steady oscillations for homogeneous isotropic

generalized thermoelastic diffusion as:

(
δ11 + ω2

)
u + δ2 grad div u − grad T − grad C = 0, (76)

−τ 10
t

[
ζ2 div u + ζ1C

]
+

(
1 − τ 10

t

)
T = 0, (77)

q∗
1 1 div u + q∗

2 1T − q∗
3 1C + τ 10

c C = 0. (78)

The fundamental solution of the system of equations (74)-(76) is similar as

obtained by Kumar and Kansal (2012) based upon Lord-Shulman theory of

thermoelastic diffusion.

6 Conclusions

The fundamental solution G(x) of the system of equations (13)-(17) makes

it possible to investigate three-dimensional boundary value problems of gen-

eralized theory of micropolar thermoelastic diffusion with voids by potential

method (Kupradze et al., 1979).
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