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1 Introduction

A sequential semidefinite programming (SSDP) algorithm for solving nonlin-

ear semidefinite programs was proposed in [5, 7]. It is a generalization of the

well-known sequential quadratic programming (SQP) method and considers

linear semidefinite subproblems that can be solved using standard interior point

packages. Note that linear SDP relaxations with a convex quadratic objective
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function can be transformed to equivalent linear SDP subproblems. However,

as shown in [4], under standard assumptions, local superlinear convergence is

possible only when the iterates are defined by SDP relaxations with a non-

convex quadratic objective function. Since this class of problems is no longer

equivalent to the linear semidefinite programming case we refer to the algo-

rithm in this note as Sequential Quadratic Semidefinite Programming (SQSDP)

method.

In the papers [5, 7] a proof is given showing local quadratic convergence

of the SSDP algorithm to a local minimizer assuming a strong second order

sufficient condition. This condition ensures, in particular, that the quadratic SDP

subproblems close to the local minimizers are convex, and therefore reducible

to the linear SDP case. However, as pointed out in [4], there are examples of

perfectly well-conditioned nonlinear SDP problems that do not satisfy the strong

second order sufficient condition used in [5, 7].

These examples satisfy a weaker second order condition [10], that considers

explicitly the curvature of the semidefinite cone.

In this short note we study the sensitivity of quadratic semidefinite problems

(the subproblems of SQSDP), using the weaker second order condition. Based

on this sensitivity result, the fast local convergence of the SQSDP method can

also be established under the weaker assumption in [10]; in this case the quad-

ratic SDP subproblems may be nonconvex.

The sensitivity results presented in this paper were used in [8] for the study of

a local self-concordance property for certain nonconvex quadratic semidefinite

programming problems.

2 Notation and preliminaries

By Sm we denote the linear space of m × m real symmetric matrices. The space

Rm×n is equipped with the inner product

A • B := trace(AT B) =
m∑

i=1

n∑

j=1

Ai j Bi j .

The corresponding norm is the Frobenius norm defined by ‖A‖F =
√

A • A.

The negative semidefinite order � for A, B ∈ Sm is defined in the standard
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form, that is, A � B iff A − B is a negative semidefinite matrix. The order

relations ≺, � and � are defined similarly. By Sm
+ we denote the set of positive

semidefinite matrices.

The following simple Lemma is used in the sequel.

Lemma 1 (See [7]). Let Y, S ∈ Sm .

(a) If Y, S � 0 then

Y S + SY = 0 ⇐⇒ Y S = 0. (1)

(b) If Y + S � 0 and Y S + SY = 0 then Y, S � 0.

(c) If Y + S � 0 and Y S + SY = 0 then for any Ẏ , Ṡ ∈ Sm ,

Y Ṡ + Ẏ S = 0 ⇐⇒ Y Ṡ + Ẏ S + ṠY + SẎ = 0. (2)

Moreover, Y, S have representations of the form

Y = U

[
Y1 0

0 0

]

U T , S = U

[
0 0

0 S2

]

U T ,

where U is an m × m orthogonal matrix, Y1 � 0 is a (m − r) × (m − r)

diagonal matrix and S2 � 0 is a r × r diagonal matrix, and any matrices

Ẏ , Ṡ ∈ Sm satisfying (2) are of the form

Ẏ = U

[
Ẏ1 Ẏ3

Ẏ T
3 0

]

U T , Ṡ = U

[
0 Ṡ3

ṠT
3 Ṡ2

]

U T ,

where

Y1 Ṡ3 + Ẏ3S2 = 0. (3)

Proof. For (a), (c) see [7].

(b) By contradiction we assume that λ is a negative eigenvalue of S and u a

corresponding eigenvector. The equality Y S + SY = 0 implies that

uT Y (Su) + (Su)T Y u = 0,

uT Y (λu) + (λu)T Y u = 0,

λ(uT Y u + uT Y u) = 0,

⇒ uT Y u = 0, since λ < 0.
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Now using the fact that Y + S � 0, we have

0 < uT (Y + S)u = uT Y u + uT Su = λuT u = λ ‖ u ‖2< 0

which is a contradiction. Hence, S � 0. The same arguments give us Y � 0. �

Remark 1. Due to (3) and the positive definiteness of the diagonal matrices

Y1 and S2, it follows that (Ẏ3)i j (Ṡ3)i j < 0 whenever (Ẏ3)i j 6= 0. Hence, if, in

addition to (3), also 〈Ẏ3, Ṡ3〉 = 0 holds true, then Ẏ3 = Ṡ3 = 0.

In the sequel we refer to the set of symmetric and strict complementary

matrices

C =
{
(Y, S) ∈ Sm × Sm | Y S + SY = 0, Y + S � 0

}
. (4)

As a consequence of Lemma 1(b), the set C is (not connected, in general, but)

contained in Sm
+ × Sm

+. Moreover, Lemma 1(c) implies that the rank of the

matrices Y and S is locally constant on C.

2.1 Nonlinear semidefinite programs

Given a vector b ∈ Rn and a matrix-valued function G : Rn → Sm , we consider

problems of the following form:

minimize
x∈Rn

bT x subject to G(x) � 0. (5)

Here, the function G is at least C3-differentiable.

For simplicity of presentation, we have chosen a simple form of problem (5).

All statements about (5) in this paper can be modified so that they apply to

additional nonlinear equality and inequality constraints and to nonlinear objec-

tive functions. The notation and assumptions in this subsection are similar to

the ones used in [8].

The Lagrangian L : Rn × Sm → R of (5) is defined as follows:

L(x, Y ) := bT x + G(x) • Y. (6)

Its gradient with respect to x is given by

g(x, Y ) := ∇xL(x, Y ) = b + ∇x (G(x) • Y ) (7)

and its Hessian by

H(x, Y ) := ∇2
xL(x, Y ) = ∇2

x (G(x) • Y ) . (8)
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Assumptions.

(A1) We assume that x̄ is a local minimizer of (5) that satisfies the Mangasa-

rian-Fromovitz constraint qualification, i.e., there exists a vector 1x 6= 0

such that G(x̄) + DG(x̄)[1x] ≺ 0, where by definition DG(x)[s] =
∑n

i=1 si Dxi G(x).

Assumption (A1) implies that the first-order optimality condition is satisfied,

i.e., there exist matrices Ȳ , S̄ ∈ Sm such that

G(x̄) + S̄ = 0,

g(x̄, Ȳ ) = 0,

Ȳ S̄ = 0,

Ȳ , S̄ � 0.

(9)

A triple (x̄, Ȳ , S̄) satisfying (9), will be called a stationary point of (5).

Due to Lemma 1(a) the third equation in (9) can be substituted by Ȳ S̄ +

S̄Ȳ = 0. This reformulation does not change the set of stationary points, but

it reduces the underlying system of equations (via a symmetrization of Y S) in

the variables (x, Y, S), such that it has now the same number of equations and

variables. This is a useful step in order to apply the implicit function theorem.

(A2) We also assume that Ȳ is unique and that S̄, Ȳ are strictly complemen-

tary, i.e. (Ȳ , S̄) ∈ C.

According to Lemma 1(c), there exists a unitary matrix U = [U1, U2] that

simultaneously diagonalizes Ȳ and S̄. Here, U2 has r := rank(S̄) columns

and U1 has m − r columns. Moreover the first m − r diagonal entries of

U T S̄U are zero, and the last r diagonal entries of U T ȲU are zero. In par-

ticular, we obtain

U T
1 G(x̄)U1 = 0 and U T

2 ȲU2 = 0. (10)

A vector h ∈ Rn is called a critical direction at x̄ if bT h = 0 and it is the

limit of feasible directions of (5), i.e. if there exist hk ∈ Rn and εk > 0 with

limk→∞ hk = h, limk→∞ εk = 0, and G(x̄ + εkhk) � 0 for all k. As shown
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in [1] the cone of critical directions at a strictly complementary local solution

x̄ is given by

C(x̄) := {h | U T
1 DG(x̄)[h]U1 = 0}. (11)

In the following we state second order sufficient conditions due to [10] that

are weaker than the ones used in [5, 7].

(A3) We further assume that x̄ , Ȳ satisfies the second order sufficient con-

dition:

hT (∇2
xL(x̄, Ȳ ) +H (x̄, Ȳ ))h > 0 ∀ h ∈ C(x̄) \ {0} (12)

Here H is a nonnegative matrix related to the curvature of the semidefinite

cone in G(x̄) along direction Ȳ (see [10]) and is given by its matrix entries

Hi, j := −2Ȳ • Gi (x̄)G(x̄)†G j (x̄),

where Gi (x̄) := DG(x̄)[ei ] with ei denoting the i-th unit vector. Furthermore,

G(x̄)† denotes the Moore-Penrose pseudo-inverse of G(x̄), i.e.

G(x̄)† =
∑

λ−1
i ui u

T
i ,

where λi are the nonzero eigenvalues of G(x̄) and ui corresponding ortho-

normal eigenvectors.

Remark 2. The Moore-Penrose inverse M† is a continuous function of M ,

when the perturbations of M do not change its rank, see [3].

The curvature term can be rewritten as follows:

hTH (x̄, Ȳ )h =
∑

i, j

hi h j (−2Ȳ • Gi (x̄)G(x̄)†G j (x̄)),

= −2Ȳ •




∑

i, j

hi h j Gi (x̄)G(x̄)†G j (x̄)



 , (13)

= −2Ȳ •




n∑

i=1

hi Gi (x̄)G(x̄)†
n∑

j=1

h j G j (x̄)



 ,

= −2Ȳ • DG(x̄)[h]G(x̄)† DG(x̄)[h].

Comp. Appl. Math., Vol. 31, N. 1, 2012



“main” — 2012/4/9 — 13:52 — page 211 — #7

RODRIGO GARCÉS, WALTER GÓMEZ and FLORIAN JARRE 211

Note that in the particular case where G is affine (i.e. G(x) = A(x)+ C, with

a linear map A and C ∈ Sm), the curvature term is given by

hTH (x̄, Ȳ )h := −2Ȳ • (A(h)(A(x̄) + C)†A(h)). (14)

The following very simple example of [4] shows that the classical second

order sufficient condition is generally too strong in the case of semidefinite

constraints, since it does not exploit curvature of the non-polyhedral semidef-

inite cone.
min
x∈R2

−x1 − (x2 − 1)2

s.t. 




−1 0 −x1

0 −1 −x2

−x1 −x2 −1




 � 0

(15)

It is a trivial task to check that the constraint G(x) � 0 is equivalent to the

inequality x2
1 + x2

2 ≤ 1, such that x̄ = (0, −1)T is the global minimizer of the

problem.

The first order optimality conditions (9) are satisfied at x̄ with associated

multiplier

Ȳ =






0 0 0

0 2 2

0 2 2




 .

The strict complementarity condition also holds true, since

Ȳ − G(x̄) =






1 0 0

0 3 1

0 1 3




 � 0

The Hessian of the Lagrangian at (x̄, Ȳ ) for this problem can be calculated as

∇2
xxL(x̄, Ȳ ) =

[
−2 0

0 −2

]

.

It is negative definite, and the stronger second order condition is not satisfied.
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In order to calculate the curvature term in (12) let us consider the orthogonal

matrix U , which simultaneously diagonalizes Ȳ , G(x̄)

U =






1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2




 .

The Moore-Penrose pseudoinverse matrix at x̄ is then given by

G(x̄)† =
−1

4






4 0 0

0 1 −1

0 −1 1




 , (16)

and the matrix associated to the curvature becomes

H (x̄, Ȳ ) =

[
4 0

0 0

]

.

Finally, every h ∈ R2 such that ∇ f (x̄)T ∙ h = 0, has the form h = (h1, 0)T

with h1 ∈ R. Therefore, the weaker second order sufficient condition holds,

i.e.,

ht(∇2
xxL(x̄, Ȳ ) +H (x̄, Ȳ ))h = 2h2

1 > 0 ∀h ∈ C(x̄) \ {0}.

3 Sensitivity result

Let us now consider the following quadratic semidefinite programming problem

min
x∈Rn

bT x + 1
2 xT H x

s.t.

A(x) + C � 0.

(17)

Here, A : Rn −→Sm is a linear function, b ∈ Rn , and C, H ∈ Sm . The data to

this problem is

D := [A, b, C, H ]. (18)

In the next theorem, we present a sensitivity result for the solutions of (17),

when the data D is changed to D + 4D where

4D := [4A, 4b, 4C, 4H ] (19)
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is a sufficiently small perturbation.

The triple (x̄, Ȳ , S̄) ∈ Rn × Sm × Sm is a stationary point for (17), if

A(x̄) + C + S̄ = 0,

b + H x̄ +A∗(Ȳ ) = 0, (20)

Ȳ S̄ + S̄Ȳ = 0,

Ȳ , S̄ � 0.

Remark 3. Below, we consider tiny perturbations 4D such that there is an

associated strictly complementary solution (x, Y, S)(4D) of (20). For such x

there exists U1 = U1(x) and an associated cone of critical directions C(x). The

basis U1(x) generally is not continuous with respect to x . However, the above

characterization (11) of C(x̄) under strict complementarity can be stated using

any basis of the orthogonal space of G(x̄). Since such basis can be locally

parameterized in a smooth way over the set C in (4) it follows that locally, the

set C(x) forms a closed point to set mapping.

The following is a slight generalization of Theorem 1 in [7].

Theorem 1. Let the point (x̄, Ȳ , S̄) be a stationary point satisfying the as-

sumptions (A1)-(A3) for the problem (17) with data D . Then, for all suffi-

ciently small perturbations 4D as in (19), there exists a locally unique sta-

tionary point (x̄(D + 4D), Ȳ (D + 4D), S̄(D + 4D)) of the perturbed pro-

gram (17) with data D + 4D . Moreover, the point (x̄(D), Ȳ (D), S̄(D)) is

a differentiable function of the perturbation (19), and for 4D = 0, we have

(x̄(D), Ȳ (D), S̄(D)) = (x̄, Ȳ , S̄). The derivative DD(x̄(D), Ȳ (D), S̄(D)) of

(x̄(D), Ȳ (D), S̄(D)) with respect to D evaluated at (x̄, Ȳ , S̄) is characterized

by the directional derivatives

(ẋ, Ẏ , Ṡ) := DD(x̄(D), Ȳ (D), S̄(D))[4D]

for any 4D . Here, (ẋ, Ẏ , Ṡ) is the unique solution of the system of linear

equations,

A(ẋ) + Ṡ = −4C − 4A(x̄),

H ẋ +A∗(Ẏ ) = −4b − 4H x̄ − 4A∗(Ȳ ), (21)

Ȳ Ṡ + Ẏ S̄ + ṠȲ + S̄Ẏ = 0,
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for the unknowns ẋ ∈ Rn, Ẏ , Ṡ ∈ Sm . Finally, the second-order sufficient

condition holds at (x̄(D), Ȳ (D)) whenever 4D is sufficiently small.

This theorem is related to other sensitivity results for semidefinite program-

ming problems (see, for instance, [2, 6, 11]). Local Lipschitz properties under

strict complementarity can be found in [9]. In [10] the directional derivative ẋ

is given as solution of a quadratic problem.

Proof. Following the outline in [7] this proof is based on the application of

the implicit function theorem to the system of equations (20). In order to apply

this result we show that the matrix of partial derivatives of system (20) with

respect to the variables (x, Y, S) is regular. To this end it suffices to prove that

the system

A(ẋ) + Ṡ = 0,

H ẋ +A∗(Ẏ ) = 0, (22)

Ȳ Ṡ + Ẏ S̄ + ṠȲ + S̄Ẏ = 0,

only has the trivial solution ẋ = 0, Ẏ = Ṡ = 0.

Let (ẋ, Ẏ , Ṡ) ∈ Rn × Sm × Sm be a solution of (22). Since Ȳ and S̄ are

strictly complementary, it follows from part (c) of Lemma 1, the existence of an

orthonormal matrix U such that:

Ȳ = UỸU T , S̄ = U S̃U T (23)

where

Ỹ =

[
Ȳ1 0

0 0

]

, S̃ =

[
0 0

0 S̄2

]

, (24)

with Ȳ1, S̄2 diagonal and positive definite. Furthermore, the matrices Ẏ , Ṡ ∈ Sm

satisfying (22) fulfill the relations

Ẏ = UY̌U T , Ṡ = U ŠU T (25)

where

Y̌ =

[
Ẏ1 Ẏ3

Ẏ T
3 0

]

, Š =

[
0 Ṡ3

ṠT
3 Ṡ2

]

, and Ẏ3 S̄2 + Ȳ1 Ṡ3 = 0. (26)
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Using the decomposition given in (10), the first equation of (22), and (25)

we have

U T
1 A(ẋ)U T

1 = −U T
1 U ŠU T U1 = 0.

It follows that ẋ ∈ C(x̄). Now using (14), (23-26), the first equation in (20),

and the first equation in (22), we obtain

ẋ TH (x̄, Ȳ )ẋ = −2Ȳ •A(ẋ)(A(x̄) + C)†A(ẋ),

= −2Ȳ • Ṡ(−S̄)† Ṡ,

= −2Ỹ • Š(−S̃)† Š, since S̄2 � 0, S̃† =

[
0 0

0 S̄−1
2

]

.

= −2Ẏ3 • Ṡ3.

By the same way, using the first two relations in (25) and the first two equations

of (22), one readily verifies that

ẋ T H ẋ = 〈H ẋ, ẋ〉 = −〈A∗(Ẏ ), ẋ〉 = −Ẏ •A(ẋ) = Ẏ • Ṡ = 2Ẏ3 • Ṡ3.

Consequently

ẋ T (H +H (x̄, Ȳ ))ẋ = 0. (27)

This implies that ẋ = 0, since ẋ ∈ C(x̄). Using Remark 1 it follows also that

Ẏ3 = Ṡ3 = 0.

By the first equation of (22), we obtain

Ṡ = −A(ẋ) = −A(0) = 0. (28)

Thus, it only remains to show that Ẏ = 0. In view of (26) we have

Y̌ =

[
Ẏ1 0

0 0

]

. (29)

Now suppose that Ẏ1 6= 0. Since Ȳ1 � 0, it is clear that there exists some

τ̄ > 0 such that Ȳ1 + τ Ẏ1 � 0 ∀τ ∈ (0, τ̄ ]. If we define Ȳτ := Ȳ + τ Ẏ it

follows that

Ȳτ = U (Ỹ + τ Y̌ )U T � 0 ∧ Ȳτ 6= Ȳ , ∀τ ∈ (0, τ̄ ].
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Moreover, using (20), (22), and (28), one readily verifies that (x̄, Ȳτ , S̄) also

satisfies (20) for all τ ∈ (0, τ̄ ]. This contradicts the assumption that (x̄, Ȳ , S̄) is

a locally unique stationary point. Hence Ẏ1 = 0 and by (29), Ẏ = 0.

We can now apply the implicit function theorem to the system

A(x) + C + S = 0,

H x + b +A∗(Y ) = 0, (30)

Y S + SY = 0.

As we have just seen, the linearization of (30) at the point (x̄, Ȳ , S̄) is nonsin-

gular. Therefore the system (30) has a differentiable and locally unique solution

(x̄(4D), Ȳ (4D), S̄(4D)). By the continuity of Ȳ (4D), S̄(4D) with respect

to 4D it follows that for ‖ 4D ‖ sufficiently small, Ȳ (4D) + S̄(4D) � 0, i.e.

(Ȳ (4D) + S̄(4D)) ∈ C.

Consequently, by part (b) of Lemma 1 we have Ȳ (4D), S̄(4D) � 0. This

implies that the local solutions of the system (30) are actually stationary points.

Note that the dimension of the image space of S̄(4D) is constant for all

‖ 4D ‖ sufficiently small. According to Remark 2 it holds that S̄(4D)† → S̄†

when 4D → 0.

Finally we prove that the second-order sufficient condition is invariant under

small perturbations 4D of the problem data D . We just need to show that there

exists ε̄ > 0 such that for all 4D with ‖ 4D ‖≤ ε̄ it holds:

hT ((H+4H)+H (x̄(4D), Ȳ (4D)))h > 0 ∀h ∈ C(x̄(4D))\{0}. (31)

Since C(x̄(4D))/{0} is a cone, it suffices to consider unitary vectors, i.e.

‖ h ‖= 1. We assume by contradiction that there exists εk → 0, {4Dk} with

‖ 4Dk ‖≤ εk , and {hk} with hk ∈ C(x̄(4Dk)) \ {0} such that

hT
k ((H + 4Hk) +H (x̄(4D), Ȳ (4Dk)))hk ≤ 0. (32)

We may assume that hk converges to h with ‖ h ‖= 1, when k → ∞. Since

4Dk → 0, we obtain from the already mentioned convergence S̄(4D)† → S̄†

and simple continuity arguments that:

0 < hT Hh + hTH (x̄, Ȳ )h ≤ 0. (33)

The left inequality of this contradiction follows from the second order sufficient

condition since h ∈ C(x̄(0)) \ {0} due to Remark 3. �
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4 Conclusions

The sensitivity result of Theorem 1 was used in [7] to establish local quadratic

convergence of the SSP method. By extending this result to the weaker form of

second order sufficient condition, the analysis in [7] can be applied in a straight-

forward way to this more general class of nonlinear semidefinite programs. In

fact, the analysis in [7] only used local Lipschitz continuity of the solution with

respect to small changes of the data, which is obviously implied by the differen-

tiability established in Theorem 1.
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