
“main” — 2012/8/28 — 10:54 — page 339 — #1

Volume 31, N. 2, pp. 339–352, 2012
Copyright © 2012 SBMAC
ISSN 0101-8205 / ISSN 1807-0302 (Online)
www.scielo.br/cam

An alternating LHSS preconditioner
for saddle point problems

LIU QINGBING1,2∗

1Department of Mathematics, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, P.R. China
2Department of Mathematics, East China Normal University, Shanghai, 200241, P.R. China

E-mail: lqb_2008@hotmail.com

Abstract. In this paper, we present a new alternating local Hermitian and skew-Hermitian

splitting preconditioner for solving saddle point problems. The spectral property of the precondi-

tioned matrices is studies in detail. Theoretical results show all eigenvalues of the preconditioned

matrices will generate two tight clusters, one is near (0, 0) and the other is near (2, 0) as the

iteration parameter tends to zero from positive. Numerical experiments are given to validate the

performances of the preconditioner.
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1 Introduction

We study a new preconditioner for saddle point systems of the type

Au =

[
A BT

−B 0

][
x
y

]

=

[
f
g

]

= b, (1)

where A ∈ Rn×n is a positive real matrix, that is, the matrix H = (A + AT )/2,
the symmetric part of A, is positive definite, B ∈ Rm×n with m ≤ n has full row
rank. Such linear systems arise in a large number of scientific and engineering

#CAM-376/11. Received: 30/V/11. Accepted: 26/VII/11.
∗Author supported by National Natural Science Foundation of China (No. 11071079) and

Ningbo Natural Science Foundation (2010A610097, 2012A610037).



“main” — 2012/8/28 — 10:54 — page 340 — #2

340 AN ALTERNATING LHSS PRECONDITIONER FOR SADDLE POINT PROBLEMS

applications (see for instance [6, 13, 17]). As such systems are typically large
and sparse, solution by iterative methods can be found in the literature, such
as Uzawa-type schemes [6], splitting methods [2, 3, 15], iterative projection
methods [17], iterative null space methods [6, 17] etc. To improve the conver-
gence of rate of iterative methods, preconditioning techniques have been studied
and many effective preconditioners have been employed for solving linear sys-
tems of the form (1) [2-8, 11-14, 16, 18].

Recently, based on the Hermitian and skew-Hermitian splitting of the saddle
point matrix, a general alternating preconditioner for generalized saddle point
problems was analyzed in [5]. Bai et al. [1] further generalized HSS to positive-
definite and skew-Hermitian splitting (PSS), Normal and skew-Hermitian split-
ting (NSS) and considered preconditioners based on the splitting. Pan et al. [14]
proposed two preconditioners for the saddle point problem (1), using the HS
splitting and PS splitting of the (1,1) blocks A, not based on use of the coef-
ficient matrix A as a preconditioner for Krylov subspace methods. Peng and
Li [15] considered a kind of the alternating-direction iterative method which is
based on the block triangular splitting of the coefficient matrix, and its precon-
ditioned version was established in [16]. In [16], the alternating preconditioner
was further studied as a preconditioner of some Krylov subspace methods for
the saddle point problems.

In this paper, we propose a new alternating local Hermitian and skew-Hermitian
splitting preconditioner for the saddle point problem (1) based on the HS split-
ting of the (1,1) blocks A. We mainly focus on the case that A is positive real
matrix with the symmetric part. We first establish a new alternating-direction
iterative method for the saddle point problem (1) and then give a new alternating
local Hermitian and skew-Hermitian splitting preconditioner in Section 2, and
spectral properties of the preconditioned matrix are discussed in detail. Numer-
ical experiments are presented in Section. In the final section, we draw some
conclusions.

2 The new preconditioner and its spectral properties

From now on, we will adopt the general notation

A =

[
A BT

−B 0

]

(2)
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to represent the nonsymmetric saddle point matrix of equation (1). We assume
that A is positive real, and that B is of size m × n and has full row rank.

Let A = H̃ + S̃, where

H̃ =

[
H BT

0 0

]

and S̃ =

[
S 0

−B 0

]

with

H =
1

2
(A + AT ) and S =

1

2
(A − AT ).

2.1 The preconditioner

Analogously to the classical ADI method [19], we consider the following two
splittings of A:

A = (α I + H̃ ) − (α I − S̃) = (α I + S̃) − (α I − H̃ )

where α > 0 is a parameter and I is the identity matrix. By iterating alternatively
between this two splittings, we obtain a new algorithm as follows:






(α I + H̃ )uk+ 1
2 = (α I − S̃)uk,

(α I + S̃)uk+1 = (α I − H̃ )uk+ 1
2 ,

k = 0, 1, 2, . . . , (3)

where u0 is an initial guess. By eliminating the intermediate vector uk+ 1
2 , we

have the iteration in fixed point form as

uk+1 = Tαuk + c,

where
Tα = (α I + S̃)−1(α I − H̃ )(α I + H̃ )−1(α I − S̃),

and
c = (α I + S̃)−1[I + (α I − H̃ )(α I + H̃ )−1]b.

It is easy to know that there is a unique splitting A = Pα − Nα, with Pα

nonsingular, which induces the iteration matrix Tα, i.e.,

Tα = P−1
α Nα = I − P−1

α A,
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where

Pα =
1

2α
(α I + H̃ )(α I + S̃).

Hence, the linear system Au = b is equivalent to the linear system

(I − P−1
α Nα)u = P−1

α Au = c.

Recently, for generalized linear systems, the estimates for the spectral radius
of ρ(P−1

α A) with the HSS preconditioner Pα with H = A have been studied
in [16]. However, if we use a Krylov subspace method such as GMRES or its
restarted variant to approximate the solution of this system of linear equations,
Pα can be considered as a new preconditioner to the saddle point problems (1).
Under the assumption that A is positive real, analogously to the proof in [11]
we can show that all eigenvalues of the preconditioned matrices will generate
two tight clusters, one is near (0, 0) and the other is near (2, 0) as the iteration
parameter tends to zero from positive.

2.2 Spectral properties

It is well known that characterizing the rate of convergence of nonsymmetric pre-
conditioned iterations can be a difficult task. In particular, eigenvalue informa-
tion alone may not be sufficient to give meaningful estimates of the convergence
rate of a method like preconditioned GMRES [6, 17]. Nevertheless, experi-
ence shows that for many linear systems arising in practice, a well-clustered
spectrum (away from zero) usually results in rapid convergence of the precon-
ditioned iteration. Now we consider the eigenvalue problem associated with the
preconditioned matrix ρ(P−1

α A), i.e.,

Ax = λPαx, (4)

where (λ, x) is any eigenpair of ρ(P−1
α A). It is easy to know that λ 6= 0 from

A nonsingular. Then we have
[

A BT

−B 0

] [
u
v

]

=
λ

2α

[
α In + H BT

0 α Im

][
α In + S 0

−B α Im

][
f
g

]

,

which leads to

2α(Au + BT v) = λ[(α2 I + αA + H S)u + αBT v], (5)

−2αBu = λ(−αBu + α2v). (6)
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First of all, it must hold u 6= 0. Otherwise, it follows from (6) that either λ = 0
or v = 0 holds. In fact, neither of them can be true.

If v = 0, then from (5) we have 2αAu = λ(α2u + αAu + H Su). Multiplying
both sides of this equality from left with u∗, we have

λ =
2αu∗ Au

α2u∗u + αu∗ Au + u∗ H Su
. (7)

If u∗ H Su = 0, from (7), it is easy to see that λ → 2 as α → 0+. If
u∗ H Su 6= 0, from (7), we have that λ → 0 as α → 0+.

We now assume v 6= 0, without loss of generality, we further assume ‖v‖ = 1
and substitute (6) to (5), we obtain

(−λ2 + 4λ − 4)αB Au − (λ2 − 2λ)B H Su

−(λ2 − 4λ + 4)αB BT v − λ2α3v = 0.

Multiplying the above equality from left hand by v∗, we obtain

(−αv∗ B Au − v∗ B H Su − αv∗ B BT v − α3)λ2 + (4αv∗ B Au

+ 2v∗ B H Su + 4αv∗ B BT v)λ − (4αv∗ B Au + 4αv∗ B BT v) = 0
(8)

Let
b1 = v∗ B Au + v∗ B BT v,

b2 = v∗ B H Su

Then (8) can be rewritten as

−(αb1 + b2 + α3)λ2 + (4αb1 + 2b2)λ − 4αb1 = 0. (9)

For simplicity, we denote that δ = αb1 + b2 +α3. Subsequently, we will mainly
discuss the two cases, that is to say, δ = 0 and δ 6= 0.

Case I. δ = 0.

It is not difficult to know that 4αb1 + 2b2 6= 0 from the existence eigenvalue
of the preconditioned matrix. From (9), we have

λ =
2αb1

2αb1 + b2
. (10)
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Since δ = αb1 + b2 + α3 = 0, we have

2αb1 + b2 = αb1 − α3. (11)

Substituting (11) to (10), we have

λ =
2b1

b1 − α2
. (12)

If b1 = 0, from (12), it is easy to know that λ = 0. If b1 6= 0, we have that
λ → 2 as α → 0+.

Case II. δ 6= 0.

Note that

4(2αb1 + b2)
2 − 16αb1(αb1 + b2 + α3) = 4(b2

2 − 4α4b1),

then the two roots of the quadratic equation (9) are

λ± =
(2αb1 + b2) ±

√
b2

2 − 4α4b1

αb1 + b2 + α3
.

We will mainly discuss in the following two cases:

1) If b2 = 0, then we have

λ± =
2b1 ±

√
−4α4b1

b1 + α2
.

1.1) If b1 = 0, then we have that λ± = 0.

1.2) If b1 6= 0, then we have that λ → 2 as α → 0+.

2) If b2 6= 0, then we have

λ± →
b2 ±

√
b2

2

b2
= 0 or 2 as α → 0+.

Up to now, we have shown that the eigenvalues of the preconditioned matrix
ρ(P−1

α A) will converge to either the origin or the point (2, 0) as α → 0+.
This means that if α is small enough, then the eigenvalues of the preconditioned
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matrix ρ(P−1
α A) will gather into two cluster, one is near (0, 0) and another is

near (2, 0).
From the above discussing, we have the following theorem.

Theorem 2.1. Let A be positive real and B has full row rank. x = (u∗, v∗)∗

is an eigenvector of P−1
α A, then for sufficiently small α > 0, the eigenvalue of

P−1
α A have the following cases:

(I) If v = 0, then the eigenvalue of P−1
α A will gather into (0, 0) or (2, 0) as

α → 0+.

(II) If v 6= 0, then the eigenvalue of P−1
α A will gather into two clusters, one

is near (0, 0) and another is near (2, 0) as α → 0+.

3 Numerical experiments

In this section, we present our numerical experiments to illustrate the eigenvalue
distribution of the preconditioned matrix P−1

α A and to assess our statement that
the eigenvalues of P−1

α Awill be gathering into two clusters as α becomes small.
We consider the saddle point-type matrix A of the following form:

A =

[
A BT

−B 0

]

(13)

where the sub-matrices A = υ A1+ N , N has only two diagonal lines of nonzero,
which start from the 2nd and the nth colomns, i.e.,

N =























0 −1 0 ∙ ∙ ∙ 0 −1 0 ∙ ∙ ∙ 0

0 0 −1 ∙ ∙ ∙ 0 0 −1
. . . 0

0 0 0 −1 0 ∙ ∙ ∙ 0
. . . 0

...
. . .

. . .
. . .

. . .
. . . ∙ ∙ ∙

. . . −1
0 ∙ ∙ ∙ 0 0 0 −1 0 ∙ ∙ ∙ 0

0 0 ∙ ∙ ∙ 0 0 0 −1 0
...

0 0 0 ∙ ∙ ∙ 0 0 0 −1 0
...

. . .
. . .

. . . 0
. . . 0

. . . −1
0 ∙ ∙ ∙ 0 0 0 ∙ ∙ ∙ 0 0 0























(14)

Comp. Appl. Math., Vol. 31, N. 2, 2012



“main” — 2012/8/28 — 10:54 — page 346 — #8

346 AN ALTERNATING LHSS PRECONDITIONER FOR SADDLE POINT PROBLEMS

and A1, B are taken from [2], i.e.,

A1 =

[
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

]

, B =

[
I ⊗ F
F ⊗ I

]

and

T =
1

h2
tr idiag(−1, 2, −1) ∈ R p×p, F =

1

h
tridiag(−1, 1, 0) ∈ R p×p

with ⊗ being the Kronecker product symbol and h =
1

h + 1
the discretization

meshsize. The right vectors are defined as

f = (1, 1, ∙ ∙ ∙ , 1) ∈ Rn, g = (0, 0, ∙ ∙ ∙ , 0) ∈ Rm, n = 2p2, m = p2.

For this example, the matrix A is nonsymmetric and positive real.
Theorem 1 shows that the eigenvalue of P−1

α A will gather into two clusters,
one is near (0, 0) and another is near (2, 0) as α → 0+. We plot the spectra of the
coefficient matrix with ν = 1 and ν = 0.01 from left column to right column in
Figure 1, and the spectra of the preconditioned matrices corresponding to ν = 1
and different values of α in Figures 2-4, where the left column corresponding
to the preconditioner P̂α and the right column corresponding to the precondi-
tioner Pα. From Figures 2-4 we can see that the eigenvalues of both kinds of
preconditioned matrices become more and more clustered as α becomes smaller.

All the numerical experiments were performed with MATLAB 7.0. The ma-
chine we have used is a PC-AMD, CPU T7400 2.2GHz process. The GMRES
method is used to solve the above test problem. The initial guess is taken to be
x (0) = 0 and the stopping criterion is chosen as

‖b −Ax(k)‖2

‖b‖2
≤ 10−6.

In Tables 1-2, we list the iteration numbers of GMRES and the preconditioned
GMRES when they are applied to solve the test problem, where the numbers
outside (inside) of the brackets denote outer iteration numbers (inner iteration
numbers) of GMRES method, respectively.

Here we test the performance of two preconditioners, one is the alternating
local Hermitian and skew-Hermitian splitting preconditioner, and another is the
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Figure 1 – Eigenvalue distributions of the matrix A for ν = 1 and v = 0.01.

preconditioner in [16] which is defined as follows:

P̂α =
1

2α
(α I + Ĥ )(α I + Ŝ)

with

Ĥ =

[
A BT

0 0

]

and Ŝ =

[
0 0

−B 0

]
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Figure 2 – Spectrum of the preconditioned matrix with respect to P̂α and Pα as α = 1.

From Tables 1-2, we can see that the preconditioner Pα will improve the
convergence of the GMRES iteration efficiently, especially when ν is large, and
the preconditioner P̂α is more efficient when ν is small. We also can see that the
outer iteration numbers of the preconditioned GMRES with the preconditioner
Pα is larger than that with the preconditioner P̂α, and the inner iteration numbers
of the preconditioned GMRES with the preconditioner Pα is smaller than that
with the preconditioner P̂α.
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Figure 3 – Spectrum of the preconditioned matrix with respect to P̂α and Pα as α = 0.1.

Remark. We have also shown that for small α, all the eigenvalues fall in two
clusters, one near 0 and the other near 2. Indeed, our analysis suggests that the
‘best’ value of α should be small enough so that the spectrum is clustered, but not
so small that the preconditioned matrix is close to being singular. This instability
has been observed in [20], for example in Figure 6. It is interesting to observe
that for any choice of α the LHSS method shows a significant reduction at some
specific iteration but it tends to stagnate before and after that iteration.
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Figure 4 – Spectrum of the preconditioned matrix with respect to P̂α andPα as α = 0.01.

4 Conclusions

In this paper, we present a new alternating local Hermitian and skew-Hermitian
splitting preconditioner for solving saddle point problems. The spectral property
of the preconditioned matrices is studies in detail. Theoretical results show all
eigenvalues of the preconditioned matrices will generate two tight clusters, one
is near (0, 0) and the other is near (2, 0) as the iteration parameter tends to zero
from positive. Numerical experiments are given to validate the performances
of the preconditioner. However, each step of an outer iteration for solving the
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m + n 768 1200 1587 1875 2700

GMRES(Pα) 9(7) 9(7) 7(6) 7(6) 7(7)

GMRES(P̂α) 4(8) 5(7) 5(10) 5(10) 5(10)

Table 1 – Iteration numbers for the test problem with ν = 1.

α 1.0 0.8 0.6 0.3 0.1

GMRES(Pα) 3(7) 4(2) 4(4) 5(10) 7(6)

GMRES(P̂α) 3(4) 3(9) 3(8) 4(8) 5(10)

Table 2 – Iteration numbers for the test problem with ν = 1 for different α.

preconditioned linear system P−1
α Ax = P−1

α b requires the solution of an inner
linear system whose coefficient matrix is Pα. Therefore, convergence of the
outer iteration is fast if the eigenvalues of the preconditioned matrix P−1

α A are
clustered, but careful attention must be paid to the conditioning and eigenvalue
distribution of the matrix Pα itself, which determine the speed of convergence
of the inner iteration [10]. Therefore, how to reduce the outer and inner iteration
numbers for such problems remains an extensive discussion.
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