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OBJECTIVES: This study aimed to evaluate the potential anti-inflammatory effects of vitamin D supplementation
under uremic conditions, both in vivo and in vitro, and its effects on the parameters of mineral metabolism.

METHODS: Thirty-two hemodialysis patients were randomly assigned to receive placebo (N=14) or cholecalciferol
(N=18) for six months. Serum levels of calcium, phosphate, total alkaline phosphatase, intact parathyroid hormone
(iPTH), and vitamin D were measured at baseline and after three and six months. The levels of fibroblast growth
factor-23 (FGF-23), interleukin-1b (IL-1b), and high-sensitivity C-reactive protein (hs-CRP) were also measured at
baseline and at six months. Human monocytes were used for in vitro experiments and treated with cholecalciferol
(150 nM) and uremic serum. Cell viability, reactive oxygen species (ROS) production, and cathelicidin (CAMP)
expression were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, dichloro-
dihydro-fluorescein diacetate assay, and real time-quantitative polymerase chain reaction, respectively.

RESULTS: Both patient groups were clinically and biochemically similar at baseline. After six months, the levels
of vitamin D and iPTH were higher and lower, respectively, in the cholecalciferol group than in the placebo
group (po0.05). There was no significant difference between the parameters of mineral metabolism, such as
IL-1b and hs-CRP levels, in both groups. Treatment with uremic serum lowered the monocyte viability
(po0.0001) and increased ROS production (po0.01) and CAMP expression (po0.05); these effects were
counterbalanced by cholecalciferol treatment (po0.05).

CONCLUSIONS: Thus, cholecalciferol supplementation is an efficient strategy to ameliorate hypovitaminosis D in
hemodialysis patients, but its beneficial effects on the control of secondary hyperparathyroidism are relatively
unclear. Even though cholecalciferol exhibited anti-inflammatory effects in vitro, its short-term supplementa-
tion was not effective in improving the inflammatory profile of patients on hemodialysis, as indicated by the
IL-1b and hs-CRP levels.
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’ INTRODUCTION

Cardiovascular disease (CVD) and infections are the main
causes of mortality in hemodialysis patients (1–3). The
synergism between traditional and non-traditional risk
factors has been implicated as the main hurdle in preventing
mortality and other adverse outcomes among patients (4).
Among the non-traditional risk factors, hypovitaminosis D
has received an increasing amount of attention (5,6).

Hypovitaminosis D has been consistently associated with
CVD, higher risk of infection, and death in patients with
chronic kidney disease (CKD) (7,8). Hypovitaminosis D has
also been correlated with vascular dysfunction in pre-dialysis
CKD patients (9). One possible explanation for these findings
is the pleiotropic effects of vitamin D. Previous studies
have reported an association between the use of vitamin D
receptor activators (VDRAs), namely, calcitriol and paricalci-
tol, and an improved survival in dialysis patients (4,10).
The survival advantage associated with these activators
may be partially explained by their role in the regulation of
mineral metabolism (11), in the improvement of cardiovas-
cular function (12), and in the immune response of CKD
patients (6,13). In addition, VDRAs increase vitamin D recep-
tor (VDR) expression in endothelial and vascular smooth
muscle cells (14), in turn facilitating the effects of vitamin D
on the cardiovascular and immune system (6,15–17). Despite
of these facts, the potential benefits of vitamin D in the
cardiovascular system have been challenged. In a large,DOI: 10.6061/clinics/2021/e1821
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randomized, placebo-controlled trial, supplementation with
vitamin D at a daily dose of 2000 IU, together with omega-3
fatty acid, was not capable of lowering the risk of cardio-
vascular events among men who were 50 years of age or
older and women who were 55 years of age or older (18).
Non-classic actions of vitamin D are being increasingly

recognized because of the ubiquitous expression of the VDR
in various organs and systems, including hematopoietic cells,
such as neutrophils, monocytes, dendritic cells, and lym-
phocytes (3,6). Vitamin D modulates the immune response
through the inactivation of the NF-kB pathway, reducing
inflammation and immune cell activation (5,19). Some
studies have reported that vitamin D supplementation may
increase the 25(OH)-vitamin D levels and reduce the serum
levels of inflammatory cytokines, such as interleukin 6 (IL-6),
tumor necrosis factor (TNF-a), andMCP-1, in both pre-dialysis
and hemodialysis patients (20,21). Furthermore, vitamin D
may activate the transcription/production of antibacterial
products by epithelial and immune cells, such as cathelicidin
(CAMP), which is an antimicrobial peptide that exerts a wide
range of effects against numerous pathogenic microorganisms,
including gram-positive and gram-negative bacteria. Thus,
lower levels of CAMP may facilitate the occurrence of
infection-related complications. Interestingly, hemodialysis
patients with septicemia and reduced levels of vitamin D
and CAMP are at a higher risk of mortality (22).
Importantly, despite the impaired function of the kidneys

in hemodialysis patients, the conversion of 25(OH)-vitamin
D to active 1,25(OH)-vitamin D can still occur in monocytes
due to the presence of the 1a-hydroxylase enzyme in these
cells. Thus, both classical and non-classical effects, including
anti-inflammatory effects, of 25(OH)-vitamin D supplemen-
tation is expected in hemodialysis patients. This study aimed
to investigate the potential anti-inflammatory effects of
vitamin D supplementation in vitro, using a monocyte cell
model, and in the clinical setting, in hemodialysis patients
with hypovitaminosis D, along with its effects on the
parameters of mineral metabolism.

’ PATIENT RECRUITMENT AND METHODS

Patients
Thirty-two patients with stable end-stage kidney disease

on hemodialysis were selected from a single dialysis unit
(Evangélico Hemodialysis Facility, Curitiba, Brazil). The
inclusion criteria were as follows: patients who were on
hemodialysis for at least 3 months; patients who were older
than 18 years; and patients who exhibited hypovitaminosis D
(25(OH)-vitamin D levelso30 ng/mL). The exclusion criteria
were as follows: patients who exhibited an active inflamma-
tory or infectious disease; patients with cancer, autoimmune
disease, or hepatic dysfunction; patients who were unstable
with an expected survival of less than one year; patients who
exhibited intact parathyroid hormone (iPTH) levels4600
pg/mL, hypercalcemia (serum calcium410.3 mg/dL), and/
or hyperphosphatemia (serum phosphate45.5 mg/dL);
patients who were previous users or are current users of
cinacalcet, nutritional or active forms of vitamin D, anti-
osteoporotic medications, glucocorticoids, or immunosup-
pressive drugs; patients who had a previous history of
parathyroidectomy; and patients who were pregnant. The
study was reviewed and approved by the Ethical Committee
of Pontifícia Universidade Católica do Paraná (CEP/PUC-PR
no 1.682.929). All patients provided signed informed consent.

Study design
The study was a six-month, prospective, single-blind

study, wherein 32 patients with hypovitaminosis D were
randomly assigned to receive either cholecalciferol (N=18) or
placebo (N=14). All patients in the treatment group received
a weekly cholecalciferol dose of 50.000 IU during the first
three months. At this time point of the study, the serum level
of 25(OH)-vitamin D was measured and the dose of chole-
calciferol was adjusted as follows: patients who achieved
vitamin D sufficiency (X30 ng/mL) were switched to a dose
of 50.000 IU per month, whereas those whose vitamin D
levels remained lower than 30 ng/mL were continued on the
same initial dose, that is, 50.000 IU per week. Cholecalciferol
was administered for an additional three months, totaling six
months of supplementation. Cholecalciferol or placebo was
administered after the second dialysis session of the week,
under medical supervision to ensure compliance. It was
withdrawn upon instances of hypercalcemia (410.30 mg/dL)
or hypervitaminosis D (4150 ng/mL).

Demographic and clinical data, such as age, sex, race, and
comorbid conditions, such as hypertension, cardiovascular
disease, and cerebrovascular disease, were obtained from
the patient’s clinical records. Adjustment of medications and
hemodialysis prescriptions were made according to the
discretion of the investigating physician, in agreement with
the international guidelines on CKD (23).

Preparation of human serum pool
Healthy and uremic serum pools were prepared and

collected according to a previous study (24). Briefly, blood
samples (20 mL) were collected in the fasting state before
the second hemodialysis session of the week, at baseline
(T0), three months (T3), and six months (T6). Blood
samples were collected in tubes with anticoagulants and
centrifuged at 500 g for 10 min, divided into aliquots, and
stored at -80oC for subsequent analysis and cell culture
experiments.

The healthy/control serum pool consisted of serum
samples collected from healthy individuals (N=9) in the
fasting state.

The uremic serum pool consisted of serum samples
collected at baseline from the hemodialysis patients (N=20).
Vitamin D levels in the uremic serum pool were 16 ng/mL.

Parameters of laboratory testing
Serum levels of total calcium, phosphate, total alkaline

phosphatase, iPTH, and 25(OH)-vitamin D were measured
at T0, T3, and T6. Serum levels of fibroblast growth factor-
23 (FGF-23), interleukin-1b (IL-1b), and high-sensitivity
C-reactive protein (hs-CRP) were measured at T0 and T6.

Serum calcium and phosphate levels were measured using
a colorimetric assay. Serum iPTH levels were assessed by
immunochemiluminescence (reference range: 10–65 pg/mL),
while serum levels of 25(OH)-vitamin D were evaluated by
radioimmunoassay (DiaSorin Liaison, Vercelli, Italy, with an
average intra-assay and inter-assay coefficient of variability
of 4% and 6%, respectively).

Serum concentrations of FGF-23 (Immutopics, San Clem-
ente, USA) and IL-1b (R&D Systems, Minneapolis, USA)
were measured by enzyme-linked immunosorbent assay.
Serum levels of hs-CRP (Abbott, Illinois, USA) were
measured by immunoturbidimetry. The measuring ranges
for FGF-23, IL-1b, and hs-CRP levels were 0–2200 pg/mL,
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0.48–500 pg/mL, and 0–16 mg/dL, respectively. All samples
were analyzed simultaneously under standardized experi-
mental conditions in duplicates.

In vitro experiments

Monocyte culture and treatment conditions. The
monocyte cell line U-937 (CRL-1593.2; ATCC, Manassas,
VA, USA) was acquired from a commercial tumor cell line.
These cells are considered proxies for circulating monocytes,
which are difficult to obtain in satisfactory amounts from
whole blood samples. Monocytes were cultured in RPMI
1640 (Gibco, Grand Island, USA) supplemented with 10%
fetal bovine serum (Gibco, Grand Island, NY, USA), 100 U/mL
penicillin, and 0.1 mg/mL streptomycin (Gibco, Grand Island,
NY, USA). As the cells grew in suspension, a concentration of
105 monocytes/mL was maintained in the culture medium
every 2 days. The cells were maintained in culture flasks and
incubated at 37oC and 5% CO2 conditions. Afterwards, the
medium was changed and the cells were incubated with the
control (RPMI 1640 supplemented with 10% serum from
healthy volunteers, 100 U/mL of penicillin and 50 mg/mL of
streptomycin [Gibco, Grand Island, USA]) or uremic medium
(RPMI 1640 supplemented with 10% uremic serum from the
hemodialysis pool, 100 U/mL of penicillin, and 50 mg/mL
of streptomycin) for 6h. Vitamin D and ketoconazole, a 1a-
hydroxylase inhibitor, were used at concentrations of 150 nM
and 5 mM, respectively (25,26). Four different experiments were
performed, wherein each sample was analyzed in duplicate.
The mean of each duplicate was used for statistical analysis.

Cell viability assay
Cell viability was assessed by the 3-[4,5-dimethylthiazol-2-

yl]-2,5-diphenyltetrazolium bromide (MTT; Sigma, St. Louis,
USA) assay, as previously described (24). Briefly, monocytes
were plated in 96-well culture plates at a density of 105 cells
per well. After 24h of incubation, the medium was removed
and the cells were treated with the following serum pools:
control serum (CS); uremic serum (US); uremic serum and
vitamin D (Sigma-Aldrich, Missouri, USA; US+Vit. D);
uremic serum, vitamin D, and ketoconazole (US+Vit. D+K)
for 6h. This medium was then replaced with fresh medium
(100 mL/well), and 10 mL of MTT (Sigma-Aldrich, Missouri,
USA) solution (5 mg/mL in D-PBS) was added to each well
and incubated for 4h at 37oC. Subsequently, the media was
removed and replaced with dimethyl sulfoxide (DMSO;
Sigma-Aldrich, St. Louis, MO, USA) to dissolve the crystals
of the reduced formazan. The absorbance of the samples was
measured at 570 nm (Tecan, Männedorf, Switzerland), and
all analyses were performed in triplicate.

Measurement of reactive oxygen species (ROS)
production
The ROS-sensitive fluorescent dye 2’,7’-dichlorofluorescein

diacetate (DCFH-DA; Sigma, St. Louis, USA) was used to
measure ROS production (mostly peroxide). Monocytes
(105 cells/well) were seeded in a transparent 96-well plate.
After 24h of culture, they were washed with Dulbecco’s
phosphate-buffered saline (D-PBS) at 37oC and labeled with
1 mM DCFH-DA for 30 min at 37oC. Then, the cells were
washed twice with D-PBS, and the different serum pools (CS,
US, US+Vit. D, and US+Vit. D+K) were added to each well.
Some wells were treated with the antioxidant N-acetyl-cysteine

(NAC; 0.2 mM) for 4h prior to treatment with the uremic pools.
Fluorescence was immediately measured using a spectro-
fluorometer (lEx, 492 nm; lEm, 535 nm). Results were
expressed as the percentage increase in fluorescence inten-
sity compared to that of the CS-treated cells (27). Six
independent experiments were performed, wherein each
sample was analyzed in duplicate.

Measurement of CAMP gene expression by real
time quantitative polymerase chain reaction
Total RNA was isolated from the lysed monocytes using

TRIzol Invitrogen (Carlsbad, USA). RNA purity and concen-
tration were estimated by measuring the A260 nm/A280 nm
absorbance ratio using a NanoDrop 2000 spectrophotometer
(Thermo Scientific, Waltham, WA, USA). RNA integrity was
analyzed by agarose gel electrophoresis (1%). The mRNAwas
transcribed into complementary DNA (cDNA) using the High
Capacity RNA-to-cDNA Kit (Applied Biosystems, Foster City,
CA, USA). cDNA was amplified with specific primers and
EvaGreen Master Mix S (Applied Biological Materials,
Richmond, BC, Canada) using the Rotor-Gene 6000 thermal
cycler (Corbett Research Inc., Mortlake NSW, Australia).
Hypoxanthine phosphoribosyl transferase (HPRT) was used
as a housekeeping gene as described previously (28). The
primers used were as follows: human CAMP (forward 50-TCA
CCA GAG GAT TGT GAC TTC AA-30 and reverse 50-CCA
GCAGGG CAAATC TCT TG-30), and human HPRT (forward
50-GAA CGT CTT GCT CGA GAT GTG A-30 and reverse
50-TCC AGC AGG TCA GCA AAG AAT-30). The relative gene
expression levels were calculated using the 2-DDCT method
(29). Six independent experiments were performed, wherein
each sample was analyzed in duplicate.

Data analysis
Statistical analyses were performed using the statistical

packages JMP (version 8.0; SAS Institute Inc., Cary, NC,
USA) and Sigma Stat (version 3.5; Systat software Inc.,
Erkrath, Germany). Comparisons between groups were
performed either using Student’s t-test or analysis of
variance (ANOVA) for normally distributed variables, and
Mann Whitney and ANOVA on ranks for non-parametric
variables. The Shapiro–Wilk normality test was used to test
normality of the data. Differences with p valueso0.05 were
considered statistically significant.

’ RESULTS

Clinical results
The baseline clinical and laboratory characteristics of the

cholecalciferol and placebo group were found to be similar
(Table 1). There was no difference in the use of anti-platelet
agents (8 patients in the cholecalciferol group and 11 in the
placebo group), statins (6 in the cholecalciferol group and
7 in the placebo group), and therapeutic regimens against
diabetes (6 patients in each group) between the cholecalci-
ferol and placebo groups.
In the treatment group, the serum levels of 25(OH)-

vitamin D were significantly higher at T3 and T6 than at T0,
whereas the serum levels of iPTH remained stable through-
out the study. Interestingly, all patients achieved normal
levels of vitamin D after the first three months of supple-
mentation. In the placebo group, neither 25(OH)-vitamin D
nor iPTH serum levels significantly changed throughout the
study (Table 2). However, iPTH levels were significantly
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higher in the placebo group than in the cholecalciferol group
at the end of the study (T6) (po0.05). No remarkable change
was observed in the serum levels of the other parameters of
mineral metabolism, namely, the calcium, phosphate, total
alkaline phosphatase, and FGF-23 levels. The serum levels of
IL-1b and hs-CRP did not significantly change during the
study in either group.
The sole episode of hypercalcemia (Ca410.3 mg/dL)

occurred in the cholecalciferol group at six months.
There were nine episodes of hyperphosphatemia (P45.5
mg/dL), six of which were in the cholecalciferol group.
Hyperphosphatemia was easily handled by dietary

counseling and adjustment of the dose of the phosphate
binder.

There were no significant differences in hemoglobin,
hematocrit, and albumin serum levels, white blood cell
count, body mass index, and protein catabolic rate between
the placebo and cholecalciferol groups during the study
(Table 3).

Causes of drop out
Eight patients (four patients from each group) did not

complete the study. The causes of drop out were death, five
patients (three from placebo and two from the cholecalciferol

Table 1 - Clinical and laboratory characteristics of the study population.

Study Population (N=32) Placebo (N=14) Cholecalciferol (N=18)

Age (years) 58.5 (51.25–67.50) 55.5 (50.50–65.25) 59.0 (51.75– 0.25)
Race, Caucasians (%) 93.5 64.2 66.6
Gender, male (%) 51.7 53 50
Arteriovenous access (%) 81 87 75
Etiology CKD (%)

Diabetes 48 46.7 50
Hypertension 19 13.3 25
Glomerulonephritis 23 26.7 19
Other

Phosphate binders (%)
Calcium carbonate
Sevelamer

10

31
69

13.3

29
71

6

33
67

Time in dialysis (months) 25.5 (10.75–46.50) 27.5 (12.0– 50.25) 24.5 (10.0–45.5)
Ca (mg/dL) 9.0 (8.4–9.9) 8.8 (8.2–9.7) 9.1 (8.4–10.1)
P (mg/dL) 4.3 (3.4–5.4) 4.0 (3.3–4.9) 4.7 (4.0–6.1)
iPTH (pg/mL) 177.5 (63.0–239.8) 194.5 (173.0–266.0) 83.5 (40.1–218.0)
AP (IU/L) 94.5 (71.5–106.5) 96.0 (71.5–150.8) 82.0 (70.9–101.3)
25(OH)D (ng/mL) 19.9 (11.8–23.6) 22.0 (17.2–24.1) 15.2 (10.6–23.1)
FGF-23 (pg/mL) 248.8 (66.6–924.7) 176.2 (22.9–1061.0) 380.3 (112.4–862.0)
IL-1b (ng/mL) 3.2 (0.8–6.6) 1.6 (0.6–4.8) 4.1 (1.1–15.2)
hs-CRP (mg/dL) 0.3 (0.14–1.2) 0.25 (0.14–1.1) 0.44 (0.25–1.2)

Values are expressed as number (percentage) or median (25th to 75th percentile), where appropriate.
Abbreviations: Ca, calcium; P, phosphorus; iPTH, intact parathyroid hormone; AP, alkaline phosphatase; 25(OH)D, 25-hydroxyvitamin D3; FGF-23, fibroblast
growth factor-23; IL-1b, interleukin-1b; hs-CRP, high-sensitivity C-reactive protein.

Table 2 - Evaluation of the laboratory parameters of mineral metabolism during follow-up.

T0 T1 T2

Placebo
N 14 13 11
Ca (mg/dL) 8.8 (8.2–9.7) 8.5 (8.1–9.1) 9.4 (8.5–9.7)
P (mg/dL) 4.0 (3.3–4.9) 4.7 (3.2–5.5) 3.7 (2.9–6.2)
iPTH (pg/mL) 194.5 (173.0–266.0) 281.0 (229.0–400.0) 232.0 (142.0–452.0)
AP (IU/L) 96.0 (71.5–150.8) 90.0 (72.2–137.0) 82.0 (62.0–141.0)
25(OH)D (ng/mL) 22.0 (17.2–24.13) 19.5 (15.2–24.35) 25.1 (13.7–31.0)
FGF-23 (pg/mL) 176.2 (22.9–1061.0) ----- 390.3 (9.5–1339.0)
IL-1b (ng/mL) 1.6 (0.6–4.8) ----- 1.0 (0.2–2.4)
hs-PCR (mg/dL) 0.25 (0.14–1.1) ----- 0.44 (0.18–1.9)

Cholecalciferol
N 18 14 12
Ca (mg/dL) 9.1 (8.4–10.1) 9.2 (8.9–9.6) 9.1 (8.9–9.5)
P (mg/dL) 4.4 (3.8–5.4) 4.7 (4.0–6.1) 5.1 (3.8–5.9)
iPTH (pg/mL) 83.5 (40.1–218.0) 112.5 (48.7–162.0)d 70.0 (53.0–163.0)e

AP (IU/L) 82.0 (70.98–101.3) 102.5 (64.0–108.5) 82.0 (58.0–104.0)
25(OH)D (ng/mL) 15.20 (10.65–23.15) 50.1 (39.1–84.3)a,b,c 46.1 (39.1–62.75)a,b,c

FGF-23 (pg/mL) 380.3 (112.4–862.0) ----- 198.7 (55.91–754.1)
IL-1b (ng/mL) 4.1 (1.1–15.2) ----- 4.8 (0.2–12.35)
hs-PCR (mg/dL) 0.44 (0.25–1.2) ----- 0.57 (0.17–2.0)

Values are expressed as the medians (25th to 75th percentile).
Abbreviations: Ca, calcium; P, phosphorus; iPTH, intact parathyroid hormone; AP, alkaline phosphatase; 25(OH)D, 25-hydroxyvitamin D3; FGF-23, fibroblast
growth factor-23; IL-1b, interleukin-1b; hs-CRP, high-sensitivity C-reactive protein. (a) vs. T=0 cholecalciferol group, po0.0001; (b) vs. T=1 placebo group,
****po0.001; (c) vs. T2 placebo group, *po0.05; (d) vs. iPTH T=1 placebo group, ****po0.001; (e) vs. iPTH T=2 placebo group, ****po0.001.
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group); renal transplantation, two patients (one from each
group); and a change in the dialysis center, one patient (from
the cholecalciferol group).

In vitro results

Cell viability assay. Cell viability was assessed by the
MTTassay. There was a significant decrease in the viability of
US- or US+Vit. D+K-treated cells compared to that of the
CS-treated cells (po0.05).The US+Vit D treatment induced
no change in cell viability, compared to the CS treatment
(Figure 1).

ROS production
The US significantly increased the ROS levels in the

cells, compared to the CS treatment (po0.0001). US-induced
ROS production was significantly lowered by NAC (US+
NAC) and vitamin D (US+Vit. D; po0.01 vs. US), as well
as by the concomitant use of both NAC and vitamin D
(US+Vit. D+NAC) (po0.05, vs. US). Finally, the addition of
ketoconazole prevented the oxidative effects of vitamin D
(Figure 2).

CAMP gene expression
US treatment resulted in a significantly higher expres-

sion of the CAMP gene (po0.05) in comparison to that
induced by CS, whereas CAMP expression was significantly
decreased by US+Vit. D treatment (po0.05), compared to
the US treatment (Figure 3). Ketoconazole tended to prevent
the beneficial effects of vitamin D in uremic conditions, but
without resulting in a statistically significant change in the
CAMP gene expression (Figure 3).

’ DISCUSSION

CKD has been described as an inflammatory condition
associated with a higher risk of CVD and infection, both of
which are the main causes of mortality among CKD patients
(7,30). Interestingly, observational studies have reported
that the mortality of CKD patients might be attenuated

Table 3 - Evaluation of the hematologic and nutritional
parameters during follow-up.

T0 T2

Placebo

N 14 11
Hemoglobin (g/dL) 12.0±1.3 12.1±1.4
Hematocrit (%) 36.5±4.1 35.9±3.9
Albumin (g/dL) 4.1±0.2 4.2±0.3
BMI (kg/m2) 28.4±4.6 28.5±5.0
WBC (mm3) 7.271±1.576 7.516±1.925
n-PCR (g/kg/day) 1.09±0.20 1.1± 0.10

Cholecalciferol
N 18 12
Hemoglobin (g/dL) 11.8±1.1 11.6±0.7
Hematocrit (%) 35.9±3.4 34.9±2.8
Albumin (g/dL) 3.9±0.2 4.0±0.2
BMI (kg/m2) 28.6±7.4 28.9±7.6
WBC (mm3) 7.625±2.225 7.730±1.855
n-PCR (g/kg/day) 1.00±0.21 1.02±0.21

Values are expressed as the mean±standard deviation.
Abbreviations: BMI, body mass index; WBC, white blood cell; n-PCR,
protein catabolic rate.
T0 = Baseline, T2 = six-month follow-up period. Figure 1 - The effect of control serum (CS); uremic serum (US);

uremic serum and vitamin D (US+Vit. D); and uremic serum,
vitamin D, and ketoconazole (US+Vit. D+K) on monocyte
viability. Monocytes (105) were cultured with CS, US, US+Vit.
D, and US+Vit. D+K for 24 h and then treated with MTT for 4 h.
Cell viability was determined by measuring the absorbance at
570 nm. The viability of the control cells (cells treated with CS
and media) was considered 100%. Data are expressed as the
mean±SEM of three independent experiments. *po0.05, US vs.
US+Vit. D+K and ****po0.0001, CS vs. US.

Figure 2 - Effect of control serum (CS); uremic serum (US); uremic
serum and vitamin D (US+Vit. D); and uremic serum, vitamin D,
and ketoconazole (US+Vit. D+K) on reactive oxygen species
(ROS) production in monocytes. Monocytes (105) were incubated
with 1 mM DCFH-DA in D-PBS at 37oC for 30 min and then treated
with CS, US, US+Vit. D, or US+Vit. D+K with or without the
antioxidant N-acetyl-L-cysteine (NAC; 0.2 mM). ROS production
in CS-treated cells was considered 100%. Data are expressed as
mean±SEM of ten independent experiments. *po0.05, US vs. US+
NAC and US vs. US+Vit. D+NAC; **po0.01, US vs. US+Vit. D; and
****po0.0001, US vs. CS.
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Gregório PC et al.



by VDRAs, suggesting that the vitamin D axis may be a
potential modifiable factor of CKD-related complications
(31). The effects of vitamin D supplementation on mineral
metabolism and its potential pleiotropic actions in the
cardiovascular and immune system have been studied in
patients with different stages of CKD (4,6,17). We previously
demonstrated an association between hypovitaminosis D
and inflammation (32), and that vitamin D supplementation
might attenuate systemic inflammation and left ventricular
hypertrophy in hemodialysis patients (17). In this study, we
evaluated the clinical and in vitro effects of vitamin D
supplementation on inflammation, oxidative stress, and
parameters of mineral metabolism in hemodialysis patients
and a monocyte cell line (U-937), respectively.
Our study demonstrated that vitamin D supplementation

ameliorated hypovitaminosis D, as observed from the third
month of follow-up, and serum levels of iPTH did not
significantly change in stable hemodialysis patients not
receiving other therapies targeting the parathyroids, i.e.,
VDRAs or calcimimetics. Even though the levels of vitamin
D increased in the placebo group, in contrast to the patients
who used cholecalciferol, they did not reach the normal
range and the serum levels of iPTH tended to increase. The
serum levels of calcium, phosphorus, total alkaline phos-
phatase, and FGF-23 did not significantly change in either
group. Despite the fact that the beneficial effect of vitamin D
supplementation on the control of secondary hyperparathyr-
oidism has not been uniformly observed in hemodialysis
patients (33–35), a recent meta-analysis reported that
cholecalciferol may improve the parameters of mineral
metabolism in CKD patients (36).
The anti-inflammatory role of cholecalciferol in hemodia-

lysis patients, based on the IL-1b and hs-CRP serum levels,
was also evaluated. However, there were no significant chan-
ges in the levels of these inflammatory biomarkers. Other
studies have not demonstrated beneficial effects of vitamin D
supplementation for over 12 weeks on the expression of

inflammatory biomarkers, such as TNF-a, IL-6, neutrophil
gelatinase-associated lipocalin (NGAL), interferon gamma-
induced protein-10 (IP-10), or CAMP, in hemodialysis
patients (20) or in overweight individuals (37). Similarly,
cholecalciferol supplementation for three months in African
Americans did not reduce the levels of C-reactive protein
(CRP), IL-6, and IL-10 (38). Other studies have supported the
anti-inflammatory effects of vitamin D. A four-week admin-
istration of cholecalciferol significantly lowered the hs-CRP
levels in older females with vitamin D insufficiency (39).
A study has also demonstrated that a one-year supplementa-
tion of cholecalciferol in overweight individuals decreased
the serum levels of IL-6, but the levels of hs-CRP and TNF-a
significantly increased and remained unchanged, respec-
tively (40). Studies in hemodialysis patients have demon-
strated that cholecalciferol supplementation may attenuate
inflammation in this population (17,41,42). Differences in the
characteristics of the study population, such as age or ethni-
city, cholecalciferol supplementation dose, length of follow-up,
and concomitant use of other medications, may influence the
inflammatory status and result in conflicting observations.

In order to investigate the in vitro anti-inflammatory effects
of vitamin D in an uremic environment, monocyte viability
was evaluated under different conditions. We found that
uremic serum reduced monocyte viability, whereas vitamin
D was able to increase it, and ketoconazole, an inhibitor of
1a-hydroxylase, reversed this beneficial effect of vitamin D.
Furthermore, uremic serum increased the production of
ROS in monocytes, and this was partially reversed by NAC
and vitamin D. Taken together, these results demonstrate
the potential in vitro benefits of cholecalciferol on monocyte
function, such as improvement of cell viability and reduc-
tion of oxidative stress. Biomarkers of oxidative stress and
inflammation may be found at higher levels in hemodialysis
patients, along with increased risk for CVD, death, and other
uremia-related comorbidities (1,43,44), and this may result
from uremia and dialysis itself. Vitamin D can modulate
important pathways of the immune system, such as the toll-
like receptor signaling pathway, suppressor of cytokine
signaling 1 pathway, and NF-kB pathway in human macro-
phages (45–47). Recently, Brito et al. described a favorable
effect of vitamin D supplementation on the levels of TLR-4,
MCP-1, and CAMP in monocytes treated with uremic
serum (42).

Interestingly, we observed an increased expression of the
CAMP gene after exposure to uremic serum in vitro, and this
was partially diminished by vitamin D. Grabulosa et al.
demonstrated that the serum level of CAMP was higher in
hemodialysis patients than that in pre-dialysis CKD patients
(47), while other studies have shown that uremia may lower
the serum levels of CAMP (20). The effects of vitamin D on
CAMP levels seem to be controversial. A 12-week supple-
mentation with cholecalciferol had no effect on the CAMP
levels in patients with early CKD (20), whereas active
vitamin D was shown to increase the serum levels of this
antimicrobial peptide in vitro (48,49). A possible explanation
for the lack of homogeneity among the observed findings is
that previous studies evaluated only the supernatant and/or
serum level of CAMP, whereas in our study, we evaluated
the transcriptional effects of uremia and vitamin D. There-
fore, we hypothesized that post-transcriptional effects may
counteract the stimulatory and inhibitory transcriptional
effects of uremia and vitamin D, respectively. Most impor-
tantly, our findings further indicate that monocytes exposed

Figure 3 - mRNA gene expression of CAMP in monocytes.
Monocytes were treated with control serum (CS); uremic serum
(US); uremic serum and vitamin D (US+Vit. D); uremic serum,
vitamin D and ketoconazole (US+Vit. D+K) for 6 h. Data are
expressed as the mean±SEM of five independent experiments.
*po0.05, US vs. CS and US+Vit. D vs. CS.
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to the uremic serum pool may still possess functional
1a-hydroxylase. Thus, one may consider that cholecalcife-
rol supplementation may be valuable for CKD patients
with hypovitaminosis D. Furthermore, a previous study
revealed that dual treatment with cholecalciferol and active
vitamin D increased the serum CAMP levels in up to 40% of
patients with high parathyroid levels (50). The percentage
increase in the serum CAMP and 25(OH)-vitamin D levels
was closely correlated. The discrepancy between the in vitro
and in vivo anti-inflammatory effects might also be explained
by the complex interactions of external modulating factors –
both disease - and therapy-related – in CKD patients sub-
jected to renal replacement therapy. Combining active and
native vitamin D analogs, possibly with other approaches
to mitigate inflammation, for example, dietary phosphate
restriction, anemia, and underlying comorbid conditions, may
be the best strategy for the treatment of hypovitaminosis D in
hemodialysis patients.
We recognize that our study has some shortcomings,

including the relatively low number of patients included,
mainly due to the strict inclusion criteria. The duration
of follow-up precluded the evaluation of the possible long-
term benefits of cholecalciferol on inflammation. Moreover,
CAMP expression was not evaluated in the patients and was
only evaluated in vitro. It would have been interesting to
investigate the effect of uremic serum and vitamin D in other
cell lines, such as THP-1, and monocytes extracted from the
peripheral blood of CKD patients. One possible explanation
for the disagreement between the experimental and clini-
cal effects found in our study could be attributed to the
differences between tissues and cells. Despite using a pool
of uremic serum, in vitro samples were collected at one time
point, that is, at baseline, while patients were exposed to a
myriad of uncontrolled factors that may have altered their
serum composition throughout the study, including vary-
ing concentrations of uremic toxins such as FGF-23 and
phosphate that may interfere with monocyte 1a-hydro-
xylase activity; this may have precluded the effects of
the cholecalciferol supplementation in the clinical setting.
Furthermore, as patients with different degrees of hypovi-
taminosis D, that is, severe deficiency, deficiency, and
insufficiency, might have different inflammatory profiles, it
would be interesting to investigate the effects of vitamin D
supplementation according to the stratum of vitamin D
levels in the patients. Unfortunately, our study was not
powered for this analysis.
In conclusion, our study demonstrated that cholecalci-

ferol supplementation is an efficient strategy to ameliorate
hypovitaminosis D in hemodialysis patients, but with
no clear beneficial effects on the control of secondary
hyperparathyroidism. Despite exerting beneficial effects
against inflammation and oxidative stress, which were
demonstrated in vitro, cholecalciferol could not ameliorate
inflammation in the clinical setting, as indicated by the
levels of IL-1b and hs-CRP. Further studies are necessary to
establish the role of nutritional vitamin D, its optimal dose,
and the length of use, as an anti-inflammatory strategy in
dialysis patients.
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