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� Pharmacological modulation of cardiac receptors can be an efficient therapeutic strategy to increase life expectancy in Parkinson’s disease.
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A B S T R A C T

Aims: Although reduced life expectancy in Parkinson’s Disease (PD) patients has been related to severe cardiac
arrhythmias due to autonomic dysfunctions, its molecular mechanisms remain unclear. To investigate the role of
cardiac β1-Adrenergic (β1AR) and A1-Adenosine (A1R) receptors in these dysfunctions, the pharmacological
effects of stimulation of cardiac β1AR (isoproterenol, ISO), in the absence and presence of cardiac β1AR (atenolol,
AT) or A1R (1,3-dipropyl-8-cyclopentyl xanthine, DPCPX) blockade, on the arrhythmias induced by Ischemia/
Reperfusion (CIR) in an animal PD model were studied.
Methods: PD was produced by dopaminergic lesions (confirmed by immunohistochemistry analysis) caused by the
injection of 6-hydroxydopamine (6-OHDA, 6 μg) in rat striatum. CIR was produced by a surgical interruption for
10 min followed by reestablishment of blood circulation in the descendent left coronary artery. On the incidence
of CIR-Induced Ventricular Arrhythmias (VA), Atrioventricular Block (AVB), and Lethality (LET), evaluated by
Electrocardiogram (ECG) analysis, the effects of intravenous treatment with ISO, AT and DPCPX (before CIR)
were studied.
Results: VA, AVB and LET incidences were significantly higher in 6-OHDA (83%, 92%, 100%, respectively) than in
control rats (58%, 67% and 67%, respectively). ISO treatment significantly reduced these incidences in 6-OHDA
(33%, 33% and 42%, respectively) and control rats (25%, 25%, 33%, respectively), indicating that stimulation of
cardiac β1AR induced cardioprotection. This response was prevented by pretreatment with AT and DPCPX, con-
firming the involvement of cardiac β1AR and A1R.
Conclusion: Pharmacological modulation of cardiac β1AR and A1R could be a potential therapeutic strategy to
reduce severe arrhythmias and increase life expectancy in PD patients.
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Introduction

Clinically diagnosed by motor dysfunctions, such as bradykinesia,
tremors at rest, and rigidity, Parkinson’s Disease (PD) is the second most
common neurodegenerative disease worldwide [1]. PD is pathophysio-
logically characterized by degeneration and death of dopaminergic neu-
rons in the Substantia Nigra pars compacta (SNc) associated with the
development of intraneuronal aggregates of α-synuclein protein (Lewy
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body) [ 1,2]. As PD incidence is higher in older individuals, the aging of
the world population can considerably increase the number of PD cases
in the coming years [3]. A recent report by the United Nations-World
Population Ageing (2019) indicates that the number of individuals over
65 years old worldwide may double from 703 million in 2019 to about
1.5 billion in 2050, in addition about 426 million of these people are
expected to be over 85 years old [4]. In this worrisome scenario, there
is no proven disease-modifying therapy to avoid PD progression and
severity.

In addition to motor dysfunctions, several non-motor dysfunctions
are associated with PD, such as autonomic and cardiovascular dysfunc-
tions [5]. These dysfunctions are importantly involved in PD pathophys-
iology, causing cardiac arrhythmias and sudden death [5]. These
dysfunctions have been identified at all stages of PD and diagnosed in
about 60% of PD patients, constituting a leading cause of death due to
PD [5−10]. Several studies have shown that mortality in PD patients is
significantly higher than that seen in the general population [11−13].
A recent review by the research group showed that from a total of about
97,000 scientific articles on PD, 1,650 were related to mortality in PD
[5]. Despite a robust body of clinical evidence suggesting a high inci-
dence of cardiovascular disorders associated with reduced life expec-
tancy in PD patients [5,6,9,10,17-23], its pathophysiology remains
unclear.

Many important advances in PD pathophysiology were observed in
the last decades, mostly derived from studies using PD animal models
that mimic both motor and non-motor symptoms observed in humans
[14−16]. The animal model generated by the administration of the neu-
rotoxin 6-Hydroxydopamine (6-OHDA) directly into the Striatum (ST)
of rats is widely used and beyond motor deficits of PD, also reproduces a
broad spectrum of non-motor comorbidities, decisively contributing to
expanding the knowledge of the PD pathophysiology, especially in rela-
tion to molecular mechanisms involved in autonomic and cardiovascular
dysfunctions involved in this neurodegenerative disease [14−16].

It is well established that autonomic regulation of cardiac function is
mainly mediated by β1-Adrenergic Receptors (β1AR) located on the
plasma membranes of cardiac cells, which constitutes the major βAR
subtype (75% to 80%) expressed in the mammalian heart [24−26].
When stimulated by the neurotransmitter Noradrenaline (NA) released
by intracardiac sympathetic neurons, cardiac β1AR promotes activation
of Adenylyl Cyclase (AC) that, in turn, increases intracellular adenosine
3`,5`-Cyclic Monophosphate (cAMP) levels and consequent activation of
cAMP-dependent Protein Kinases (PKA) [24−26]. In its activated state,
PKA phosphorylates several cell proteins, including troponin I, L-type
voltage-gated Ca2+ channel (L-type Cav) and phospholamban, increas-
ing the cardiac chronotropic and inotropic responses [24−26].

Cardiac β1AR-mediated chronotropic responses are finely modulated
by Adenosine Triphosphate (ATP) released with NA from intracardiac
sympathetic neurons [26−29]. ATP released is enzymatically converted
to Adenosine (ADO), which activates cardiac A1 Adenosine Receptors
(A1R), leading to attenuation of positive chronotropic responses stimu-
lated by β1AR [26−29]. In addition, cAMP released to the extracellular
medium from cardiac cells during sympathetic stimulation leads to an
increase in extracellular levels of ADO, increasing the A1R activation
[26−29]. Several studies suggest that the cellular action of cAMP and
PKA are essential for cardioprotective responses mediated by cardiac
β1AR and A1R [26−32]. Thus, have been proposed that this adrenergic-
purinergic communication responsible by fine regulation of cardiac
function could importantly contribute to cardioprotective responses in
different pathophysiological conditions [26−32].

Although β1AR and A1R have an important physiological role in the
regulation of cardiac function [26−29], their role in cardiac autonomic
dysfunctions associated with PD is unknown. To investigate the patho-
physiological role of β1AR and A1R in cardiac autonomic dysfunctions
associated with PD, we studied the effects of βAR agonists (isoprotere-
nol, ISO), and selective antagonists of β1AR-selective (atenolol, AT) or
A1R (1,3-Dipropyl-8-Cyclopentyl Xanthine, DPCPX), on the incidence of
2

Ventricular Arrhythmias (VA), Atrioventricular Block (AVB) and Lethal-
ity (LET) induced by Cardiac Ischemia/Reperfusion (CIR) in the 6-
OHDA model of PD.

Materials and methods

Animals

Adult (16‒20-week-old) male Wistar rats were provided by the Cen-
ter for Development of Experimental Models in Medicine and Biology
(CEDEME) of Federal University of S~ao Paulo (UNIFESP). Rats were
maintained under standard conditions of nutrition, hydration, tempera-
ture, humidity, and luminosity until the moment of experimentation. All
experimental procedures were approved by the Ethical Committee on
Animal Use of UNIFESP (CEUA nº 2367271115) and were in accordance
with the regulations of the National Council for the Control of Animal
Experimentation (CONCEA, Brazil).

Induction of Parkinson’s disease (PD) model

In this study, we have chosen the PD model induced by 6-OHDA to
reproduce in laboratory conditions the initial stages of PD development
in humans, as previously proposed by several studies [14−16]. Due to
its poor ability to cross the blood-brain barrier, 6-OHDA is injected into
the ST to induce degeneration and death of dopaminergic neurons [14
−16]. Inside the ST, 6-OHDA is uptaken by dopaminergic neurons
through the Dopamine Neuronal Transporter (DAT), causing degenera-
tion and death in these neurons due to increased formation of H2O2 and
free radicals, and inhibition of complex I and IV activity in the mitochon-
drial respiratory chain [14−16]. To produce a PD model in rats, the sur-
gical protocol as described by Real et al. was used [33]. As such,
animals’ skulls were shaved and their skin was cleaned with 70% alco-
hol. Then, they were anesthetized with ketamine (150 mg/kg, i.p.) and
xylazine (10 mg/kg, i.p.), and positioned in the stereotaxic apparatus by
their ear canals. A longitudinal midline incision was done, the subcuta-
neous and muscle tissues were separated, and bregma and lambda land-
marks in the rat skull were exposed [33]. Striatal injections into a single
cerebral hemisphere were performed in two-point coordinates from the
bregma were defined: 1st point: AP Bregma, ML − 2.7 mm, and DV −
4.5 mm; 2nd point: AP + 0.5 mm, mL − 3.2 mm, and DV − 4.5 mm [24].
Then, a thin hole was opened in the skull over the target area, using a
hand-held drill, and, with a Hamilton micro-syringe (5 μL), 0.5 μL of a
solution containing 3 μg 6-OHDA in 0.3% ascorbic acid (6 μg/μL) was
injected into each point (6-OHDA group) [33]. In order to assure solu-
tion diffusion, the syringe was kept in place for 5 min. Then, the incision
was sutured, and the rats were returned to their cages for recovery. One
group of rats (control group) was subjected to all these procedures,
except that 0.9% Saline Solution (SS) was injected instead of 6-OHDA.
After seven days of 6-OHDA or SS injection, rats were submitted to CIR
protocol and Tyrosine Hydroxylase (TH) immunoreactivity to evaluate
cell death in ST and SNc.

Evaluation of cardiac arrhythmias induced by CIR

Several studies showed that reduced cardiac sympathetic activity
increases the incidence of fatal cardiac arrhythmias in PD [9,20,21]. The
CIR protocol has been useful to study cardiac dysfunctions related to dif-
ferent pathological conditions and cardioprotective strategies [26,30-
32]. To investigate the pathophysiological role of β1AR and A1R in car-
diac autonomic dysfunctions associated with PD, we studied the effects
of ISO (non-selective βAR agonist), in the absence and presence of AT
(β1A-selective antagonist) and DPCPX (A1R-selective antagonist), on the
incidence of CIR-induced cardiac arrhythmias (VA and AVB) and LET in
the 6-OHDA model of PD.

The CIR protocol used to induce cardiac arrhythmias was based
in the methodology described by Tavares et al [34]. Thus, rats were
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anesthetized with urethane (1.25 g/kg, i.p.) and mechanically venti-
lated (Harvard Apparatus, Boston) [34]. After the stabilization
period (15 min), the heart was gently exposed by left thoracotomy
to mechanical occlusion of the left anterior descending artery using
a plastic rod (ischemia). After ischemia (10 min), the rod was
removed to allow coronary reperfusion for 75 min. The incidence of
VA and AVB induced by CIR was evaluated by Electrocardiogram
(ECG) analysis performed before and during CIR protocol in 6-
OHDA and control rats, [34]. with the AqDados 7.02 software,
while raw data were analyzed with the AqDAnalysis 7 software
(Lynx Tecnologia Ltda, Brazil) [25]. Using this computational analy-
sis, the incidence of VA, AVB and LET induced by CIR was deter-
mined before and after treatment with 0.5 mg/kg, i.v. ISO 5 min
before ischemia in 6-OHDA (6-OHDA + ISO group) and control
(C + ISO group) animals. To evaluate the role of cardiac β1-AR and
A1-R in cardiac arrhythmias induced by CIR in the 6-OHDA model
of PD, ISO effects were studied in the absence or presence of block-
ade of β1-AR with AT (10 mg/kg) or A1R with DPCPX (100 μg/kg).
These selective antagonists were intravenously administrated 5 min
before ISO in Control (C) and 6-OHDA rats. The rats were divided
in eight experimental groups: C, C+ISO, C+AT+ISO, C+DPCPX
+ISO, 6-OHDA, 6-OHDA+ISO, 6-OHDA+AT+ISO and 6-OHDA
+DPCPX+ISO.

Immunostaining

Physiologically, DA synthesis is limited by Tyrosine Hydroxylase
(TH) activity. This enzyme converts tyrosine actively transported to the
cytosol of sympathetic neurons into Dihydroxyphenylalanine (DOPA),
whereas aromatic Amino Acid Decarboxylase (AADC) converts DOPA
into DA [14−16]. Catecholaminergic neurons are effectively labeled by
TH which is an excellent biological marker of nigrostriatal dopaminergic
neurons [14−16]. 6-OHDA and control rats were anesthetized with ure-
thane (1.25 g/kg, i.p.) and decapitated for brain removal. Brains were
fixed in 4% paraformaldehyde and placed in a 30% sucrose solution.
Free-floating 30 μm coronal sections were treated with 1% H2O2 in PBS
(0.1 M sodium phosphate buffer, Ph 7.2) for 30 min. After washing, sec-
tions were incubated overnight with primary antibody (anti-TH; 1:1000;
MAB5280, Chemicon, USA) in PBS containing 0.3% Triton X-100 and
5% normal donkey serum. Next, sections were incubated with secondary
antibody in PBS with 0.3% Triton X-100 for 120 min (1:200; Jackson
Labs, West Grove, PA, USA), and then treated with avidin-biotin-peroxi-
dase complex (ABC Elite; Vector Labs, Burlingame, CA, USA). The reac-
tion was revealed with 0.05% 3-3-diaminobenzidine tetrahydrochloride
containing 0.01% H2O2 in PBS, and sections were mounted on gelatin-
coated slides. Five digital images covering the entire extension of ST and
SNc were acquired using a Nikon E1000 microscope and a Nikon
DMX1200 digital camera. Integrated optical density using Image J soft-
ware (NIH, Bethesda, MD, USA) was evaluated. The percentage of cell
survival was determined by the ratio of the total number of cells on the
right (experimental) and left (contra-lateral) ST from 6-OHDA and con-
trol animals.

Drugs and reagents

The neurotoxin 6-hydroxydopamine (6-OHDA) was purchased from
Sigma-Aldrich (USA). Ketamine, xylazine, and urethane were purchased
from Syntec (Brazil). Other drugs were purchased from Sigma-Aldrich
(USA).

Statistical analysis

For statistical analysis, GraphPad Prism 6.0 software (GraphPad Soft-
ware Inc., CA, USA) was used. The incidence of VA, AVB, and LET in 6-
OHDA and control rats were compared with Fisher’s exact test [34].
Mean values of the integrated optical density for TH immunostaining in
3

6-OHDA and control rats were compared with non-paired Student’s t-
test with Welch’s correction. Results were expressed as mean ± Standard
Error Mean (SEM). Values of p < 0.05 were considered statistically sig-
nificant.
Results

TH Immunoreactivity

TH immunoreactivity in ST and SNc from 6-OHDA and control rats
revealed distinct (Fig. 1 A and B). The percentage of dopaminergic neu-
rons in the 6-OHDA-lesioned ST (80.50 ± 2.51%) was significantly lower
(∼20%) compared to control (99.99 ± 2.50%) rats (Fig. 1C). The per-
centage of dopaminergic neurons in the SNc from 6-OHDA rats (54.25 ±
4.22%) was also significantly lower (∼45%) compared to control (92.85
± 6.29%) (Fig. 1D). In accordance with several studies [14−16], this
reduction in dopaminergic neurons confirmed the nigrostriatal lesion in
6-OHDA rats.
Incidence of AV, AVB and LET induced by CIR in 6-OHDA rats

Although heart rate did not differ between 6-OHDA (335 ± 13 bpm,
n = 12) and control (346 ± 15 bpm, n = 12) rats before the CIR proto-
col, this parameter varied considerably during CIR induction. Typical
ECG records (Fig. 2) of 6-OHDA and control rats show that, after 1 min
of ischemia, the VA evolved to AVB (6/12; 50%) in 6-OHDA rats, while
no VA and AVB were detected in control rats. After 5 min of ischemia,
an increase in the incidence of AVB was detected in 6-OHDA rats (8/12;
67%) resulting in death in 33% (4/12) of them, while there was no AVB
(Fig. 2) or death among control rats. After 10 min of ischemia, the inci-
dence of AVB significantly increased in the 6-OHDA group (11/12;
92%), while there was VA but no AVB (Fig. 2) or death in control rats.
After 1 min of reperfusion, the incidence of AVB remained high in 6-
OHDA rats (11/12; 92%), resulting in the death of the remaining 67%
(8/12) of 6-OHDA rats before the 15th min of reperfusion. In control
rats, the increase in VA incidence (7/12; 58%) during reperfusion
resulted in higher of AVB incidence (8/12; 67%). In consequence, the
incidence of LET in these rats was 67% (8/12) at the end of 75 min of
reperfusion. The incidence of VA, AVB and LET was significantly higher
in 6-OHDA (83%, 92% and 100%, respectively) than in control rats
(58%, 67% and 67%, respectively), suggesting that this PD model was
more susceptible to severe and fatal arrhythmias induced by CIR (Fig. 3).

Although the incidence of VA, AVB, and LET were elevated at the end
of the CIR protocol, treatment with 0.5 mg/kg i.v. ISO administered
5 min before ischemia significantly reduced this incidence in 6-OHDA
and control rats. The incidence of VA was reduced from 83% (10/12) in
the 6-OHDA group to 33% (4/12) in the 6-OHDA + ISO group (p <
0.01), and from 58% (7/12) in the control group to 25% (3/12) in the
C + ISO group (p < 0.01). The incidence of AVB was significantly
reduced from 92% (11/12) in the 6-OHDA group to 33% (4/12) in the 6-
OHDA + ISO group (p < 0.01), and from 67% (8/12) in the control
group to 25% (3/12) in the C + ISO group (p < 0.01). Due to this cardio-
protective effect mediated by ISO, the incidence of LET significantly
decreased from 100% (12/12) in the 6-OHDA group to 42% (5/12) in
the 6-OHDA + ISO group (p < 0.01), and from 67% (8/12) in the con-
trol group to 33% (4/12) in the C + ISO group (p < 0.01). These ISO
effects were abolished by blockade of pretreatment with 10 mg/kg i.v.
AT 5 min before ischemia in the 6-OHDA + AT + ISO and
C + AT + ISO groups (Fig. 3), confirming the involvement of β1AR in
cardioprotective responses induced by ISO.

In addition, the ISO effects also were abolished by pretreatment with
100 µg/kg i.v. DPCPX 5 min before ischemia in the 6-OHDA +
DPCPX + ISO and C + DPCPX + ISO groups (Fig. 3), confirming the
involvement of A1R in cardioprotective responses induced by ISO.



Fig. 2. Typical ECG records showing the VA and AVB induced by CIR in 6-OHDA and control rats. The baseline values of heart rate recorded before CIR (in rest)
showed no significant differences between 6-OHDA and control (C) groups. (A) With less than 1 min after cardiac ischemia, arrhythmias were observed in 6-OHDA,
but not in C rats. Arrhythmias tended to worsen over time in the 6-OHDA group, which evolved to AVB (see ECG obtained in 1st, 5th and 10th min ischemia, and 1st and
75th min reperfusion) in 92% (11/12) of these rats. In contrast, the incidence of AVB was lower in C rats. (B) Incidence of VA, AVB and LET was significantly reduced
by treatment with ISO (0.5 mg/kg, i.v., before ischemia) in 6-OHDA+ ISO and C+ ISO groups.

Fig. 1. Representative images showing TH-immunostained sections of ST and SNc from 6-OHDA and control rats. (A) TH-immunoreactivity in the ST (top) and SNc
(bottom) of the contralateral (left) and ipsilateral (right) sides shows no reduction in TH-positive cells in the control rats. (B) Seven days after 6-OHDA, TH-immunore-
activity in the ST (top) and SNc (bottom) of the ipsilateral (right) side shows significant decrease in TH-immunostaining compared to the contralateral (left) side in
rats that were unilaterally injected with 6-OHDA. Quantification of TH-immunostaining in the experimental side of the ST (C) and SNc (D) shows a significant decrease
in the 6-OHDA-exposed rats compared to control rats. ***Statistically different from the control (p < 0.001).
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Fig. 3. Histograms representing the incidence of VA, AVB, and LET induced by CIR, before and after the treatment with ISO and AT, in 6-OHDA and control rats.
The incidence of VA (A, D), AVB (B, E) and LET (C, F) was significantly higher in 6-OHDA than in control group. The treatment with ISO immediately before ischemia
significantly decreased the incidence of VA, AVB and LET in the 6-OHDA + ISO and C + ISO group. Pretreatment both AT (10 mg/kg, i.v., before ischemia) and
DPCPX (100 µg/kg, i.v., before ischemia) abolished these ISO effects in all groups, confirming the involvement of both β1AR and A1R in this cardioprotective response.
Values were expressed as mean ± SEM obtained in 6-OHDA (n = 12) and control (n = 12) rats. **Statistically different from the 6-OHDA or control rats (p < 0.01).
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Discussion

Although autonomic dysfunctions that cause severe and fatal cardiac
arrhythmias have been associated with reduced life expectancy in
patients with PD [9,17,20-23], its pathophysiology remains unclear,
thus making pharmacotherapy more difficult. In this work, we showed
that treatment with ISO significantly reduced the incidence of AVB and
LET induced by a CIR in an animal model of PD produced by nigrostria-
tal lesions induced by 6-OHDA, indicating that moderate sympathomi-
metic pharmacological stimulation of cardiac β1AR could reduce the
incidence of fatal arrhythmias in PD. The present findings contribute to
the understanding of the participation of the β1AR and A1R in the car-
diac dysfunction of Parkinsonian rats and to the future development of
new therapeutic strategies to reduce the incidence and severity of car-
diac disorders.

The heart rate variability and delayed orthostatic hypotension result-
ing from cardiac autonomic dysfunctions constitute an important risk
factor for PD in humans [6,9,35,36]. Initially attributed to damage in
distinct components of the central and peripheral nervous systems, espe-
cially in cardiac sympathetic neurons [17,20-23, 36], these dysfunctions
5

are variable and affect both sympathetic and parasympathetic regulation
of cardiovascular activity in PD [20,37,38]. Increased incidence of
severe and fatal arrhythmias in PD patients has been related to reduced
sympathetic and increased parasympathetic activity [9,17,20-23]. How-
ever, the pathophysiology and possible pharmacotherapy of these auto-
nomic dysfunctions remain unclear.

A recent populational-based study by Hong et al [39]. identified
Atrial Fibrillation (AF) as a significant comorbidity in the preclinical
stage of PD in human patients, which led authors to suggest AF as a
potential premotor predictive biomarker since the risk of AF was signifi-
cantly lower in later stages of PD [39]. Autonomic nervous system
abnormalities are frequent features already observed in prodromal PD
causing a plethora of non-motor symptoms. Growing evidence shows
that PD individuals exhibit a robust decrease in HRV parameters in com-
parison to healthy controls, even before PD diagnosis with the onset of
motor deficits [40]. Our group and others described similar HRV
changes in animal models of PD, reproducing human conditions
[41,42]. In the present study, cardiac function was assessed in parkinso-
nian rats the relationship between sympathetic dysfunction triggers a
decrease in purinergic activity since sympathetic dysfunction culminates
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in a decrease in cAMP production in the intracellular environment, and
this reduction in cAMP production leads to a lower efflux of this second
messenger to the extracellular environment, causing a decrease in the
conversion of cAMP into adenosine and, therefore, decreasing the aden-
osine autocrine activity on A1R cardioprotective receptors, these events
can be observed even at an early stage (early stage, mimicking preclini-
cal stage of human patients) of the disease.

Intra and extracardiac sympathetic denervation, as well as attenua-
tion of arterial baroreflexes, appear to be causal factors for these cardio-
vascular autonomic dysfunctions in PD patients [6,43]. Loss of
baroreceptor sensitivity in PD patients has been documented by spectral
analysis of heart rate (R-R interval) and systolic arterial pressure vari-
ability [43]. A sustained drop in systolic pressure of at least 20 mm.Hg
and/or a sustained diastolic drop of at least 10 mm.Hg has been
observed in PD patients within the first 3 min after standing up [6]. In
addition to the loss of baroreflexes, intra and extracardiac sympathetic
denervation may be directly involved in the high incidence of severe car-
diac arrhythmias in PD patients [9], as observed in decreased cardiac
sympathetic activity in the PD model induced by 6-OHDA [20].
Although the molecular mechanisms involved in sympathetic dysfunc-
tions in PD remain unknown, it is possible that cardiac autonomic recep-
tors have an important role in these dysfunctions.

Cardiac β1AR and A1R have an important physiological role in the
neurogenic regulation of cardiac function [24−29]. In addition, β1AR
and A1R are involved in cardioprotective responses as well [26,30-32].
The role of cardiac β1AR and A1R in cardiac autonomic dysfunctions in
PD is unknown, however, it is possible that the function of these recep-
tors is altered in PD. Then, pharmacological modulation of cardiac β1AR
and A1R could be useful therapeutic strategies to decrease the incidence
of severe and fatal arrhythmias in patients with PD [5,6]. 6-OHDA rats
were more susceptible to severe and fatal arrhythmias when subjected
to a CIR protocol compared to control animals, due to deregulation of
autonomic control of cardiac activity aggravated by CIR [9,17,20-23,
36]. Stimulation of cardiac β1AR in an animal model of PD reduced the
incidence the severe and fatal arrhythmias induced by CIR [26,44].
Fig. 4. Molecular mechanisms involved in the sympathetic regulation of cardiac funct
cardiac cells. When stimulated, these receptors coupled to Gs promote an increase i
cAMP activates PKA that phosphorylates L-type Cav (L-Cav), resulting in increased Ca2

cellular cAMP stimulates cAMP transport to the extracellular due to action of MRP4. I
ENT. This purinergic signaling involved action of ADO in A1Rfinely modulates functio
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Nitric Oxide (NO), PKA, and PI3K are essential for cardioprotective
responses mediated by cardiac β1AR [26,30-32, 44-49]. Stimulation of
cardiac β1AR increases NO biosynthesis through activation of the GC/
cGMP/PKG pathway, which increases the activity of mKATP channels,
preserving mitochondrial bioenergetics, attenuating cardiac excitation-
contraction decoupling, and thus reducing the incidence of severe
arrhythmias and death of cardiac cells [30−32]. Several drugs can
increase intracellular cyclic AMP, among which β1AR agonists such as
ISO stand out. In cardiac cells, ISO activates Gs/AC/cAMP/PKA signal-
ing, that phosphorylates L-type Cav, resulting in increased Ca2+ influx
with positive chronotropic and inotropic effects [49,50]. After the
increase in intracellular cAMP, the efflux of cAMP to the extracellular
medium occurs through the Multi-drug Resistant Protein 4 channel
(MRP4) [51,52]. This is followed by the extracellular conversion of
cAMP to ADO by the serial actions of Ecto-Phosphodiesterase (EPDE)
and Ecto-5′-Nucleotidase (ENT) [52]. This mechanism of extracellular
ADO biosynthesis may provide hormonal control of ADO levels in the
cell-surface biophase in which ADO receptors reside. Simultaneous addi-
tion of an inhibitor of the membrane transporter MRP4 and ISO was
able to increase the intracellular concentration of cAMP when compared
with the addition of ISO alone [51,52].

Thus, the communication between the adrenergic and purinergic
pathways, which act together to regulate cardiac chronotropism, since
the adrenergic pathway increases heart rate, while the A1R-mediated
purinergic pathway attenuates sympathetic activity in the heart and,
therefore, may offer a cardioprotective effect, especially when adrener-
gic activity is increased. In this context, activation of A1R, which is cou-
pled to Gi, is a negative feedback mechanism finely controls
intracellular cAMP levels and modulates cardiac chronotropism and dro-
mopism [29], as well as indirect anti-β1AR actions [29,53-55] The
molecular mechanisms involving sympathetic regulation of cardiac func-
tion mediated by β1AR and A1R were illustrated in Figure 4.

A1R was found in rodent myocardium and AC was found to be cou-
pled to these receptors in ventricular membranes [27-29, 31,56-60].
The existence and action of the cAMP-ADO extracellular pathway could
ion mediated by β1AR and A1R. The β1AR are the major subtype expressed in the
n intracellular levels of cAMP through the activation of membrane enzyme AC.
+ influx with positive chronotropic and inotropic response. The increase in intra-
n extracellular, cAMP is conversed to ADO due to enzymatic action of EPDE and
nal response of β1AR in cardiac cells.
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explain the inhibitory effect promoted by ADO after ISO-induced AC
activation in cardiac membranes [57], as well as elucidate the reason
why hearts perfused with catecholamines prevention occurs with respect
to total mechanical responsiveness [58]. Under stress conditions, such as
hypoxia or ischemia, the increase in extracellular ADO levels is responsi-
ble for cardioprotective effects, which, at least in part, involve the acti-
vation of Gi-coupled A1R [59,60]. Pharmacological stimulation of
cardiac β1AR results in indirect stimulation of cardiac A1R, through the
conversion of cAMP into ADO in the extracellular medium, which in
turn promotes activation of these A1R. These are responsible, in part, for
the cardioprotective mechanisms that so reduce the incidence of severe
CIR-induced cardiac arrhythmias responsible for death in PD model
animals.

Conclusion

The results obtained in the present work suggest that pharmacologi-
cal modulation of β1AR and A1R activity in cardiac cells could be a
potential new strategy to reduce the incidence of severe arrhythmias
and increase life expectancy in PD patients.
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