
Acta Scientiarum  
http://www.uem.br/acta 
ISSN printed: 1679-9275  
ISSN on-line: 1807-8621 
Doi: 10.4025/actasciagron.v40i1.35250 CROP PRODUCTION

 

 Acta Scientiarum. Agronomy, v. 40, e35250, 2018 

Estimating soybean yields with artificial neural networks 

Guiliano Rangel Alves1*, Itamar Rosa Teixeira1, Francisco Ramos Melo1, Raniele Tadeu 
Guimarães Souza1 and Alessandro Guerra Silva2 

1Departamento de Engenharia Agrícola, Universidade Estadual de Goiás, Campus Henrique Santillo, BR-153, Fazenda Barreiro do Meio, 75132-
400, Anápolis, Goiás, Brazil. 2Departamento de Agronomia, Universidade de Rio Verde, Rio Verde, Goiás, Brazil. *Author for correspondence.  
E-mail: guiliano@gmail.com 

ABSTRACT. The complexity of the statistical models used to estimate the productivity of many crops, 
including soybeans, restricts the use of this practice, but an alternative is the use of artificial neural 
networks (ANNs). This study aimed to estimate soybean productivity based on growth habit, sowing 
density and agronomic characteristics using an ANN multilayer perceptron (MLP). Agronomic data from 
experiments conducted during the 2013/2014 soybean harvest in Anápolis, Goiás State, B razil, were used 
to conduct this study after being normalized to an ANN-compatible range. Then, several ANNs were 
trained to choose the best-performing one. After training the network, a performance analysis was 
conducted to select the ANN with a performance most appropriate for the problem, and the selected 
network had a 98% success rate with training data and a 72% data validation accuracy. The application of 
the MLP to the data used in the experiment shows that it is possible to estimate soybean productivity based 
on agronomic characteristics, growth habit and population density through AI. 
Keywords: Glycine max (L.) Merrill; agronomic characteristics; modeling; MLP; perceptron. 

Estimativa da produtividade de soja com redes neurais artificiais 

RESUMO. Para estimar a produtividade de muitas culturas, incluído a soja, são utilizados modelos 
estatísticos complexos, que torna restrito o acesso a essa prática. Uma alternativa a estes modelos é a 
utilização de sistemas computacionais empregando Redes Neurais Artificiais (RNA). Este trabalho teve por 
objetivo estimar a produtividade da soja baseada nos hábitos de crescimento, densidade de semeadura e 
características agronômicas usando RNA do tipo Multilayer Perceptron (MLP). Para isto foram utilizados 
dados agronômicos da cultura da soja obtidos em experimento conduzido na safra 2013/2014 em Anápolis, 
Estado de Goiás, Brasil, cujos dados foram normalizados em intervalo compatível para trabalho com RNA e 
em seguida feito o treinamento de várias RNAs para a escolha da RNA com melhor performance. Após o 
treinamento das redes, foi realizada a análise de performance para seleção da RNA com a performance mais 
adequada ao problema. A RNA selecionada apresentou um índice de acerto de 98% com os dados do 
treinamento e um acerto de 72% com dados de validação. A aplicação das RNAs do tipo MLP nos dados do 
experimento conduzido demonstram que é possível estimar a produtividade da soja baseando-se nas 
características agronômicas, hábito de crescimento e densidade populacional por meio da IA. 
Palavras-chave: Glycine max (L.) Merrill; características agronômicas; modelagem; MLP; perceptron. 

Introduction 

Soybeans are currently considered the main 
agricultural commodity of Brazil, which is the 
second largest producer of this oilseed. During the 
2015/2016 harvest, approximately 95.4 million tons 
of this grain were produced (Conab, 2017), but 
there are productivity gaps among regions that are 
due to several factors during the development of the 
cultivar in the field. The productivity potential of 
soybean is genetically determined (Homrich, 
Wiebke-Strohm, Weber, & Bodanese-Zanettini, 
2012), but how this potential can be achieved 
depends on the effect of limiting factors that act at 

different stages during the production cycle (Kron, 
Souza, & Ribeiro, 2008).  

The factors that influence soybean productivity 
include row spacing and plant density (Akond et al., 
2013; Souza, Teixeira, Reis, & Silva, 2016). Soybean 
productivity was successfully estimated in studies by 
Monteiro and Sentelhas (2014) using an 
agrometeorological model. The main agronomic 
characteristics that are influenced by the different 
behaviors of each cultivar include the number of 
branches produced per plant, number of pods and 
seeds per plant, number of internodes, insertion of the 
first pod, stem diameter, plant height and, obviously, 
grain production (Liu et al., 2010; Passos et al., 2011).  
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The use of agronomic traits in soybeans at the R6 
stage or later makes it possible to estimate 
productivity without data from previous stages (Lee 
& Herbek, 2005). At these later stages, the grains 
have completely filled the cavity near the pod and 
are similar to the pods collected at harvest (Oliveira, 
Silva, Mielezrski, Lima, & Edvan, 2016). 

Artificial neural networks (ANNs) are widely 
applied in research due to their ability to model 
highly nonlinear systems in which the relationships 
between variables are unknown or very complex 
(Russell & Norvig, 2009; Goyal, 2013), and this 
capability has led to the use of ANNs in different 
fields of science. In the agricultural sciences, several 
studies have used ANNs (Zhang, Bai, & Liu, 2007; 
Alvarez, 2009; Gago, Martínez-Núñez, Landín, & 
Gallego, 2010; Erzin, Rao, Patel, Gumaste, & Singh, 
2010; Soares, Pasqual, Lacerda, Silva, & Donato, 
2013; Safa, Samarasinghe, & Nejat, 2015; Alves et 
al., 2017). 

This work aimed to evaluate the possibility of 
using an artificial neural network as a tool to 
evaluate the main agronomic traits of soybean 
cultivars with different growth habits and subjected 
to different sowing densities to obtain estimates of 
productivity. 

Material and methods 

The development of a multilayer perceptron 
(MLP) artificial neural network (ANN) requires 
supervised training to adjust the weights of the 
synapses. Thus, the MLP used in this study to 
estimate soybean productivity was created using data 
from an experiment conducted during the 
2013/2014 harvest at an experimental site belonging 
to Emater/Goiás, Anápolis, Goiás State, Brazil 
(48°18'23'' W, 16°19'44'' S). According to the Köppen 
classification, the climate is AW humid tropical, that 
is, characterized by a dry winter and a rainy summer. 
The soil of the area is classified as a Rhodic 
Hapludox (dystrophic Red Latosol). 

The experiment employed a completely 
randomized, 3 x 3 factorial design with eight 
replications. The treatments consisted of three 
soybean cultivars with different growth habits and 
types (BRS Valiosa RR, BMX Potencia RR and NA 
7337RR) and three plant densities (D1: 245,000 
plants ha-1, D2: 350,000 plants ha-1 and D3: 455,000 
plants ha-1).  

At harvest, the following agronomic 
characteristics (variables) were evaluated in ten 
plants from each plot: plant height, number of 
branches per plant, number of pods per plant, 

number of grains per pod, weight of 1,000 seeds 
(WTS) and grain yield (productivity). 

To conduct ANN training, independent 
variables (cultivars with different growth habits and 
population density) and dependent variables such as 
the agronomic characteristics of plant height (PH), 
number of branches per plant (B), number of pods 
per plant (P), number of seeds per pod (S), weight 
of 1,000 seeds (WTS) and grain yield (Prod. kg ha-1) 
were selected. These variables were normalized to 
equalize the ANN input data (Leal, Miguel, Baio, 
Neves, & Leal, 2015) so that the initial weights of 
the variables were assumed to be equivalent at the 
beginning of the training, thus avoiding the 
difficulties posed by variables with different weights 
that can prevent the ANN from converging. 

In addition to having different magnitudes, 
variables that are not numerical, such as growth 
habit variables and population density, should also 
be considered as categories. It is recommended that 
the same dummy treatment applied to the variables 
in multiple regression analysis be followed for these 
types of variables (Sharma, Sharma, & Kasana, 2007; 
Bohl, Diesteldorf, Salm, & Wilfling, 2016).  

For the other input variables whose values are 
real numbers, a linear transformation was used. 
The maximum and minimum values of the 
variables used in this transformation are shown in 
Table 1. 

Table 1. Values used for Xmin and Xmax by variable. 

Variable Unit Xmin Xmax 
Plant height (PH) cm 20 200 
Number of branches per plant (B) un 1 15 
Number of pods per plant (P)  un 10 150 
Number of seeds per pod (S) un 1 4 
Weight of 1,000 seeds (WTS)  kg 5 40 
Productivity (Prod)  kg ha-1 1000 6000 
 

The values used as inputs and the expected 
results were normalized to values between minus 
one and one, but after the networks were trained 
and validated, the resulting value of the network was 
transformed back to its original quantity. To 
perform this transformation, Equation 1 was used, 
considering the minimum and maximum values for 
each variable (Table 1).  

 =	 	–	 		–	 +            (1) 

 
where: X = the value of the original quantity, 
scaledX = the transformed value, Xmax = the 
maximum possible value for the variable, Xmin = the 
minimum possible value for the variable, d1 = the 
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value of the lower limit of the converted value (-1 in 
this study), and d2 = the value of the upper limit of 
the converted value (1 in this study).  

The input layer was set to begin the development 
of the multilayer perceptron (MLP). One neuron 
was used for each of the input variables (Table 2), 
and the output layer contained one neuron 
representing productivity. To conduct the training 
and the validation processes, a program was 
developed using the Levenberg-Marquardt training 
algorithm (Schiavo, Prinari, Gronski, & Serio, 2015) 
and the mean squared error (MSE) performance 
function, Equation 2, to enable various ANN 
architecture settings to be explored. 

 =	 ∑ = 	 ∑ −	∝               (2) 
 
where: N = the number of data presented for the 
training, e = the difference between the expected 
value and the estimated value of the network, t = 
the value estimated by the network, and α = the 
expected value. 

Table 2. Variables presented to the input neuron layer. 

Variable Transformation Description
C2 Category/type Growth habit C3 
D2 Category/type Density D3 
PH Linear transformation Plant height 
B Linear transformation Number of branches per plant 
P Linear transformation Number of pods per plant 
S Linear transformation Number of seeds per pod 
WTS Linear transformation Weight of 1,000 seeds 
C2, C3: Growth habit identification. D2, D3: Density identification. 

After designing the program, a training was 
conducted with 20,000 MLP networks. One thousand 
networks were trained in each architecture by varying 
the number of neurons in the hidden layer between 
one and twenty, following the assumption that 2i+1 
neurons in the hidden layer are needed to map any 
continuous function with i entries.  

After completing the neural network training, 
a file was generated for each training that 
contained the training data (the parameters used 
in the training, the content of the training data, 
and the test, validation and performance sets). 
Another file was generated containing the 
consolidated data for all the trainings.  

The resulting file contained one line for each 
trained network (20,000). The columns one to 
sixty-five were the values estimated by the 
network, and some columns were added (added 
columns filled by the formula) (Table 3). 

To determine the network with the best 
performance, some networks were selected using 
the following criteria: general performance of the 
experiment, performance of the training set, 
performance of the validation set, performance of 
the test set, training R2, validation R2, test R2, and 
general R2. Pearson's correlations (training, 
validation and tests) followed a decreasing order 
because the higher the value of the Pearson's 
correlation, the closer the estimated value to the 
observed value. 

Table 3. Description of the columns in the file containing the 
information network training data. 

Column 
index 

Column 
name 

Formula Information 

66 BN - Overall network performance 
67 BO - Performance in joint training 
68 BP - Performance in the validation set 
69 BQ - Performance in the test set 
70 BR - R linear training set 
71 BS =(BRnn)2 R2 training set 
72 BT - R linear validation set 
73 BU =(BTnn)2 R2 validation set 
74 BV - R linear training set 
75 BW =(BVnn)2 R2 training set 
76 BX - R linear general set 
77 BY =(BXnn)2 R2 from general set 
78 BZ - Pearson correlation of the training set 
79 CA - Pearson correlation of the validation set
80 CB - Pearson correlation of the test set 
81 CC - Epoch that was the training stop 

(convergence) 
82 CD - Number of neurons in the hidden-layer 

training 
83 CE - Training number held in the 

architecture 
nn: the line number. 

Results and discussion 

The descriptive statistics of the variables are 
presented for the test, training and validation of 
the MLP network (Table 4), and the low number 
of samples (65 samples) that were used as inputs 
for the training, validation and testing can be seen. 
Considering that MLPs learn from examples, this 
hindered the training and validation of the 
network. 

The coefficient of variation for all the 
characteristics was equal to or greater than 10 
%, which contributed to the training since the 
variation in the values allows for a better 
adjustment of the synapse connection weights, 
but this high coefficient of variation may also 
represent outliers in the data. However, the 
MLP networks coped with these values using 
cross-validation while avoiding the influence of 
the adjusted synapse weights, ensuring that the 
network did not model the noise in the 
samples. 
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Table 4. Descriptive statistics of the variables used to train the 
ANN. 

Characteristic N Average Min Max 
Standard 
deviation C.V. 

Plant height 65 92.37361 78.80 112.18 8.87538 10 %
Branches per 
plant 65 4.81704 2.00 11.30 2.09585 44 %
Grains mass per 
plant 65 18.18143 10.00 30.57 5.32825 29 %
Nº pods per plant 65 59.63328 27.60 119.80 19.28325 32 %
Seeds per pod 65 2.18204 1.82 2.67 0.27201 12 %
Productivity (kg 
ha-1) 65 4347.56436 2958.72 5248.17 477.41305 11 %
N: number of samples; Min: minimum value; Max: maximum value. 

The 65 obtained samples were randomly divided 
into three subsets: training (42 samples, 65%), 
validation (16 samples, 25%) and test (7 samples, 10%). 
For each new training, a new draw was performed, and 
this division strategy made the training difficult 
because by performing the random division without 
considering the treatments used to obtain the samples, 
the sets were formed with poor sample representation. 
This resulted in multiple networks with high training 
performance but a low validation network, with 19 
neurons in training 806, line 3, and an observed 
network performance training with an R2 of 0.999 and 
a validation R2 of 0.145 (Table 5). 

The development of the program was essential for 
determining the architecture that could perform 
adequately because the scaling problem involves the 
adjusting the complexity of the neural model based on 
the complexity of the problem. It was possible to vary 
the complexity of the architecture using the program, 

thereby enabling performance evaluation in different 
architectures and configurations. 

Another device was used to repeat the training a 
thousand times in every architecture. This approach, 
by which each new training performed a new draw of 
the training, validation and testing sets, as well as the 
initialization of the synapse weightings allowed the 
common problem of tending to get stuck in minimal 
places when training MLP networks to be overcome 
using a backpropagation algorithm (Zweiri, 
Seneviratne, & Althoefer, 2005). The importance of the 
repetitions was observed in the network with the best 
performance (R2 = 0.987 in the training and 0.727 in 
the validation), which was determined after 963 
repetitions in the architecture training with nine 
neurons in line two of the hidden layers (Table 5).  

The strategy of drawing new training, validation 
and test sets during training led to problems regarding 
the convergence and generalization of the networks 
because the treatments were not considered. This 
resulted in the grouping of samples with little 
representation during the training, test and validation 
sets and proved that the network began to specialize in 
the training set. This is illustrated by the high R2 of 
0.999 obtained during the network training with 19 
neurons after 806 repetitions (Figure 1), at which the 
training set line near time 48 fell dramatically, 
indicating that the network had memorized the 
training set. At the same time, the lines for the 
validation and test sets did not follow this patterns, 
showing low R2 values (0.145 and 0.045, respectively). 

Table 5. ANN training data. 

Training Performance R2 Pearson's correlation 
NN NT C Gen Tra Val Test Gen Tra Val Test Gen Tra Val Test 
14 124 18 0.009 0.001 0.03 0.03 0.743 0.980 0.240 0.203 0.862 0.990 0.490 0.451 
9 963 19 0.03 0.001 0.033 0.155 0.611 0.987 0.727 0.033 0.782 0.993 0.852 0.181 
19 806 48 0.044 0.000 0.138 0.092 0.357 0.999 0.145 0.045 0.598 0.999 0.381 0.212 
2 212 926 0.028 0.022 0.046 0.021 0.239 0.423 0.000 0.991 0.489 0.650 0.013 0.996 
6 336 42 0.029 0.034 0.009 0.048 0.195 0.283 0.264 0.151 0.441 0.532 0.513 0.389 
1 340 119 0.033 0.038 0.032 0.003 0.107 0.244 0.041 0.090 0.328 0.494 0.203 0.300 
C: cycles or epoch at which the architecture training was finalized; NN: -number of neurons in the hidden layer; NT: training number held in the NN architecture; Tra: training; Val: 
validation; Performance: mean squared error (MSE) = 7. 

 
Figure 1. Graphical representation of network training with 19 neurons and 806 repetitions. 
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The network with two neurons and 212 
repetitions (Figure 2) had the same problem with 
drawing the sets. The only difference was that the 
set with the best Pearson's correlation had a value of 
99.55 %, but the validation set showed a correlation 
of only 13.45 %. 

Various criteria were used to select the network 
that best managed to generalize the problem. 
Networks with fewer neurons in the hidden layer 
are more generalizable, but a network with few 
neurons in the hidden layer may not be able to solve 
a problem with a high degree of complexity and may 

result in under fitting (Patterson, 1996). This was 
observed for the estimated and observed values for 
the network with a neuron with 340 repetitions 
(Figure 3) that had an MSE of 0.0315, which was 
better than the network with nine neurons and 963 
repetitions (network chosen as the most appropriate) 
that presented an MSE of 0.0334. Despite the low 
MSE, the R2 and the Pearson's correlation values 
were not satisfactory (0.041 and -0.203, respectively) 
(Table 5), and the network failed to model the 
relationship between the input variables and the 
expected result.  

 

 
Figure 2. Graphical representation of network training with 2 neurons and 212 repetitions. 

 
Figure 3. Comparative graphical representation of the estimated and observed values of the validation set for the network with one 
neuron and 340 repetitions. 
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With the validation of the network with nine 
neurons and 963 repetitions, it was possible to 
verify the tendency of the observed values to 
follow the estimated values (Figure 4), which was 
confirmed by the R2 of 0.726 and the Pearson's 
correlation of 85 %. If samples 7 and 11 and 
indexes 3 and 4 (Figure 4) were removed from 
this validation, the R2 would rise to 0.811, and the 

Pearson's correlation would rise to 90 %. This 
simulation was performed upon observing that 
samples 11 and 2 have agronomic characteristics 
with very similar values but very different 
productivities (a difference of nearly 800 kg), 
which raises the possibility that factors that were 
not recorded in the experiment that created the 
data influenced the productivity of the samples.  

 

 

Figure 4. Comparative graphical representation of the estimated and observed values of the validation set for the network with 9 neurons 
and 963 repetitions. 

Among all the trained networks, the one with 
nine neurons and 963 repetitions, which was 
selected as the best solution to the problem, did 
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validation, with an R2 of 0.727 and a Pearson's 
correlation of 85 %. The estimated and observed 
values were observed to be very close during the 
training, which is evidence of the learning 
capacity of the MLP (Figures 5 and 6). 

Despite achieving considerable performance 
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values that were distant from the line. This can be 
attributed to the influence of the productivity of 
the selected samples on the validation set, which 
was not considered during training. Furthermore, 
the performance of the test set was very low (R2 = 
0.033 and Pearson's correlation = -18%), which 
reinforces the point that the selection of the sets 
was entirely random and clustered samples with 
low representation. The influence of non-
registered factors should also be considered. 

The difference between the observed and the 
estimated grain productivity values (error) of the 
network with the training set was 30.42 kg (Table 
6), confirming the high Pearson’s correlation of 
99%. The absolute average error was evaluated 
instead of the average error (17.1 kg) to avoid 
masking the distance between the observed and 
estimated values because estimated values may be 
negative, indicating that the value estimated by 
the network is greater than the observed, which 
decreases the average error. 

The performance of the MLP was considered 
good relative to other studies of soybean 
productivity estimation as represented by Fontana, 
Berlato, Lauschner, and Mello (2001). This author 
obtained a correlation of 0.85 between observed 
and estimated values using the Jensen model 
modified to estimate the soybean crop yield in the 
State of Rio Grande do Sul. Using an 
agrometeorological model, Monteiro and Sentelhas 
(2014) obtained an R2 of 0.64 when estimating 
soybean productivity in different regions.  
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Figure 5. Graphical representation of linear R training, validation, testing and the overall network with 9 neurons and 963 trainings. 

 
Figure 6. Comparative graphical representation of the observed and estimated training values for the network with 9 neurons and 963 
repetitions. 
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Test 7 -841.23 1398.14 686.57 926.92 761.56 
Min: minimum; Max: maximum; Mean Absolute Error: average of the absolute error values. Minimum values below zero indicate that the network was estimated above that value. All 
values are in kg. 
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Conclusion 

The multilayer perceptron (MLP) ANN with 
supervised training could estimate (validation R2 of 
0.72 and training R2 of 0.98) a yield with 
considerable assertiveness using information 
regarding the agronomic characteristics, growth 
habit and population density of the soybean crop. 

The use of artificial neural networks to estimate 
soybean yield is viable, since the back propagation 
training technique allowed the relationship between 
the independent variables (soybean agronomic 
characteristics, growth habit and population density) 
and soybean yield to be identified with high 
precision (72%). 
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