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ABSTRACT. Soils under pastures suffer physical modifications, in greater or lesser intensity, via the action of 

animal trampling. Thus, the aim was to evaluate the spatial dependence of soil physical attributes under bovine 

trampling. The trial was performed at Roçadinho Farm, Agreste of Pernambuco, Brazil, in a 40 x 40 m paddock 

that was managed with continuous stocking by bovines and 12 AU ha-1 stocking rate. Soil samples were 

collected before and after grazing using a 6 x 6 m grid, totaling 36 sampling points. At each point, the bulk 

density, total porosity, moisture, soil penetration resistance at 0.00 - 0.10, 0.10 - 0.20, and 0.20 - 0.30 m depth 

were estimated, as was the hydraulic conductivity on the saturated soil surface. Descriptive statistics and 

geostatistics supported the data analysis. A normal distribution was verified for all variables, which were scored 

as either low or high variability in terms of the variation coefficient. The physical attributes (density, total 

porosity, moisture, soil penetration resistance and hydraulic conductivity) of the soil sampled presented a 

strong spatial dependence before and after grazing. 
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Introduction 

Dairy livestock are of great economic importance for Agreste of Pernambuco State, where pastures occur 

across most of the region. Thus, research on this topic is of fundamental importance in supporting decisions by 

farmholders. 

Soil diversity and its physical, chemical, biological, mineralogical, and morphological attributes, as well 

as its relief, stony characteristic, and climate, cause soils to respond differently to management, machine 

traffic, and animal trampling (Magliano, Fernández, Florio, Murray, & Jobbágy, 2017). 

Soil under grazing suffers physical modifications in greater or lesser intensity via the action of animal 

trampling (Rauber et al., 2018; Spera, Santos, Fontaneli, & Tomm, 2010). Different soil attributes have been 

used to characterize the physical changes caused by compaction due to animal trampling or even due to 

different pastureland management practices. The physical parameters that are commonly used to 

characterize soil under pasture include bulk density, porosity (Cardoso, Wanderley, & Souza, 2016; 

Carvalho, Ruiz, Costa, Passos, & Araújo, 2014), soil penetration resistance (Cubillos et al., 2016; Redin et 

al., 2017), and soil-water infiltration (Cullotta et al., 2016; Suárez, Navarro, Campos, Flores, & Mejía, 2018). 

Compaction refers to the initial stage, type, and water content present in soil (Costa et al., 2012; Pilon et 

al., 2017; Stavi, Shuker, Barkai, Knoll, & Zaady 2018). Thus, the compaction caused by animal grazing 

changes physical attributes through the repetitive and cumulative effects of trampling on soil (Capurro, 

Secco, Reichert, & Reinert, 2014). For this reason, porosity and the amount of water infiltration tend to 

decrease as the soil density and penetration resistance increases (Frolla, Aparicio, Costa, & Krüger, 2018). 

Thus, compacted soil can restrict plant root development (Ortigara et al., 2014) and diminish water 

infiltration (Miguel, Vieira, & Grego 2009). Consequently, pasture productivity is reduced (Bonetti, Paulino, 

Souza, Carneiro, & Silva, 2015). 

Soil-water infiltration is a physical quality indicator for integrating factors that directly affect plant 

development (Pulido, Schnabel, Contador, Lozano-Parra, & González, 2018). In fact, infiltration velocity 
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can represent the soil hydraulic conductivity, which becomes constant after a determined time (Di Prima et 

al., 2018; Nascimento, Almeida, Batista, & Coutinho, 2017). 

The quantitative and qualitative characteristics of soil physical attributes in pastures as well as their 

spatial variability can be precisely realized by geostatistical analysis, which is an important tool in decision 

making processes and can support adjustments in soil management and pasture conservation (Bernardi et 

al., 2016; Wang & Shao, 2013). 

Continuous stocking by bovines can modify soil physical structure in the long-term. Thus, we aimed to 

evaluate the spatial dependence of penetration resistance, moisture, bulk density, porosity, and hydraulic 

conductivity of soil under pasture in Agreste of Pernambuco State. 

Material and methods 

The trial was performed over 21 days on a commerce property of dairy cows at Roçadinho Farm at 

Capoeiras, located at Vale do Ipojuca microregion, Agreste meso-region of Pernambuco State, Brazil, 8° 36’S 

latitude and 36° 37’W longitude. Soil was classified as Planossol according to Agroecological Mapping of 

Pernambuco – Zape Digital (2001). Soil characterization was performed at the Laboratory of Soil Mechanical 

and Residues recovering at Federal University Rural of Pernambuco (Table 1), according to the methods 

described by the Brazilian Agricultural Research Corporation [EMBRAPA] (2011).  

Table 1. Soil characteristics. 

¹Dp (kg dm-3) ²OM (g kg-1) Sand (g kg-1) Silt (g kg-1) Clay (g kg-1) Textural Class 

2.64 39.57 817.22 178.78 4.00 Loam Sand 

¹Density of particle; ²Organic Matter. 

The experimental area was 40 x 40 m, wherein a 6 x 6 m grid was used, resulting in 36 sampling points, 

with a 5-m border and a 8 x 10 m rest area for animals attached to the pasture that contained water and 16 

m2 of shade (Figure 1). The soil was prepared with a harrow plow prior to planting, and fertilizer was not 

applied because the area had no declivity. The management system was continuous stocking in soil under 

pasture composed of Brachiaria decumbens, a drought-resistant crop plants. Grazing was performed by three 

girolando heifers, each with a 300 kg body weight. The grazing period started when the canopy had a 90-cm 

height and ended when it had a 20-cm height, as suggested by Fidalski and Alves (2015). 

 
Figure 1. Sketch of trial pasture: sampling points ( ), rest and shade area for animal relief ( ). 

For each sampling point, the penetration, moisture, bulk density, total porosity and particles density of 

soil at 0.0 - 0.10, 0.10 - 0.20, and 0.20 - 0.30 m depth, and hydraulic conductivity on saturated soil surface 

were measured. Sample collection was performed prior to and after grazing. For an undisturbed soil sample, 

an Uhland sampler was used. 

The density of particle (Dp) was estimated by the volumetric flask method. Gravimetric moisture (GM) 

was estimated by oven drying, and soil bulk density (BD) was estimated by the volumetric ring method, with 
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the soil dried mass kept at 105°C and using an extraction ring of known volume. Total porosity (TP) was 

calculated by the correlation between BD and Dp (EMBRAPA, 2011). 

To measure soil penetration resistance (PR) a penetrometer of reduced impact was used (model 

IAA/Planalsucar/Stolf), with number of impacts dm-1 transformed to dynamic resistance (MPa) according to 

Equation 1 proposed by Stolf (1991). 
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where: 

PR – Soil penetration resistance, kgf cm-2 (kgf cm-2 × 0.098 = MPa);  

M - Mass of piston, 1.6 kg;  

m - Mass of machine without piston, 1.5 kg; 

h - Height of piston fall, 54 cm;  

X – Penetration of machine stick, cm by impact; 

A - Area of cone, 1.35 cm². 

The soil-water surface infiltration was characterized using the Beerkan method, which is based mainly 

on simplified infiltration assays and analyzing the soil particle size distribution (Di Prima, Lassabatere, 
Bagarello, Iovino & Angulo-Jaramillo, 2016). A PVC ring was used with a 150 mm diameter, 15 volumes of 

150 mL water, and a chronometer. In the grazing area, the ring was inserted in the soil at a 1-cm depth to 

avoid lateral losses of water during the process. The water volumes were consecutively spilt in the cylinder, 

where another volume was spilt after every emptying. The time required for every volume to infiltrate into 

the soil was recorded, and the process was stopped when the infiltration velocity became constant or after 

15° of volume emptying. Hydraulic conductivity was estimated as described by Bagarello, Di Prima, Iovino, 

and Provenzano (2014) in Equation 2. According to the authors, this methodology should be applied only for 

soil surfaces. 
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where: 

K0 – Hydraulic conductivity in saturated soil, mm s-1; 

b – Slope of an equation linearized in function of cumulative infiltration over time; 

r – Ring radius, 75 mm; 

 – adopted 0.012 as suggested by Reynolds, Bowman, Drury, Tan, and Lu (2002), for practices in 

permeameter and infiltrometer in soil that ranges from thick sand to compacted clay. 

Initially, descriptive statistical analyses (minimum, maximum, average, median, standard error, 

coefficient of variation, asymmetry, and kurtosis) were performed on the soil physical attribute data 

collected in the field trial. The data normality hypothesis was estimated by Kolmogorov-Smirnov test. 

To verify the spatial variability of variables over time, the results were analyzed by geostatistical 

methods of semivariogram analysis (Vieira, 2000). Spatial autocorrelation among neighbors was estimated 

by semivariance γ (h), through Equation 3: 
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where: N(h) is the number of value pairs Z(xi) and Z(xi + h), separated by the h vector. The γ(h) equation in 

function h correspondent values, namely, semivariogram, is a function of only the h vector. 

The GS+ 7.0 (Gamma Design Software, 2012) adjusted the semivariogram models. The choice of the best 

model adjusted to semivariogram was based on coefficient of determination (R2). Surfer 9 (Golden Software, 

2010) was used to manipulate and observe the spatial distribution through isolines map building for 

variables with ordinary kriging. Maps scales of RP were constituted according to the levels adapted by Soil 

Survey Staff (2017), where low: RP < 0.1 MPa; moderate: 0.1 - 2.0 MPa; high: 2.0 - 4.0 MPa; very high: 4.0 - 

8.0 MPa; and extremely high: RP > 8.0 MPa. 

To analyze the spatial dependence degree (SDD) of soil attributes the classification of Cambardella et al. 

(1994) was applied. Strong spatial dependence was considered for semivariograms with a nugget effect < 

25% of threshold, moderate for those between 25 and 75%, and weak for those > 75%. 



Page 4 of 11 Batista et al. 

Acta Scientiarum. Agronomy, v. 41, e39594, 2019 

Variability of parameters was estimated using the coefficient of variation as reported by Warrick and 

Nielsen (1980), where: CV <   %,    ≤ CV < 6 %, and CV ≥ 6 % represented low, moderate, and  ig  

variability attributes, respectively. 

Results and discussion 

The results for descriptive statistics before and after grazing showed similarity for the average and median, 

which indicated a symmetric distribution; the measures of central tendency were dominated by typical values in 

the distribution (Tables 2 and 3). According to the Kolmogorov-Smirnov test, all variables had normal 

distribution, with coefficients of asymmetry and kurtosis similar or equal to zero (Cunha et al., 2017). 

The coefficient of variation (Table 2) revealed low variability for soil bulk density (BD) at all depths and 

total porosity (TP) at a 0.0 - 0.1 m depth, similar to the results of Ribeiro et al. (2016), who observed the 

spatial variability of cohesive soil physical attributes submitted to conventional management and direct 

seeding methods. Penetration resistance (PR) for 0.1 - 0.2 m and 0.2 - 0.3 m depth, gravimetric moisture 

(GM) for all depths, TP for 0.1 - 0.2 m and 0.2 - 0.3 m depth, and hydraulic conductivity (K0) all had 

moderate variability. The PR for 0.0 - 0.1 m showed high variability, as also reported by Mion et al. (2012), 

who analyzed the spatial variability of the physical attributes in a yellow argisol under alternate sheep 

grazing; those authors attributed their results to high variability of the average, showing a distribution with 

high heterogeneity of data. 

Table 2. Descriptive statistic parameters of soil physical-hydric attributes at 0 - 0.1, 0.1 - 0.2 and 0.2 - 0.3 m depth, before grazing. 

Variables 1MIN 2MAX Average Median 3SE 4CV 5A 6K 7D 

0.00 – 0.10 (m) 

PR (MPa) 0.55 3.46 1.31 0.87 0.89 68.30 1.24 0.09 0.22* 

GM (%) 6.79 17.53 13.43 14.06 2.90 21.70 -0.29 -0.95 0.10* 

BD (kg dm-3) 1.49 1.85 1.65 1.64 0.08 4.80 0.21 -0.40 0.09* 

TP (%) 32.85 42.71 37.476 37.95 2.67 7.10 -0.07 -0.84 0.10* 

0.10 – 0.20 (m) 

PR (MPa) 0.87 7.67 3.81 3.46 2.03 53.40 0.30 -0.97 0.12* 

GM (%) 4.93 15.94 10.39 11.03 3.33 32.00 0.02 -1.15 0.06* 

BD (kg dm-3) 1.41 1.87 1.67 1.70 0.13 8.10 -0.38 0.89 0.08* 

TP (%) 29.22 46.90 37.00 37.04 5.31 14.40 0.26 -1.03 0.06* 

0.20 – 0.30 (m) 

PR (MPa) 3.46 10.58 6.40 6.39 2.61 40.80 0.14 -0.10 0.19* 

GM (%) 5.59 14.09 9.55 9.54 1.90 19.90 0.43 0.18 0.13* 

BD (kg dm-3) 1.31 1.94 1.61 1.65 0.16 10.50 -0.07 -1.06 0.18* 

TP (%) 29.79 52.48 39.51 38.62 6.10 15.40 0.34 -0.88 0.17* 

Hydraulic conductivity in saturated soil surface 

K0 (mm s-1) 0.007 0.04 0.02 0.02 0.01 44.70 0.77 0.15 0.20* 

PR: Penetration Resistance; GM: Gravimetric Moisture; BD: Bulk Density; TP: Total Porosity; K0: Hydraulic Conductivity of soil. ¹MIN: Minimum; ²MAX: 

Maximum; ³SE: Standard Error; 4CV: Coefficient of Variation; 5A: Asymmetry; 6K: Kurtosis; 7D: Normality by K-S *Significant at 5%. 

After grazing, BD and TP had low variability for all depths sampled, which was also found by Guimarães, 

Junior, Marques, Santos, and Fernandes (2016), who evaluated the spatial variability of soil physical 

attributes in latosol, argisol, and cambisol pastures and reported that their results were due to bovines 

having preferred spots in a pasture, which can promote greater soil heterogeneity. The PR, GM, and K0 

showed moderate variability (Table 3). In a study performed in Agreste of Pernambuco State by Tavares et 

al. (2014), the coefficient of variation was low for GM and moderate for PR. According to Santos et al. (2012), 

low variability shows lower attribute heterogeneity for the experimental area sampled, whereas moderate 

variability occurs due to soil use and management associated with machines and their implements as well as 

geomorphological processes, which provide greater homogenization of sand and clay. High variability 

indicates large soil heterogeneity in the field trial sampled. 

The PR showed averages that were classified (Table 2) as moderate, high, and very high prior to grazing 

and as high, very high, and extremely high after grazing at 0.0–0.1, 0.1–0.2, and 0.2–0.3 m, respectively. 

Similar results were observed by Torres, Rodrigues Junior, Sene, Jaime, and Vieira (2012), who considered 

PR to be very high at six soil depths (0.0 through 0.6 m) in a pasture. According to Silveira, Melo Filho, 

Sacramento, and Pinto Silveira (2010), values between 2 and 2.5 MPa have been indicated as thresholds for 

soil penetration resistance of most plant species. 
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A small increment in soil moisture was observed after grazing due to precipitation that occurred prior to 

sample collection.  

The BD had an average of 1.6 kg dm-3. According to Reichert, Reinert, and Braida (2003), a density values 

of 1.65 kg dm-3 in sandy soils indicates a high probability of root growth restriction. In conventional grazing 

over 10 years, Guimarães et al. (2016) reported 1.27 kg dm-3 BD. The BD increase, which occurred mainly at 

the shallowest depths, can be related to high-intensity bovine trampling and, consequently, pasture 

degradation. As reported by Cecagno et al. (2016), BD is normally modified by bovine trampling and soil 

degradation, mostly at 0.0 - 0.1 m depth. 

Table 3. Descriptive statistic parameters of soil physical-hydric attributes at 0 - 0.1, 0.1 - 0.2 and 0.2 - 0.3 m depth, after grazing. 

VARIABLES 1MIN 2MAX Average Median 3SE 4CV 5A 6K 7D 

0.00 – 0.10 (m) 

PR (MPa) 0.87 6.05 2.35 2.16 1.23 52.40 0.97 0.03 0.10* 

GM (%) 7.60 22.03 15.48 16.28 3.31 21.40 -0.46 -0.17 0.14* 

BD (kg dm-3) 1.55 1.78 1.66 1.67 0.06 3.90 -0.12 -0.97 0.08* 

TP (%) 32.51 39.86 36.37 36.34 2.15 5.90 -0.07 -0.77 0.08* 

0.10 – 0.20 (m) 

PR (MPa) 2.16 9.93 5.92 5.24 2.58 43.60 0.95 -0.16 0.14* 

GM (%) 5.22 17.82 10.89 10.64 3.00 27.60 0.32 0.41 0.07* 

BD (kg dm-3) 1.51 1.89 1.72 1.74 0.09 5.30 -0.63 -0.12 0.05* 

TP (%) 28.23 43.57 34.91 34.30 3.57 10.20 0.66 0.08 0.16* 

0.20 – 0.30 (m) 

PR (MPa) 5.08 11.55 8.29 8.31 1.82 22.00 0.21 -0.76 0.22* 

GM (%) 9.00 17.03 13.02 13.12 1.90 14.70 -0.31 0.24 0.07* 

BD (kg dm-3) 1.36 1.90 1.63 1.63 0.12 7.80 0.09 -0.51 0.09* 

TP (%) 28.21 45.29 37.87 37.04 4.69 11.90 -0.27 -0.95 0.10* 

Hydraulic conductivity in saturated soil surface 

K0 (MM S-1) 0.004 0.02 0.01 0.01 0.003 33.50 0.27 -0.25 0.05* 

PR: Penetration Resistance; GM: Gravimetric Moisture; BD: Bulk Density; TP: Total Porosity; K0: Hydraulic Conductivity of soil. ¹MIN: Minimum; ²MAX: 

Maximum; ³SE: Standard Error; 4CV: Coefficient of Variation; 5A: Asymmetry; 6K: Kurtosis; 7D: Normality by K-S *Significant at 5%. 

Table 4. Parameters of semivariograms models and spatial dependence degree (SDD) prior to grazing time. 

Attribute Model C0 C0+C A SDD % R2 

0.0 – 0.10 (m) 

PR Spherical 0.039 0.822 11.280 4.750 0.821 

BD Spherical 0.00034 0.00443 8.740 7.675 0.599 

TP Spherical 0.230 6.909 8.790 3.329 0.839 

0.10 – 0.20 (m) 

PR Spherical 0.290 3.071 11.770 9.443 0.893 

BD Spherical 0.00057 0.005 11.120 11.400 0.818 

TP Spherical 0.700 26.590 8.200 2.635 0.681 

0.20 – 0.30 (m) 

PR Spherical 0.190 7.020 8.570 2.700 0.580 

BD Spherical 0.00310 0.059 12.440 5.29 0.996 

TP Spherical 0.718 38.633 16.990 1.858 0.969 

Hydraulic conductivity in saturated soil 

K0 Spherical 0.000001 0.00022 11.69 0.454 0.987 

C0: Nugget Effect; C0+C: Threshold; A: Reach; SDD: Spatial Dependence Degree (%); R²: Semivariogram Adjustment. 

The TP and K0 average declined 2.93 and 5.65, 4.16 and 50.00%, respectively, after grazing; the decline in 

these factors can be explained by increases in PR and GM. The TP results observed in our study were similar to 

those of Lanzanova et al. (2007), who estimated the total porosity in soil under grazing (4 UA ha-1) and reported 

that TP was reduced 18% at 0.0 - 0.05 m and 7% at 0.05 - 0.10 m after 14 days of grazing. The authors attributed 

this reduction to the pressure of animals on the soil. Likewise, Oliveira Júnior et al. (2014) observed the 

hydrodynamic attributes in Regolithic neosol under pasture and “caatinga” and reported average K0 values of 

0.063 mm s-1 for pasture and 0.125 mm s-1 for caatinga; however, soil management under pasture significantly 

changed the saturated hydraulic conductivity that was affected by animal trampling.  

All semivariograms of the variables in this study were adjusted to the spherical model (Tables 4 and 5). 

This model has mostly been applied to describe the variability of soil attributes (Cambardella et al., 1994; 

Ribeiro et al., 2016). 
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By geostatistical analysis through semivariograms, TP had no spatial dependence at depths of 0.1–0.2 

and 0.2–0.3 m after grazing (Table 5). Thus, the variability of this variable can be considered aleatory, and 

lower spacing will be necessary for sample collection to detect spatial dependence, as suggested by 

Cambardella et al. (1994). Likewise, Guimarães et al. (2016) reported a pure nugget effect for TP at 0.10 and 

0.15 m after applying 10 x 10 m spacing to estimate the spatial dependence of the physical attributes of soil 

under pasture. The spatial dependence degree (SDD) was classified as strong for other variables analyzed. 

The SDD results were similar to those of Soares et al. (2015), who observed the spatial dependence of soil 

physical attributes under pasture. 

Table 5. Parameters of semivariogram models and spatial dependence degree (SDD) after grazing. 

Attribute model C0 C0+C A SDD % R2 
0.0 – 0.10 (m) 

PR Spherical 0.276 1.805 9.560 15.300 0.904 
BD Spherical 0.00004 0.002 8.950 2.000 0.998 
TP Spherical 0.112 2.371 11.180 4.728 0.890 

0.10 – 0.20 (m) 
PR Spherical 0.010 7.625 13.920 0.131 0.984 
BD Spherical 0.00009 0.003 8.720 3.000 0.523 
TP PNE - - - - - 

0.20 – 0.30 (m) 
PR Spherical 0.163 3.079 12.140 5.300 0.967 
BD Spherical 0.00001 0.016 8.270 0.062 0.937 
TP PNE - - - - - 

HYDRAULIC CONDUCTIVITY IN SATURATED SOIL 
K0 Spherical 0.000001 0.00001 9.560 10.000 0.934 

C0: Nugget Effect; C0+C: Threshold; A: Reach; SDD: Spatial Dependence Degree (%); R²: Semivariogram Adjustment; PNE: Pure Nugget Effect. 

Kriging maps (Figure 2) allowed verification of the result that PR increased by 79.40, 55.40, and 29.50% 

at 0.0 - 0.1, 0.1 - 0.2, 0.2 - 0.3 m depth, respectively, after grazing. These results are similar to observed by 

Lanzanova et al. (2007), who evaluated the physical attributes of soil under grazing (4 AU ha-1) and noticed 

an increase of 57% PR at 0.05 - 0.08 m after 14 days of grazing. Costa et al. (2012) reported a higher PR 

under different stocking rates (1.26, 5.57, 7.45, and 8.23 AU ha-1) and at 0.2 - 0.3 and 0.3 - 0.4 m depth, with 

greater grazing intensity, in sandy-loam soil. 

Modification of spatial variability of PR before and after grazing can be explained by the fact that animals 

that are managed under continuous grazing stay in the same paddock without rest time. Additionally, 

clumped grass growth can promote bare soil with greater impact of animal hoof pressure. Consequently, 

there is a greater tendency for compaction, which was confirmed after grazing due to greater penetration 

resistance (Fernández, Alvarez, & Taboada, 2015). 

 

Figure 2. Kriging maps of PR¹ (MPa) before grazing and PR² (MPa) after grazing. 
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The threshold for BD suggested by Reichert et al. (2003) is 1.65 kg dm-3. This value was surpassed across a 

large portion of the sampling area, mainly at 0.0 - 0.1 and 0.1 - 0.2 m depth after grazing. Likewise, Lima, Silvino, 

Melo, Lira, and Ribeiro (2015) studied a pasture with continuous grazing at Brejo of Paraíba and reported an 

average BD of 1.6 and 1.5 kg dm-3 at 0.0 – 0.10 and 0.10 – 0.20 m, respectively. According to Costa et al. (2012), 

the BD can be affected by animal trampling, especially at depths of 0.0 – 0.10 and 0.10 – 0.20 m. 

In pastures with bovine rotational stocking and a 12 AU ha-1 stocking rate, Ortigara et al. (2014) reported that 

animal trampling changed the soil structure by increasing the BD and PR and decreasing the porous space. Thus, 

these findings are similar to those of our study.  

In contrast to the literature, Bonetti et al. (2015) studied the soil physical attributes and soy bean productivity 

of a pasture managed with different stocking rates (1.5, 2.5, and 3.5 AU ha-1) and canopy heights (0.25, 0.35, and 

0.45 m) in a dystroferric Red latosol. The authors reported that after 120 grazing days, the soil physical attributes 

had small changes that were maintained near the threshold considered normal. Furthermore, the authors 

reported that a low stocking rate and soil moisture could have contributed to fewer impacts of animal trampling.  

The TP and K0 decreased as PR and BD increased (Figures 2, 3, 4, and 5), the results similar to findings of 

Guimarães et al. (2016). According to Mion et al. (2012), TP shows a strong correlation with PR, which tends 

to increase as TP is reduced. The increase of PR and BD and the decrease in TP are responsible for the 

decrease in K0 and, therefore, for increased water runoff from rain or irrigation, which exacerbates the 

erosion process (Stefanoski, Santos, Marchão, Petter, & Pacheco, 2013). 

Iglesias, Galantini, Krüger, and Venanzi (2014) also observed similar results when they evaluated TP 

distribution in areas with bovine trampling and different plant systems. The authors reported that 

trampling by animals reduced TP, mainly at a depth of 0.0 - 0.1 m.  

 

Figure 3. Kriging maps of BD¹ (kg dm-3) before grazing time and BD² (kg dm-3) after grazing time. 

The K0 was markedly reduced after grazing time, mainly due to the increased BD and PR, with a reduction 

in porosity. Likewise, Miguel et al. (2009) evaluated soil water infiltration as a function of trampling 

intensity at an alternate stocking rate (6 AU ha-1) and reported a reduction of 70% for K0 after the fifteenth 

grazing period through paddocks (Figure 5). 

An evaluation of the compaction of the soil surface caused by 120 bovines grazing in a 100 x 70 m 

pastureland during three weeks by Tuffour, Bonsu, and Khalid (2014) found that grazing at any intensity 

affected the soil water infiltration because the animal hoof pressure greatly reduced the porous space of 

soil, which supported our results. 

According to our results, after 21 days of grazing, animals degraded the soil with physical modifications, 

which is related to overgrazing, and management can modify soil physical attributes. However, grazing does 
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not affect the soil physical quality in continuous or alternate stocking systems, as long as the stocking rate 

and forage mass are controlled (Fidalski et al., 2008). Adopting good management and maintaining the 

pasture can be a solution for those problems. 

 

Figure 4. Kriging maps of TP¹ (%) before grazing and TP² (%) after grazing. 

 

Figure 5. Kriging maps of K0¹ (mm s-1) before grazing and K0² (mm s-1) after grazing. 

Conclusion 

Penetration resistance, moisture, bulk density, and hydraulic conductivity of the soil had a strong spatial 

dependence before and after grazing. 

Soil physical attributes were modified after grazing, which increased the penetration resistance and bulk 

density and reduced the hydraulic conductivity and total porosity. 
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