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ABSTRACT. Several mathematical models have been developed for applications in the hydraulics of 

irrigation systems and several performance indicators of these models are used and suggested by the 

literature. Thus, the objective of this work was to investigate the performance of statistical indicators for 

the evaluation of models in irrigation hydraulics. For this, three case studies which represent typical 

irrigation hydraulics modeling were used to assess the indicators. A set of indicators were analyzed: a) 

difference-based: mean absolute error, mean square error, root mean square error, scaled root mean square 

error, and percent mean absolute error; b) efficiency-based: Nash-Sutcliffe and Legates-McCabe; c) 

correlation coefficient (r); d) coefficient of determination (R2); e) index of agreement index (d); f) Camargo 

and Sentelhas index (c); and g) graphical methods: regression error characteristic curve based on relative 

absolute error and 1:1 scatter plot. For the evaluated cases, which are physical phenomena, differentiable 

indicators are similar measures and it is appropriate to report either or both indices. The assessment of 

models must also be supported by graphical analysis, which shows the real scenario of errors in the model 

evaluation processes. Efficiency-based indicators, r, R2, c, and d are not recommended and should be 

avoided in modeling of irrigation hydraulics. 
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Introduction 

In irrigation engineering, several mathematical models have been developed to assist in the sizing and 

decision support of hydraulic design of irrigation systems. The evaluation or assessment of models’ 

performance is an important step when developing mathematical models. The evaluation of a model aims to 

quantify the deviation between observed and predicted values within the validation limits of the model. A 

model is suitable when the accuracy of its predictions complies with the application requirements.  

Model calibration and validation are fundamental processes for establishing the credibility of models and 

simulations (Chatterjee & Simonoff, 2013). Quantitative and graphical methods are useful for the correct 

parameterization and validation of models. 

Several statistical indicators and methods have been suggested to assess models’ performance (Nash & 

Sutcliffe, 1970; Fox, 1981; Willmott, 1981; Ali & Abustan, 2014). Among the statistical indicators, Fox (1981) 

recommended that the difference-based measures mean absolute error (MAE), mean square error (MSE), and 

root mean square error (RMSE) should be calculated and reported. Ali and Abustan (2014) also proposed a new 

difference-based indicator which can be used to evaluate model performance, the percent mean relative 

absolute error (PMRAE). Willmott (1981) demonstrated that Pearson’s correlation coefficient (r) and 

determination coefficient (R2) can be misleading and proposed an index of agreement (d). Regarding 

efficiency-based indicators, the Nash-Sutcliffe (NSE) and Legates and McCabe (1999) (LME) indices are widely 

used for evaluation of model performance that investigate hydraulic irrigation problems, such as orifice 

discharge (Zhang, Chai, Li, Xu, & Li, 2019), friction losses in polyethylene pipes (Provenzano, Alagna, 

Autovino, Juarez, & Rallo, 2016), perforation geometry of drainage pipes (Gaj & Madramootoo, 2020) and 

channel stability hydraulics (Thompson, Hathaway, & Schwartz, 2018). 
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Moriasi et al. (2007) pointed out that a model can be assessed as suitable based on one statistic but may 

present poor performance when evaluated according to another statistic. Furthermore, Alexandrov et al. 

(2011) emphasized the need for standardized evaluation tools for specific fields. For example, Bellochi, Acuit, 

Fila, and Donatelli (2002) suggested the use of Pearson’s correlation coefficient, the relative root mean square 

error, efficiency-based indicators, and 𝑡-student probability for solar radiation modeling.  

Modeling has been widely used in irrigation hydraulics. However, the literature does not specify the most 

appropriate statistical indicators to evaluate models capable of representing the physical phenomena in this 

area. In this paper, statistical indicators were investigated to evaluate the performance of models in irrigation 

hydraulics, as well as to verify their limitations to help make decisions about the accuracy of the models. 

Material and methods 

Indicators for model performance evaluation 

Table 1 lists the indicators evaluated, as well as their corresponding formulas, range of output values, and 

basic interpretation. The equations use the following notation: observed values (Oi), predicted values (Pi), 

number of observations (n), average of observed values (O̅), and average of predicted values (P̅). 

Table 1. Indicators for model performance evaluation. 

Indicator Formula Range Interpretation 

Mean Absolute Error (MAE) MAE =
1

n
∑|O𝑖 − P𝑖|

n

i=1

 0 to +∞ The lower, the better 

Mean Square Error (MSE) MSE =
1

n
∑(O𝑖 − P𝑖)

2

n

i=1

 0 to +∞ The lower, the better 

Root Mean Square Error (RMSE) RMSE = √
1

n
∑(O𝑖 − P𝑖)

2

n

i=1

 0 to +∞ The lower, the better 

Scaled Root Mean Square Error 

(SRMSE) 
SRMSE =

1

O̅
√

1

n
∑(O𝑖 − P𝑖)

2

n

i=1

 0 to +∞ The lower, the better 

Percent Mean Absolute Relative Error 

(PMARE) 
PMARE =

100

n
∑

|O𝑖 − P𝑖|

O𝑖

n

i=1

 0% to +∞ The lower, the better 

Relative absolute error (δ) δi = |
Oi − Pi

Oi

| 0 to +∞ The lower, the better 

Nash-Sutcliffe (NSE) NSE = 1 −
∑ (O𝑖 − P𝑖)

2n
i=1

∑ (O𝑖 − O̅)2n
i=1

 -∞ to 1 Near 1 is better 

Legates and McCabe (LME) LME = 1 −
∑ |O𝑖 − P𝑖|

𝑛
𝑖=1

∑ |O𝑖 − O̅|𝑛
𝑖=1

 -∞ to 1 Near 1 is better 

Correlation coefficient (r) 
r =

∑ (O𝑖 − O̅)(P𝑖 − P̅)n
i=1

√∑ (O𝑖 − O̅)2 ∑ (P𝑖 − P̅)2n
i=1

n
i=1

 
-1 to 1 

–1: perfectly linearly related 

with a negative slope; 

0: no linear dependence; 

+1: perfectly linearly related 

with a positive slope. 

Coefficient of determination (R²) 
R2 =

n(∑ OiPi
n
i=1 ) − (∑ Oi

n
i=1 )(∑ Pi)

n
i=1

√[n ∑ Oi
2 − (∑ Oi

n
i=1 )2n

i=1 ][∑ Pi
2 − (∑ Pi

n
i=1 )2n

i=1 ]

 
0 to 1 The higher, the better 

Index of agreement (d) d = 1 −
∑ (O𝑖 − P𝑖)

2n
i=1

∑ (|O𝑖 − O̅| + |Pi − O̅|)2n
i=1

 0 to 1 The higher, the better 

Camargo and Sentelhas index (c) c = d r 0 to 1 The higher, the better 

 

The first set of indicators shown in Table 1 comprises difference-based indicators, which measure the deviation 

between observed and predicted values in a data set: MAE, MSE, RMSE, SRMSE, and PMARE. The values of all 

these indicators range from 0 to +∞, and the lower the values, the better. The smallest value corresponds to the 

hypothetical situation of no deviation between the predicted and observed data. All these indicators compute 

absolute or squared deviations between observed and predicted data and do not consider the deviation signal. 

The relative absolute error (δ) is applied to analyze deviations between pairs of observed and predicted 

values. This indicator is useful to draw the regression error characteristic (REC) curve, which is a useful 

graphical tool to quantify prediction errors associated with their cumulative frequency of occurrence 
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(Sobenko, Bombardelli, Camargo, Frizzone, & Duarte, 2020). δ can be expressed in decimal or percentage 

units. For any cumulative frequency, the smaller the value of δ, the better. In addition, a scatter plot with a 

straight line (1:1) and pairs of observed and predicted values is also useful to identify data dispersion, bias, 

and outliers in the evaluated dataset. 

Table 1 also has efficiency-based indicators (NSE and LME), which measure how well a model fits the 

observed values. Efficiency indicators have a numerator that represents the deviation between observed and 

predicted values and a denominator that represents the variation of observed values from the average of observed 

values. The numerator refers to the variation not explained by the model, while the denominator expresses the 

total variability in the observed data. If the predictions of a linear model are unbiased, then the results of NSE will 

lie in the interval from 0 to 1, but it may provide negative values for biased models. For nonlinear models, negative 

values can be obtained even when the model is unbiased (McCuen, Knight, & Cutter, 2006). 

The correlation coefficient (r) is a dimensionless measure of the linear dependence between two data sets. 

If the two variables are perfectly linearly related, r is 1 (positive slope) or –1 (negative slope). If no linear 

relationship between the two variables exists, then r is zero.  

The coefficient of determination (R2) represents the amount of variability in the data explained by the 

regression model. R2 values near unity do not necessarily imply that the regression model will provide 

accurate predictions of future observations (Montgomery & Runger, 2013). In general, R² increases when 

more variables are added to a model, but this does not necessarily imply that increasing the number of 

variables improves the model performance. 

The index of agreement (d) is a measure of the degree to which a model’s predictions are error free and it 

ranges from 0 to 1. Values near to 1 indicate better agreement between the observed and estimated variables. 

The c index is the product of d and r (Camargo & Sentelhas, 1997). Pimenta et al. (2018) proposed a 

criterion of interpretation and classification of d, r, and c, which will be used in this study. 

Data for comparison of indicators 

Datasets from three typical problems of irrigation hydraulics were used as case studies to assess the 

indicators. Methodologies and particularities from each case study are fully described in Pimenta et al. (2018), 

Katsurayama et al. (2020), and Cano et al. (2021). 

Pimenta et al. (2018) used the Colebrook and White (1937) equation (Equation 1) to obtained reference 

values of the friction factor (f) for pressurized conduits and compared these reference values with values 

predicted by the equations of Swamee and Jain (1976 – Equation 2) and Shaikh, Massan, and Wagan (2015 – 

Equation 3) for turbulent flow conditions (4000 ≤ Re ≤ 108). 

1

√f
= −2log (

ε

3.7D
+

2.51

Re√f
)       (1) 

1

√f
=  −2 log (

ε

3.7D
+ 

5.74

Re0,9)      (2) 

f = 0.25 [log (
ε

3.7D
+

2.51

αRe
)]

−2

 

α = [1,14 − 2log (
ε

D
)]

−2

       (3) 

where f is the coefficient of head loss of the Darcy-Weisbach formulation (dimensionless), Ɛ/D is the relative 

roughness of the pipe (m), and Re is the Reynolds number (dimensionless). 

For the second case study, Katsurayama et al. (2020) modeled flow characteristics in microtube emitters 

using experimental data and dimensional analysis. They proposed the model shown in Equation 4 and 

compared the results with a theoretical model proposed by Souza and Botrel (2004) (Equation 5).  

H = 19.883 ρ0.2095μ0.7905 Lm
0.9408Qm

1.2095

Din
1.7314      (4) 

H =
64 υ 4

π 2 g
(

Lm Qm

Din
4 ) +

16

π2 2 g
(

Qm
2

Din
4 ) + [αK ln(Re) + βK

16

π2 2 g
(

Qm
2

Din
4 )]  (5) 

where H is the pressure head (m), ρ is the water density (kg m-3), μ is the water dynamic viscosity (Pa s), Lm is 

the microtube length (m), Qm is the microtube flow rate (m3 s-1), Din is the microtube internal diameter (m), υ 

is the water kinematic viscosity (m2 s-1), g is the gravitational acceleration (m s-2), and αK and βK are the 

empirical coefficients which represent the minor loss coefficients as a function of Re (dimensionless). 
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The last case evaluated was based on the study carried out by Cano et al. (2021) in the modeling of corner 

taps’ orifice plates to determine the flow rate in pipes. Based on experimental data, the authors adjusted an 

empirical equation for orifice plates with an internal diameter of 150 mm (Equation 6). The results were 

compared with the theoretical equation with the discharge coefficient (Cd – Equation 7) obtained by the 

Reader-Harris/Gallagher equation for corner taps’ orifice plates (ISO 5167-2, 2003) (Equation 8). 

Qop = 37.903Δh0.606       (6) 

Qop = Cd
πd2

4
√

2gΔh

1−β4       (7) 

Cd = 0.5961 + 0.0261 β2 - 0.216β8 + 0.000521 (
106 β

Re
)

0.7

 

(0.0188 + 0.0063 A) β3.5 (
106

Re
)

0.3

      (8) 

where Qop is the flow through the orifice plate (m3 s-1), Δh is the differential pressure head on the orifice plate 

(m), Cd is the orifice plate discharge coefficient (dimensionless), d is the orifice plate internal diameter (m), β 

is the ratio between the orifice plate and pipe diameters (dimensionless), and A is the coefficient depending 

on the Reynolds number (dimensionless). 

In this way, datasets of 480, 615, and 2,000 records from Pimenta et al. (2018), Katsurayama et al. (2020), 

and Cano et al. (2021), respectively, were used to test the statistical indicators described above. Both 

indicators were calculated using an electronic spreadsheet following the equations of the respective indices. 

Results and discussion 

Table 2 shows the values obtained from the indicators for the predictions of the coefficient of head loss (f – case 

study 1), microtube length (Lm – case study 2), and flow rate through the orifice plate (Q
op

 – case study 3). The 

data points of each case study are, respectively, graphically illustrated in Figures 1, 2, and 3 along with 1:1 lines 

and REC curves. 

Table 2. Indicators to assess the performance of equations in case studies 1, 2, and 3. 

Indicator 

Case study 1 Case study 2 Case study 3 

Swamee and Jain 

(1976) 

Shaik et al. 

(2015) 

Katsurayama et al. 

(2020) 

Souza and Botrel 

(2004) 
Cano et al. (2021) 

ISO 5167-2  

(2003) 

MAE 0.001 0.003 0.0245 0.0774 1.5425 3.6032 

MSE 0.000 0.000 0.0013 0.0085 3.4515 18.0160 

RMSE 0.001 0.005 0.0355 0.0923 1.8578 4.2445 

SRMSE 0.020 0.149 0.0359 0.0935 0.0217 0.0497 

PMARE 0.009 0.102 0.0236 0.1052 0.0198 0.0533 

δ95% 0.038 0.367 0.0620 0.3840 0.0497 0.1989 

NSE 0.999 0.938 0.9907 0.9513 0.9961 0.9705 

LME 0.978 0.836 0.9219 0.7514 0.9386 0.8566 

r 0.999 0.977 0.9954 0.9844 0.9983 0.9994 

R2 0.999 0.954 0.9907 0.9691 0.9967 0.9988 

d 0.999 0.971 0.9977 0.9859 0.9990 0.9937 

c 0.999 0.949 0.9930 0.9706 0.9973 0.9931 

 

Case study 1 – Coefficient of head loss (𝐟) 

For f predictions, Table 2 shows the following: (a) according to the difference-based indicators (MAE, MSE, 

RMSE, SRMSE, and PMARE), the equation of Swamee and Jain (1976) presented better performance in their 

predictions, with values closer to zero; (b) the efficiency indicators (NSE and LME) also showed better 

predictive performance of the same equation as the difference-based, with values closer to unity; (c) 

composite indicators (d, r, and c) classified both f predictions as "excellent", according to the criterion 

proposed by Pimenta et al. (2018); (d) through the determination coefficient (R2), it is possible to observe 

strong correlations between the data of each equation (i.e. values higher than 0.95). 
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This can be explained by the scatter plot, also called “1:1”, shown in Figure 1a, which illustrates the 

relationship between observed and predicted values. They also allow for the interpretation of the prediction 

fitting as over- or underestimates of the observed values. It can be observed that Swamee and Jain's equation 

overestimated the standard values by only 1.0 ± 1% on average, while the equation of Shaikh et al. (2015) 

underestimated 67.5% of the observed f data, with an average of 21.2 ± 22% of the observed values. The graph 

shown in Figure 1b illustrates the relative error (δ) associated with its frequency of occurrence (i.e. regression 

error characteristic curve). This type of graph can be interpreted in several ways and can present us with some 

very significant information regarding predictions (Sobenko et al., 2020). Taking as an example the 

predictions made by the equation of Shaikh et al. (2015), it can be seen that 95% of his predictions had a 

relative error of up to 36.7% (δ95% in Table 1). 

 

Figure 1. Comparison between equations in predicting the coefficient of head loss (f): (a) standard versus estimated values of f using 

the models of Swamee and Jain (1976) and Shaikh et al. (2015) and (b) regression error characteristic curve presenting relative errors (δ) 

versus frequency of error occurrence. 

Case study 2 – Modeling of microtube emitters 

In the estimation of Lm, the equation proposed by Katsurayama et al. (2020) performed better 

according to the difference-based and efficiency-based indicators. The composite indicators classified 

both models evaluated in this case study as "excellent", and the R2 also showed strong correlations 

between the predicted and observed data (R2 > 0.95) (Table 1). However, the equation proposed by Souza 

and Botrel (2004) underestimated 65.4% of the observed values, with underestimations ranging from 0.3 

to 341%, and δ95% of 38.4% (Figure 2). Also, from the regression error characteristic curve presented in 

Figure 2b, it can be observed that 99.2% of the predictions made by the equations of Katsurayama et al. 

(2020) had a relative error of up to 10%. 

 

Figure 2. Comparison between equations in predicting the microtube length (Lm): (a) observed versus estimated values of Lm using the 

models of Katsurayama et al. (2020) and Souza and Botrel (2004); and (b) regression error characteristic curve presenting relative errors 

(δ) versus frequency of error occurrence. 
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Case study 3 – Orifice plates 

In this case, the composite indicators (d, r, and c) and R2 suggested that the evaluated equations had the 

same performance in Qop predictions (Table 1). The 1:1 graph showed that the methodology of ISO 5167-2 

(2003) overestimates 47.5% of the data by 8.0 ± 0.2% and underestimates 52.5% of the data by 3.1 ± 0.1% in 

relation to the values observed experimentally (Figure 3a). Even more precisely, 95.2 and 73.0% of the 

predictions made by the equations of Cano et al. (2021) and ISO 5167-2 (2003), respectively, had a relative 

error of up to 5% (Figure 3b). Thus, this graph shows us how far those points outside the 1:1 line in Figure 3a 

can be accepted. 

 

Figure 3. Comparison between equations in predicting the flow rate through the orifice plate (Qop): (a) observed versus estimated 

values of Qop using the models of Cano et al. (2021) and ISO 5167-2 (2003); and (b) regression error characteristic curve presenting 

relative errors (δ) versus frequency of error occurrence. 

In essence, MAE presented a large magnitude in the evaluations because it describes the true mean of the 

deviations but can vary with different data patterns/sets, and MSE is similar to the MAE but more sensitive to 

large errors, as it squares individual differences (Hallak & Pereira Filho, 2011; Ali & Abustan, 2014). According 

to Willmott (1981), MAE and RMSE are similar measures which provide estimates of the average error, but 

neither measure provides information about the relative size of the average difference or the nature (type) of 

the differences comprising MAE or RMSE. Also, the authors pointed out that MSE and RMSE are generally 

amenable to more in-depth mathematical or statistical analyses than MAE. Moreover, Ali and Abustan (2014) 

proposed the PMARE indicator, pointing out that it is capable of directly indicating the accuracy or the pitfalls 

of the prediction in any field of observation, regardless of the units and ranges of values. 

The Nash-Sutcliffe index is based on the squares of differences, while the Legates-McCabe equation is 

based on the absolute values of differences. From the equations of NSE and LME, it can be observed that they 

are more dependent on the observation range (Oi and O̅) than the difference between the observed and 

predicted values, being more sensitive to the observed range/fluctuation (Willmott, Robseon, & Matsuura, 

2011). Thus, in irrigation hydraulics studies, which involve physical phenomena that often do not show 

dispersion in the observed values, the use of these indicators for model calibration, validation, or testing is 

not recommended. 

The c index offers precision and accuracy from index d and coefficient r, respectively. From Table 1, it can 

be observed that all predictions made by the evaluated models showed “excellent” classifications for 

composite indicators and a strong correlation with the observed values, that is, high accuracy (R2 > 0.95). 

Furthermore, the R2 does not indicate whether a model provides an adequate fit to the observed data, because 

it just evaluates the scatter of the data points around the fitted regression line. Due to the ambiguity of these 

indicators, they are also not recommended for use individually in irrigation hydraulics problems (i.e. in 

physical processes) and should be avoided. These indicators, as well as efficiency indicators, are widely used 

in other areas of irrigation, such as irrigation management, which involves studies of evapotranspiration, 

hydrological modeling, and soil water storage (Shiri & Kisi, 2011; Bachou, Walker, Ticlavilca, & McKee, 2014; 

Hatiye, Prasad, & Ojha, 2018).  

While the indicators give us quantitative measures, graphical methods give the overall and real scenarios, 

and can be regarded as exploratory tools as well. Indicator sets such as those associated with 1:1 and/or 
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regression error curve analysis graphs have been used to calibrate, validate, and test several empirical, semi-

empirical, or deterministic models of different situations in the area of irrigation engineering: dimensional 

analysis and artificial neural networks (ANN) approaches applied to estimate minor losses due to start 

connectors in micro-irrigation laterals were assessed with RMSE, MAE, 1:1 graphs, and regression error 

characteristic curves (Sobenko et al., 2020); linear modeling and ANN techniques used to estimate losses by 

wind drift and evaporation in sprinkler systems were evaluated by MAE, MSE,RMSE, r, R2 and 1:1 graphs (Al-

Ghobari, El-Marazky, Dewidar, & Mattar, 2018; Sarwar, Peters, & Mohamed, 2019); RMSE, r, R2 and 1:1 graphs 

were used to evaluate predictions of head loss in micro-irrigation sand filters by ANN techniques (García Nieto 

et al., 2017); R2 and 1:1 graphs were used to assess an empirical local losses estimation model for lay-flat drip 

laterals (Elbana, Ramírez de Cartagena, & Puig-Bargués, 2013; Provenzano, Di Dio, & Leone, 2014); RMSE, 

NSE, and 1:1 graphs were used to evaluate and examine appropriate equations for continuous head loss 

calculation in real field operating center-pivot systems (Alazba, Mattar, ElNesr, & Amin, 2012); δ, RMSE, d, r, 

c, and 1:1 graphs were used to update or analyze the performance of equations that estimate the coefficient 

of head loss (Oke, Ojo, & Adeosun, 2015; Najafzadeh, Shiri, Sadeghi, & Ghaemi, 2018; Pimenta et al., 2018). 

In essence, for irrigation hydraulics problems, difference-based indicators are similar measures and it is 

appropriate, in many cases, to report either or both indices. The diagnosis of a model’s performance must be 

supported by the quantitative measures and graphical analysis. For this, the statistical indicators should be 

consistent in their results, just as was reported in this study. Otherwise, the particular indicator is not suitable 

for model comparison and should be avoided as a model performance measure. 

Conclusion 

In the process of evaluation of mathematical models in irrigation hydraulics the difference-based 

indicators assessed are similar measures and can be used individually or as a set. Graphical analyses are 

essential to identify the magnitude of the error and perform more accurate assessments of the models. 

Efficiency-based indicators, the correlation coefficient, the coefficient of determination, the index of 

agreement, and the Camargo and Sentelhas index are not recommended for consideration individually and 

must be supported by graphical analysis and difference-based indicators. 
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