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ABSTRACT
This research presents an eco-efficiency index for the municipalities of São 
Paulo, indicating how much it would be possible to maximize economic 
and environmental objectives, taking into account the best practices for the 
municipalities of this region. In this vein, we used the Data Envelopment 
Analysis method with directional distance functions based on the classic 
variables of multiproduct production function and the internalization of 
two externalities (one positive and one negative). The study also used the 
tools of exploratory spatial data analysis to verify the spatial autocorrelation 
and spatial heterogeneity of the calculated index. The results indicate that, 
on average, the analyzed municipalities are able to expand the production 
and forested areas by 59% and also to reduce degraded areas and inputs 
in the same proportion. Spatial analysis demonstrated the existence of 
spatial heterogeneity and autocorrelation between municipalities and the 
formation of large clusters. Based on these results, priorities for environmental 
intervention in the state are defined. 
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1. INTRODUCTION
Growth in agricultural productivity and efficiency is a relevant factor for socio-economic 

development. It is responsible for expanding the domestic market, increasing the production of 
relatively lower-priced food and raw materials, as well as demanding a greater amount of inputs 
and agricultural equipment and financial services (Delgado, 2001). Besides, the advancement of 
productivity and efficiency allowed the release of human resources for non-agricultural sectors, 
strengthening the concentration of urban-industrial production mode and the growth of quality 
and coverage of public services. This has led to changes in the political power structures in which 
the rural aristocracy has lost influence. Thus, a good pace of productivity growth and agricultural 
efficiency is a key element for countries like Brazil to achieve the standard of living of the most 
developed countries.

However, agricultural intensification has caused significant environmental impacts on the 
world’s terrestrial and aquatic ecosystems (Tilman, 1999). For example, the growth of monoculture 
has led to forest destruction, loss of genetic biodiversity, and soil erosion, while mechanization 
has increased non-renewable energy consumption. Intensified use of insecticides, pesticides, 
and nitrogen fertilizers has increased the concentration of greenhouse gases in the atmosphere 
and, together with irrigation systems, led to eutrophication, pollution, and depletion of water 
resources (Intergovernmental Panel on Climate Change – IPCC, 2006).

In the agriculture of the richest and most populous state in Brazil, São Paulo, the environmental 
problem is no different. Although the problem is not geographically uniform, deforestation, soil 
and water contamination, and greenhouse gas (GHG) emissions in the state’s agricultural sector 
are growing problems. Of the accumulated GHG emissions from Brazilian agriculture (12,970 
Mt CO2) between 1970 and 2013, São Paulo accounts for about 9% (Institute of Forest and 
Agricultural Management and Certification, 2015). These emissions have predominantly been 
derived from beef and dairy cattle (56%), the use of synthetic fertilizers (19%), and sugarcane 
cultivation (10%).

In this regard, the following questions remain open: a) Is it possible to increase production 
while reducing environmental impacts and the use of non-renewable natural resources? b) How 
is eco-efficiency distributed geographically in São Paulo?

To answer these questions, several tools have been developed to measure the environmental 
impact of productive activities (Van Passel, Nevens, Mathijs, & Van Huylenbroeck, 2007; Van 
Passel, Van Huylenbroeck, Lauwers, & Mathijs, 2009). One is the life cycle accounting (LCA) 
method, which maps production processes and impacts (carbon footprints) on different phases, 
from production to consumption and recycling, identifying possible improvements. However, 
this method has some limitations, including the difficulties of estimating carbon emissions in 
each regional context and the monetary quantification of this value.

Other methods use popular efficient boundary techniques (Lampe & Hilgers, 2015). These 
are based on the representation of the Production Possibility Set (CPP), consisting of inputs, 
desired products, and unwanted products, as well as efficient and inefficient productive units. 
Thus, best practices will form the CPP boundary and inefficient ones (surviving due to market 
failures) will be below that boundary. This allows for the possibility of Pareto improvements, 
producing more desired products and reducing input consumption and environmental impact. 
Using an English expression from the business world, these improvements could be called 
win-win situations. These applications employ both parametric and nonparametric procedures, 
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which, starting from different assumptions, have advantages and disadvantages. The former uses 
the Stochastic Frontier Analysis (SFA) method. This estimates the CPP boundary by defining a 
functional econometric relationship between products and input, which allows us to decompose 
the boundary deviation into stochastic noise and inefficiency. Some researchers have used this 
method in the study of ecoefficiency: for example, Orea and Wall (2017), who made an empirical 
analysis with data from a sample of Spanish dairy farms, and Ho, Hoang, Wilson, and Nguyen 
(2018), who compared the performance of conventional and certified coffee farms in Vietnam. 
Nonparametric Methods, on the other hand, used Data Envelopment Analysis (DEA), which 
easily models both multi-product technologies and the internalization of externalities associated 
with the production process. It also represents technology through distance functions, but they 
are gauged with mathematical programming problems, without the need to define a stochastic 
production function and a type of distribution (behavior) of unknown errors beforehand, free 
from possible failures arising from these specifications. The main disadvantage of DEA is its 
deterministic approach, which ignores the random disturbances of the production process. Even 
so, the use of this method predominates in the literature on efficiency and productivity (Orea & 
Wall, 2017) and it is possible to find records from studies of European Community agriculture 
(Rybaczewska-Błażejowska & Gierulski, 2018), China (Xing, Wang, & Zhang, 2018), Chile 
(Angulo-Meza, Gonzalez-Araya, Iriarte, Rebolledo-Leiva, & Mello, 2019) and the United States 
(Dong, Mitchell, & Colquhoun, 2015), among others.

The review of the Brazilian literature showed that the use of efficient frontier techniques to 
study the eco-efficiency of national agriculture is still incipient. With the use of multiproduct 
stochastic borders, only the work of Rosano-Peña et al. (2018) was found, who used hyperbolic 
distance functions to estimate the eco-efficiency of Amazonian agriculture. Among the works that 
employ nonparametric methods, it is worth mentioning the works of Padrão, Campos, Lirio, and 
Silva (2012), which compare the technical and environmental efficiency of agricultural production 
in the Legal Amazon and estimate the opportunity cost of the Forest Code; Rosano-Peña and 
Daher (2015), who evaluate the eco-efficiency and sustainability of agriculture in Brazilian 
states; Campos, Coelho, Gomes and Mattos (2014), who study the economic and environmental 
performance of dairy farmers in Minas Gerais using the DEA model combined with the material 
balance approach and Alencar, Rosano-Peña, Guarnieri and Serrano (2019) which estimate eco-
efficiency and the shadow price of greenhouse gas emissions in Brazilian pig farming.

In this context, the present work seeks to fill a gap in the literature on the eco-efficiency of 
agriculture in São Paulo municipalities. More precisely, its objective is to estimate an eco-efficiency 
indicator that, while satisfying Pareto’s optimal concept, simultaneously maximizes economic 
and environmental objectives, based on best practices. Therefore, the DEA method, with 
directional distance functions used, is based on the classical variables of agricultural activity and 
the internalization of two externalities (one positive and one negative), since it is the most popular 
and suitable tool used in the literature to estimate eco-efficiency. Besides, for the examination 
of the results, the autocorrelation and spatial heterogeneity of the calculated index are verified 
through the use of exploratory spatial data analysis (ESDA) techniques.

Thus, it is believed that the results of the work can become important subsidies for the definition 
of integrated regional public policies consistent with the maximization of social welfare, to 
optimize the sustainability of São Paulo’s agriculture.
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2. THEORETICAL AND METHODOLOGICAL FRAMEWORK
According to Zhang, Bi, Fan, Yuan, and Ge (2008), the concept of eco-efficiency comes 

from the 1970s, and it has been used by Freeman, M. A., and McIntyre, J.R. as the term that 
expresses environmental economic efficiency. Subsequently, eco-efficiency is disseminated by 
World Business Council for Sustainable Development (Verfaillie & Bidwell, 2000), which defines 
it as the ability of a production unit (farm, industry, sector, country, etc.) to produce more and 
better, with less use of resources and with minimal environmental impact, thus seeking to build 
a more sustainable society.

From the theoretical point of view, eco-efficient units form the boundary of the production 
possibility set (PPS). Therefore, eco-efficiency is the ability of a company to produce a given amount 
of desired product with the least amount of inputs and environmental impact; or, equivalently, 
as the ability to maximize production with a given amount of unwanted inputs and by-products. 
In other words, eco-efficiency, associated with a given input combination, is achieved at the 
potential output frontier, an optimal point in Pareto, when there is no other production process 
or combination of processes that can produce the same output level, with less impacts on the 
environment and consuming fewer inputs. This means that eco-efficient production units are 
below the PPS boundary. Consequently, according to Färe, Grosskopf, and Weber (2006), a firm’s 
level of eco-efficiency can be measured by its distance from its frontier. That is, an organization’s 
eco-efficiency can be measured by comparing its performance with best practices.

One of the most notorious methods for estimating eco-efficiency is the directional distance 
function developed by Chung, Färe and Grosskopf (1997), Färe and Grosskopf (2000) and Färe 
et al. (2006) to include unwanted by-products. According to the authors, this method emerges as 
an alternative to Shephard’s radial distance functions to treat desirable and undesirable outputs 
simultaneously and asymmetrically. Also, it allows, a priori, to define different projection directions 
of eco-inefficient points on the efficient frontier employing a directional vector (g=−gx, gy, −gb), 
offering a set of options for achieving eco-efficiency that can even improve a group of variables 
without worsening the behavior of others. The directional distance function can be expressed 
as follows:

𝐷 [x, y, b; −𝑔𝑥, 𝑔𝑦, − 𝑔𝑏)] = Max {β:(x−β𝑔𝑥, y + β𝑔𝑦, b−𝛽𝑔𝑏) Є PPS}  (1)

where β, the optimal value to be estimated, indicates the percentage by which the evaluated 
productive unit could increase all the desirable products (y) and simultaneously reduce the 
inputs (x) and negative externalities (b) when the direction, a priori defined by the researcher, 
the direction vector is (−𝑔𝑥=1,𝑔𝑦=1, −𝑔𝑏=1). Therefore, β is greater than or equal to zero:  
β = 0 means that the evaluated unit is eco-efficient and β> 0 eco-inefficient.

Arandia and Aldanondo-Ochoa (2011), following Färe et al. (2006) state that the directional 
distance functions and the β for each unit evaluated can be estimated from the calculation of 
the following linear programming problem (PPL):

𝐷 =(x, y, b; −𝑔𝑥, 𝑔𝑦, −𝑔𝑏) = Max 𝛽𝑖  (2)

s.t
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(1+𝛽𝑖  𝑔𝑦 ) ∗ 𝑦𝑖 − 𝑠𝑦
𝑖  =𝑌𝑧 	 (2.1)

(1−𝛽𝑖  𝑔𝑏 ) ∗ 𝑏𝑖 + 𝑠𝑏
𝑖 =𝐵𝑧 	  (2.2)

(1−𝛽𝑖  𝑔𝑥 ) ∗ 𝑥𝑖 + 𝑠𝑥
𝑖  =𝑋𝑧 	  (2.3)

z ≥ 0 (2.4)

where xi, yi e bi denote, respectively, the input vector, the desired output and undesired output of 
the ith evaluated unit si; are the clearances of the respective variables; X is the matrix of k inputs 
of n evaluated units, Y denotes the matrix of desired products of order (pxn) and B is the matrix 
of undesired products of order (qxn); z is the intensity vector of each firm in the definition of 
the efficient frontier, that is, in the formation of linear combinations of best practices.

The linear programming problem (2) is characterized by treating unwanted products as inputs 
to avoid the congestion problems of these byproducts and works with the hypothesis of constant 
returns to scale, thus comparing unit performance with the highest environmental economic 
productivity. For more details, see Arandia and Aldanondo-Ochoa (2011).

Thus, for example, an index of βi =0,20 indicates that productive unit i, to be eco-efficient 
and achieve the highest productivity, should increase the value of the desired products (y) by 
20%, as well as reduce the unwanted products (b) and the inputs (x) in the same proportion.

2.1. Exploratory analysis of spatial Data (EsDa)

Exploratory analysis of spatial data is a useful tool for the analysis of socioeconomic variables. 
For Anselin, Syabri, Smirnov, and Ren (2002), EDAA can be defined as the set of statistical and 
graphical techniques that describe and visualize spatial distributions of variables, identifying 
atypical local points, forms of association (spatial autocorrelation) and structures in geographical 
space (spatial heterogeneity).

The effects of correlation and spatial heterogeneity are relevant for the identification of patterns 
and anomalies of the geographical distribution of indicators that are not obvious to the first, as 
well as for the elaboration of local, regional and national monitoring, planning and intervention 
programs. Spatial correlation can be defined as the existence of a functional relationship between 
what happens at one point in space and what happens elsewhere; that is when the value of a 
variable of interest in a certain region i depends on the value of that variable in neighboring 
regions j. The correlation is due to the first law of geography, which, according to Tobler (1979), 
says: “Geographical facts are correlated, but the closest are more correlated” (p. 519). This can 
be explained, for example, by the impacts of communications, transport, infrastructure, agro-
industry, economy of scale, as well as the effects of the diffusion process, when innovation in one 
municipality is imitated and popularized in others, or spillover effects, which refer to the moment 
when the development of a region overflows, inducing the development of the neighboring region 
and regional convergence (Costa, Almeida, Ferreira, & Silva, 2013). Spatial heterogeneity, in turn, 
seeks the effects related to spatial or regional differentiation and is defined by the existence of 
groupings in the space of variables of interest (Valcarce & Serrano, 2000). According to Tobler’s 
first law of geography (1979), greater heterogeneity is expected with increasing distance. It is also 
interesting to note, according to Almeida (2004), that in spatial processes there is an imbrication 
between these two effects, since spatial heterogeneity generates spatial dependence, and spatial 
dependence, in turn, can lead to heterogeneity.
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To analyze spatial correlation and heterogeneity, the first step is to define the weight matrix 
(W), which defines the spatial connectivity of a set of areas (municipalities, states, etc.). Each 
observation in said matrix wij represents a normalized measure of proximity between area i and 
area j (Baumont, Ertur, & Le Gallo, 2004). This matrix is also known as a neighborhood or 
contiguity matrix. From this matrix, it is possible to extract global and local spatial association 
measures.

The global spatial association is defined as the coincidence of spatial ubiquity of values and 
manifests itself when the high or low values of a variable tend to cluster in space. It can be 
assessed by the Moran Index (I) statistic, which estimates the degree of linear association as a 
whole between the observed values and the weighted average of the neighborhood values, called 
the lagged value (Anselin, Syabri, Smirnov, & Ren, 2002).

Moran’s I is defined as:

𝐼 =
𝑛 ∑ ∑ 𝑤𝑖𝑗 𝑥𝑖 − �́� 𝑥𝑗 − �́�𝑗𝑖

∑ ∑ 𝑤𝑖𝑗𝑗𝑖 ∑ 𝑥𝑖 − �́�𝑖

 (3)

where: n is the total area (municipalities), wij is the neighborhood spatial weight measure, xi and 
xj denote the observed values of the variable of interest (eco-efficiency) for the municipalities i 
and j respectively, and �́�  is the average of these values.

Thus, Moran’s I will be computed only for neighbors in space, as established by the wij weights. 
Its value ranges from −1 to +1. An equal zero value indicates no spatial correlation (differences 
between neighbors). Positive values near the unit indicate positive spatial autocorrelation, ie 
the existence of areas with similar values between neighbors, and negative values near the unit 
indicate negative spatial autocorrelation. On the other hand, values close to zero suggest a very 
low spatial autocorrelation between the x value of the municipality and the value of its neighbors.

Given the Moran index, it is necessary to test the hypothesis that the result is nonzero. There 
are two methods for testing the hypothesis. In the first one, the distribution of variable x is 
observed. If evenly distributed, the probability of 0.05 is suggested as the cutoff level to reject 
the hypothesis of spatial autocorrelation and this probability is applied to a normal distribution. 
The second method applies to asymmetric data, such as eco-efficiency indexes, which use the 
Monte Carlo permutation test. In this case, different random permutations of the values of the 
variable of interest (x) are generated to the regions, resulting in a new spatial arrangement, in 
which the values are redistributed between the areas. Thus, an empirical distribution of Moran’s 
I can be constructed. If the originally measured Moran I value corresponds to an “extreme” of 
the simulated distribution, it is a value with statistical significance.

One way to interpret Moran’s statistics I is through his scatter diagram. According to Figure 1,  
it presents, in the Cartesian plane, the standardized value (z) of the variable x for each of the 
units in the abscissa and, in the ordinate, the average of the standardized value of the same 
variable for the neighbors of this unit wz. The diagram is complemented by the representation of 
a regression line whose slope indicates the value of Moran’s I, which, for the example of Figure 1,  
is 0.86. Thus, the greater the slope of the line relative to the horizontal axis, the greater the value 
of spatial autocorrelation and vice versa.

However, when the study region is large and many municipalities are analyzed, different 
spatial autocorrelation regimes are likely to occur in the studied subregions. This can camouflage 
various local patterns of spatial autocorrelation. In these cases, Moran’s global indexes would not 
be sufficient to explain the spatial distribution of the studied region. Therefore, Anselin (1995) 
suggests a new indicator with the ability to observe local statistically significant linear association 
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patterns, indicating the existence of local spatial clusters and regions that contribute most to 
the existence of spatial autocorrelation. The indicator is called LISA (Local Indicator of Spatial 
Association) and decomposes the global autocorrelation indicator into local contributions by 
indicating four categories, each individually corresponding to a quadrant in Moran’s scatter diagram. 
Thus, according to Almeida (2004), the Moran diagram can be divided into four quadrants, 
which correspond to four patterns of spatial local association among regions and their neighbors.

Figure 1. Moran Scatter Diagram

Quadrant I (located in the upper-right) shows the regions that present high values for the 
variable under analysis, surrounded by regions that also present values above the average of the 
variable. This quadrant is classified as high-high (HH).

Quadrant II (located in the upper-left) shows the regions with low values, surrounded by 
neighbors with high values. This quadrant is generally classified as low-high (LH).

Quadrant III (located in the lower-left corner) consists of regions with low values for the variable 
of interest, surrounded by regions with low values. This quadrant is classified as low-low (LL).

Quadrant IV (located in the lower-right corner) is formed by regions with high values for 
the variable under analysis, surrounded by regions with low values. This quadrant is classified 
as high-low (HL).

Moran’s I local statistics can be obtained by the following formula:

𝐼𝑖 =
𝑥𝑖 − �́� ∑ 𝑤𝑖𝑗𝑗 𝑥𝑗 − �́�

∑ 𝑥𝑖 − �́� 2
𝑖 𝑛⁄

 (4)
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Similarly to the global indicators, the significance of Moran’s local index (Ii) must be evaluated 
using the hypothesis of normality and or simulation of random exchange distribution (Anselin, 
1995). Thus, a statistically significant and positive value of the local Moran I reveals the existence of 
a cluster (similar municipalities, high-high or low-low). On the contrary, a negative value suggests 
an outlier, a municipality that is bypassed by different municipalities (high-low or low-high).

3. THE OBJECT OF STUDY AND VARIABLES
São Paulo has 645 municipalities grouped in 15 mesoregions and generates the largest GDP in 

Brazil. Much of its GDP comes from industry, services, finance, and, to a lesser extent, agriculture. 
Even so, since 2010, the state occupies second place in the ranking of the Brazilian agricultural 
GDP, generating more than 11% of the total. The main agricultural product from São Paulo are 
oranges, which reaches 80% of national production. The second is sugarcane, which accounts 
for 60% of the country’s production. The mesoregions with the highest agricultural GDP are: 
Ribeirão Preto, Sao Jose do Rio Preto, Campinas, and Bauru.

As observed in Figure 2, in the state of São Paulo there are two biomes: Atlantic Forest and 
Cerrado. According to Maffei (2010), of the 645 municipalities of the state, 176 are part of the 
Cerrado and 469, of the Atlantic Forest.

Figure 2. Map of São Paulo State Biomes (Cerrado and Atlantic Forest)
Source: Own authorship with data from the IBGE digital cartographic database. Available at: <http://www.mapas.
ibge.gov.br/>.

To carry out this research, information was taken from the agricultural census conducted in 
2006 (Brazilian Institute of Geography and Statistics [IBGE], 2010), since data from the latest 
census (2017) are not available. For the 645 municipalities of São Paulo, the classic inputs and 
outputs of agricultural production were considered, but one innovation was the incorporation of 

 
 

 

http://www.mapas.ibge.gov.br/
http://www.mapas.ibge.gov.br/


17

336

a positive and a negative externality. As in most cases (Gomes, 2008), the inputs used in modeling 
were: x1 – workforce on properties in number of people; x2 – capital estimated by depreciation 
(10% of the value of fixed assets); x3 – total area of   establishments in hectare; x4 – other current 
expenses incurred by producers, called costing. Outputs consider three types of products: y1 – 
desirable product – the total value of production; y2 – environmental desirable product – areas 
of natural forests and forests preserved on hectare properties; b1 – environmental undesirable 
product – areas of degraded land on hectare properties (census does not include abandoned land).

4. RESULTS
Results were obtained based on the methods described and the selected variables, whose 

examination was conducted in two parts. In the first one, the eco-efficiency indexes are analyzed. 
In the second, the spatial distribution is evaluated.

4.1. Eco-EfficiEncy inDExEs

For the 645 municipalities of São Paulo, the eco-efficiency indexes β were estimated. Table 1 
shows the statistical summary of the municipalities. It is observed that 26 municipalities obtained 
a β = 0, indicating that these units evaluated are efficient, the state benchmarks. The average 
index is 0.59. This indicates that, on average, São Paulo municipalities can increase the value of 
total production and preserved areas by 58%, as well as reduce degraded areas and inputs by the 
same proportion. This can be achieved only by mimicking the region’s benchmarks.

Looking at the quartiles, it is also noted that 75% of the municipalities of São Paulo have 
an eco-efficiency index above 0.482 and 25% have the worst rates, above 0.77. The median is 
0.6633, that is, 50% of the municipalities of the state of São Paulo have an eco-efficiency level 
of 0.6633 or higher. The breadth of the results shows a great heterogeneity in the region, with 
the 26 eco-efficient municipalities characterized as outliers, as shown in Figure 3.

Table 1. Summary of eco-efficiency indexes, β (beta)

1º Quartile 0,4820 3º Quartile 0,7702
Average 0,5917 Standard deviation 0,2369
Standard error 0,0093 Minimum value (26 municipalities) 0
Median 0,6633 Maximum value (1 municipality) 0,9617

Figure 3. Boxplot of β from São Paulo municipalities 
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Table 2 also reveals the performance of the mesoregions. These results identify the Paulista 
South Coast as the most eco-efficient region and Presidente Prudente and Marília as the most 
eco-inefficient. These three mesoregions are part of the Atlantic forest biome. It is also observed 
that Ribeirão Preto, in the Cerrado, is the macroregion with the largest number of eco-efficient 
municipalities, with approximately 31% of the benchmark municipalities of São Paulo.

This is observed in more detail in Figure 4, which georeferences the stratification of the Beta 
eco-efficiency indexes of the municipalities. The brighter the green, the higher the efficiency 
(the lower the Beta); the more intense the red, the more eco-inefficient (the higher the beta). 
Intuitively, this map already shows the presence of spatial autocorrelation in several regions. On 
the one hand, it is noted the homogeneity of the eco-efficiency of the mesoregion of the Paulista 
South Coast. On the other hand, there is the relative homogeneity of eco-efficiency in the western 
regions of the state, especially in Presidente Prudente. Comparing Figure 4 with Figure 2, we 
note that there is no clear relationship between biomes and eco-efficiency indexes.

Table 2. Average of β indexes and number of eco-efficient municipalities by mesoregions

Mesoregion Average Eco-efficient Mesoregion Average Eco-efficient Mesoregion Average Eco-efficient

Litoral Sul 
Paulista 0.3097 3

Vale do 
Paraíba 
Paulista

0.5554 1 Piracicaba 0.6318 0

Ribeirão Preto 0.4835 8 Bauru 0.5854 2 São José do 
Rio Preto 0.6405 2

Araraquara 0.5032 2 Campinas 0.5911 2 Araçatuba 0.6558 0

Metropolitana 
de São Paulo 0.5126 2 Itapetininga 0.6039 1 Marília 0.6566 1

Macro 
Metropolitana 
Paulista

0.5437 2 Assis 0.6277 0 Presidente 
Prudente 0.7624 0

Figure 4. São Paulo Beta Value Distribution
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Table 3 shows the absolute values of improvements needed for the eco-efficiency of the 
municipalities of São Paulo. These results were obtained considering both the eco-efficiency 
indexes (β) and the s-slacks estimated by the PPL (2). It is evident that the economy of economic 
and environmental resources is substantial and the potential for growth of production is no less 
important (R$ 15 billion). Ribeirão Preto stands out in this table since it is the mesoregion with 
the highest potential level of production growth (y1) and with 58 eco-inefficient municipalities. 
In the opposite direction, the metropolitan mesoregion stands out, since it is the least agricultural.

Table 3. Improvements to the eco-efficiency of municipalities by mesoregions

Mesoregion
x4 – Costing
(R$ 1000)

x2 – Capital
(R$ 1000)

x1 – Labor
x3 – Area

(ha)
b1– Degraded 

areas (ha)
y2– Preserved 

Areas (ha)
y1– Production

(R$ 1000)

São José  
do Rio Preto -1093298.52 -385593.7674 -121113.31 -1501945.244 -2818.20 93301.39 2294347.732

Ribeirão Preto -2024594.158 -291400.0873 -76799.41 -1224187.28 -2727.76 111049.39 2589903.198

Araçatuba -499939.4213 -192328.3032 -40178.20 -842780.6204 -769.27 64995.92807 915543.693

Bauru -2369549.61 -325219.3954 -61455.41 -1308267.347 -1590.63 128133.13 1633908.309

Araraquara -363072.148 -106119.7609 -25515.39 -332278.1061 -242.72 30591.14 748303.235

Piracicaba -644422.3557 -128956.0915 -20021.51 -346609.1077 -270.48 35982.66 776792.578

Campinas -584445.3004 -347637.6772 -68574.81 -602350.3322 -883.30 61683.68 1535215.338

Presidente 
Prudente -926674.7411 -242686.3095 -72928.17 -1587731.487 -772.02 80282.89 1261176.952

Marília -173592.9446 -91427.7073 -17167.59 -444737.9349 -728.55 36332.54 423524.904

Assis -542317.5049 -157226.0469 -38271.74 -665007.6009 -485.30 40980.62 896520.589

Itapetininga -549819.333 -206426.2561 -45265.15 -769526.032 -1916.94 109314.37 787721.225

Macro 
Metropolitana -225236.2114 -148101.3339 -46572.07 -352233.8848 -865.86 49860.39 561801.461

Vale do Paraíba 
Paulista -175652.2231 -96874.22393 -26220.49 -435660.3017 -1127.04 80463.20 227654.185

Litoral Sul 
Paulista -47502.6781 -20262.67816 -11120.44 -109981.4008 -360.77 38469.29 230898.187

Metropolitana 
de S.P. -41927.77478 -30748.20555 -13322.90 -59184.60794 -258.71 8387.73 112949.378

Total for state -10262044.92 -2771007.844 -684526.58 -10582481.29 -15817.50 969828.35 14996260.97

4.2. Exploratory analysis of spatial Data

Municipal eco-efficiency indexes were also analyzed using spatial autocorrelation techniques.
The Moran global index, based on a first-order normalized Queen neighborhood matrix for 

the 645 municipalities, was positive (0.2271) and statistically significant via normal distribution 
(p = 0.0000) Monte Carlo simulation (p = 0, 0000). This indicates the existence of positive 
autocorrelation among the eco-efficiency indexes of the municipalities of São Paulo. In other 
words, the municipalities and their neighbors as a whole have similar eco-efficiency values. 
Therefore, it is important to consider space as a determining factor for eco-efficiency.
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For the analysis of eco-efficiency indexes in more detail, the local Moran index (LISA) was 
used. Results are shown in Figure 5.

In Figure 5A, each municipality is classified according to its position in relation to the quadrants 
of the Moran diagram. The red color represents quadrant I – Q1 (high-high), which brings 
together 273 municipalities, equivalent to 42.3% of the total. Green represents Q3 (low-low), 
which brings together 155 municipalities (24%). The sum of both 428 (66.3%) confirms the 
majority and the overall positive spatial dependence on environmental economic performance. 
The remaining municipalities are characterized by the color orange, which represents Q2 (high-
low), and the color purple, which represents quadrant Q4 (low-high). These latter municipalities 
are outliers, as they do not follow the same spatial dependence process presented by most.

Based on this stratification, four priorities for environmental intervention in the state can be 
defined:

• highest priority: municipalities aggregated in Q1 – (HH) with high eco-efficiency indexes;

• first intermediate priority: municipalities aggregated in Q4 – (LH), where there is the 
problem of “islands of excellence”, whose experiences should expand in the vicinity;

• second intermediate priority: municipalities aggregated in Q2 – (HL), where the diffusion 
of the best practices of the surroundings should be induced;

• lower priority: municipalities aggregated in Q3 – (LL) with low eco-inefficient indexes.

Figure 5B shows the most significant clusters (>p=0.05) of local association measures (LISA). In 
other words, it shows the municipalities or areas where spatial dependence is more pronounced. 
It is possible to verify the presence of two large low-low clusters, that is, conglomerates that have 
low eco-inefficiency levels in relation to the state average. They are surrounded by neighbors 
also with low eco-inefficiency. The largest is formed by some municipalities of the mesoregions 
of Paulista South Coast, Itapetininga and Metropolitana de São Paulo. The explanation of this 
behavior must be the low productivity, due to the fact that this region is of great slopes, with poor 
acid soils and low potential for extensive agriculture. This region has the largest area of   forests and 
native vegetation still concentrated in of São Paulo, according to the Forest Inventory of Natural 
Vegetation of the State of São Paulo (Secretariat of the Environment/Forest Institute, 2005). The 
second-largest cluster is made up of the Ribeirão Preto and Araraquara mesoregions, economies 
strongly focused on agribusiness, with large agro-industries and logistics infrastructure, where 
are the municipalities with the largest sugarcane production in the state and Brazil. In addition, 
this second cluster is located in the Cerrado region, whereby law the native forest preservation 
area is greater (35%) than that required in the Atlantic Forest biome.

The map also features a large high-high eco-inefficient cluster, which should be considered 
as the most critical area for environmental intervention. It is formed by the mesoregion of 
municipalities of Presidente Prudente. According to Fundação Sistema Estadual de Dados – Seade. 
(2016), the economy of this region is practically based on extensive cattle raising, a sector of great 
environmental impact. In addition, this is one of the regions with the lowest native vegetation 
cover in the state (Secretaria do Meio Ambiente/Instituto Florestal, 2005).
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5. CONCLUSIONS
The present research estimated an eco-efficiency index for São Paulo State’s agriculture based on 

the non-parametric method Data Envelopment Analysis with directional distance functions and 
the Exploratory Spatial Data analysis techniques. Thus, it meets an important demand regarding 
the study of economic-environmental efficiency and its spatial distribution.

The results indicate that, on average, São Paulo municipalities can increase production and 
forest areas by 59%, as well as reduce degraded areas and inputs by the same proportion, only 
by reference to the best practices in the region. These indicators reinforce the hypothesis that 
it is possible to formulate policies consistent with the maximization of social welfare, while 
simultaneously optimizing economic and environmental objectives. Therefore, it can be concluded 
that the discussion of economic and environmental issues does not necessarily result in a trade-
off or a zero-sum game.

The results of the spatial eco-efficiency analysis showed that there is no clear relationship among 
biomes and eco-efficiency indexes, but there is spatial autocorrelation among the municipalities 
as a whole. Best practices are found in the municipalities located in the Paulista South Coast and 
Ribeirão Preto mesoregions, and the worst ones are in the western region of the state.

Based on the local Moran index, two large significant LL-type clusters and one HH-type cluster 
were also found. The first of the LL type is located in the Paulista South Coast, Itapetininga and 
Metropolitana mesoregions of São Paulo and the other in the Ribeirão Preto and Araraquara 
mesoregions. The cluster type HH is located in the Presidente Prudente mesoregion.

Figure 6. Spatial clusters for eco-efficiency 

index 

Subtitle. Methodology: LISA 

Classification Color 
Not significant 
High-High (HH) 
High-Low (HL) 
Low-Low (LL) 
Low-High (LH) 

Figure 5. Distribution of spatial dependence 

classification of ecoefficiency 

A B

Figure 5. A, Distribution of spatial dependence classification of ecoefficiency. B, Spatial clusters for eco-efficiency 
index
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These results allow the definition of priority levels for environmental intervention in the state. 
Also, they indicate that state level sustainable development strategies should, one one hand, 
consider general spatial dependence, but, on the other, need to consider local heterogeneity in 
defining specific policies for each region.

It is also worth mentioning that some precautions should be taken in the results found. The 
tools used, like any other, have limitations. On one hand, the spatial analysis was performed 
by municipalities, which precludes identifying infra-municipal heterogeneity at the level of 
productive ownership. On the other, as explained by Rosano-Peña and Daher (2015), data 
envelopment analysis, being a deterministic technique and estimating relative indexes concerning 
best practices, is very susceptible to the data used. This means that the results are conditional on 
the units evaluated, the variables used in the work and the principle that all other factors involved 
are identical. Adding or deleting units and variables may derive other results.

Finally, it is necessary to emphasize that the extension of the methodologies used opens new 
opportunities for future work. The expected publication of the 2017 census data will allow, for 
example, to analyze eco-efficiency performance over time, spillover effects and the diffusion of 
technological change, as well as the time course of gaps between best and worst practices with 
the tendency to converge or diverge.
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