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Effects of intrahippocampal administration of 
the phosphatase inhibitor okadaic acid

Dual effects on memory formation

Monica R.M. Vianna1, Adriana Coitinho1, Luciana Izquierdo2, Ivan Izquierdo2

Abstract  –  Protein phosphorylation mediated by serine-threonine kinases in the hippocampus is crucial to 

the synaptic modifications believed to underlie memory formation. The role of phosphatases has been the 

focus of comparatively little study. Objectives: Here we evaluate the contribution of the serine-threonine protein 

phosphatases 1 and 2A (PP1, PP2A) on memory consolidation. Methods: We used immediate post-training 

bilateral hippocampal infusions of okadaic acid (OA, 0.01 and 10 pmol/side), a potent inhibitor of PP1 and PP2A, 

and measured short- [3 h] and long-term memory [24 h] (STM, LTM) of step-down inhibitory avoidance. Results: 

At the lower dose, OA inhibited both STM and LTM whereas at the higher dose it instead enhanced LTM. Pre-

test infusion of these two doses of OA had no effect on retrieval. Conclusions: These two doses of OA are known 

to selectively inhibit PP1 and PP2A respectively. These findings point to the importance of these enzymes in 

memory formation and also suggest a deleterious influence of endogenous hippocampal PP2A on LTM formation. 
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Efeitos da administração intra-hipocampal do inibidor de fosfatases ácido okadaico: efeito duplo sobre a 

formação de memória 

Resumo  –  A fosforilação de proteínas mediada por serina-treonina quinases no hipocampo é crucial para as 

modificações sinápticas que se acredita sejam necessárias para a formação de memórias. O papel das fosfatases 

tem sido comparativamente pouco estudado. Objetivos: Aqui avaliamos a contribuição das fosfatases serina-

treonina 1 e 2 (PP1, PP2A) sobre a consolidação da memória. Métodos: Usamos infusões imediatamente após o 

treino de ácido okadaico (OA, 0.01 e 10 pmol/lado), um potente inibidor de PP1 e medimos memória de curta 

[3 h] e longa duração [24 h] (STM, LTM) de esquiva inibitória de evitar descer de uma plataforma. Resultados: 

Na dose menor, OA inibiu tanto STM como LTM. Na dose maior, produziu, em vez disso, uma melhora da LTM. 

A infusão pré-teste de qualquer uma das duas doses de OA não teve efeito sobre a evocação. Conclusões: Estas 

duas doses de OA são conhecidas por inibir seletivamente PP1 a PP2 respectivamente. Estes resultados apontam 

à importância das duas enzimas na formação de memória e sugerem, adicionalmente, uma influência deletérea 

da PP2A endógena sobre a formação de LTM.
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Several serine-threonine protein kinases constitute sig-
naling pathways whose activation is necessary for memory 
formation in the hippocampus.1,2 These include the calci-
um-calmodulin dependent kinase [CaMKII] that mediates 
GluR1 phosphorylation,3,4 the cAMP-dependent [PKA] 
and mitogen-activated kinases [MAPK] that mediate phos-

phorylation of the transcription factor CREB and other 
substrates,5-7 and the calcium-dependent protein kinase 
family (PKC) that also mediates the phosphorylation of 
many substrates, including presynaptic proteins involved in 
glutamate release.8,9 There is abundant cross-talk among all 
these kinase families.7,10 Their importance in memory sug-
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gests that serine-threonine phosphatases such as PP1, PP2A 
and calcineurin may also play a role.11-14 Indeed, inhibitors 
of PP1 and PP2A enhance NMDA currents in cultured hip-
pocampal neurons,15 but antagonize the NMDA receptor-
dependent inhibition of late-long term potentiation (LTP) 
caused by low frequency stimulation in hippocampal slic-
es.16 Both hippocampal early NMDA currents and late 
LTP appear to be necessary for memory formation.2,17,18 
Inhibitors of PP1, PP2A and calcineurin have been shown 
to have deleterious effects on various forms of memory.11-

13,19-21 The best studied of these phosphatases is calcineu-
rin, for which an allosteric model has been suggested in 
which, once bound to calmodulin, calcineurin competes 
with CaMKII for calcium.14 Calcineurin appears to govern 
both an intermediate phase of LTP between the so-called 
early and late phases,22 and the development of LTM for 
spatial and nonspatial tasks.23 The inducible and reversible 
genetic inhibition of calcineurin in mouse brain enhances 
learning, STM and LTM of hippocampus-dependent tasks 
and hippocampal LTP in a PKA-dependent manner.24

The influence of PP1 and PP2A on memory variables 
is less clear. Genetic inhibition of PP1 suppresses the 
deleterious effect of massed trials on learning, and pro-
longs memory duration.25 Suppression also decreases LTD 
and favors LTP in a frequency-dependent manner in the 
hippocampus.26 While these findings are important and 
point to a role of PP1 both in hippocampal plasticity and 
memory parameters, they are not illustrative, however, as 
to what specific phase of memory PP1 is involved in. No 
similar data are available for PP2A. Although some of the 
behavioral findings do suggest a different time course for 
the PP1 and PP2A influences on memory,21 it is not clear 
whether different forms of memory are affected by each. 
We have recently demonstrated a degree of independence 
of short-term memory lasting 3 h or less (STM) and long-
term memory lasting one day or more (LTM), which are 
essentially parallel processes.27,28

Here we concentrate on the inhibition of hippocampal 
PP1 and PP2A by two widely differing dose concentrations 
of okadaic acid well known to selectively inhibit one or the 
other enzyme.21,29,30 We studied one-trial inhibitory avoid-
ance in rats, a task equivalent to the one-trial peck avoid-
ance task studied in the one-day-old chick by Bennett, Ng 
and their coworkers,11,12,19,21 which is also acquired in a few 
seconds and, in the rat, depends mainly on the hippocam-
pus2. In addition, it is the task in which STM and LTM were 
shown to be functionally separate27 and where LTM was 
found to use the same molecular cascades as LTP.2,18 

Methods
Adult 3 month-old Wistar male rats (250-300 g) pur-

chased from Fundação Estadual de Produção e Pesquisa 
em Saúde do Rio Grande do Sul, Porto Alegre were used. 
The animals were housed 5 to a cage and had free access 
to food and water under a 12/12 h light/dark cycle, with 
lights on at 7:00 AM. The temperature of the animal room 
was maintained at 22-24°C. To implant them with indwell-
ing cannulae, rats were deeply anesthetized with thiopental 
(i.p., 30-50 mg/kg) and 27-gauge cannulae stereotaxically 
aimed at the CA1 region of the dorsal hippocampus, in 
accordance with coordinates (A ±4.3, L ±3.0, V 3.4) from 
the atlas of Paxinos and Watson.31 Animals were allowed 
to recover from surgery for 4 days before submitting them 
to any other procedure.

At the time of drug delivery, 30-gauge infusion cannu-
lae were tightly fitted into the guides. Infusions (0.5 µl/side) 
were carried out over a 60 s period and the cannulae were 
left in place for 60 additional seconds to minimize backflow. 
The placement of the cannulae was verified postmortem: 
2-4 h after the last behavioral test, 0.8 µl of a 4% methylene-
blue solution was infused as described above and the spread 
of the dye 30 min thereafter was taken as an indication of 
the presumable diffusion of the vehicle or drug previously 
given to each animal. Only data from animals with cor-
rect cannulae implants were analyzed. All procedures were 
conducted in accordance with the ‘Principles of laboratory 
animal care’ (NIH publication No. 85-23, revised). After 
recovery from surgery, animals were trained in step-down 
inhibitory avoidance as described in detail elsewhere4,27 and 
immediately after training2-5,27 (Figure 1), or 5 min prior to 
testing 24 h later (Figure 2), they were infused bilaterally 
with 0.5 µl of 0.01, 1 or 10 pmoles of OA (Calbiochem) or 
its vehicle (20% dimetylsulfoxide). This lowest dose of OA 
is known to selectively inhibit PP1; intermediate doses do 
not affect the activity of any known phosphatase, while 
the highest dose of OA selectively inhibits PP2A.21,29,30 The 
infusion cannulae was fitted into the guide, its tip pro-
truded 1 mm beyond that of the guide, and reached the 
CA1 region. Animals were tested for STM and LTM at 3h 
and 24h after training, respectively,27 and their latency to 
step-down from the platform onto the floor grid was mea-
sured automatically. Upon placing their four paws on the 
grid they received a 0.4 mA, 2 sec scrambled footshock on 
the training session. No footshocks were delivered during 
the STM or LTM test sessions.3-5,27 As is customary,2-5,27,28  
the posttraining infusions were used to study drug effects 
on STM and/or LTM consolidation, and the pre-test infu-
sions were used to study drug effects on retrieval.

To identify any unspecific side effects of the treatments 
on locomotor or exploratory activity we examined the ef-
fect of the doses of okadaic acid that significantly influ-
enced memory on performance in an open-field task. The 
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animals’ capacity of habituation to the novel environment 
(a 50 cm high, 50 cm wide and 39 cm deep open-field made 
of plywood painted white), and their locomotion and rear-
ing was measured during a 5-min session. Locomotion was 
evaluated by counting crossings of black lines drawn on the 
floor of the cbox that divided it into 12 equal rectangles. In 
order to detect habituation performance of crossings and 
rearings in the first half of the session (2.5 min), these were 
compared to performances during the second half of the 
session.33 Habituation was measured as a significant de-
crease in both responses during the two halves of the session.

Only behavioral data from animals with correct cannu-
lae placement was included in the final statistical analysis 
(Kruskal Wallis test followed by Mann Whitney for com-
parison among groups), as confirmed by histological con-
trol of cannulae placement.

Results
As shown in Figure 1, the intrahippocampal adminis-

tration of 0.01 pmol of okadaic acid per side caused full 
amnesia for both STM and LTM on the inhibitory avoid-
ance task. The 1 pmol dose was not effective and, surpris-
ingly, the 10 pmol/side dose had a positive effect on LTM 
retention. 

In addition, as shown in Figure 2, the two doses of oka-
daic acid that affected consolidation of the avoidance task 
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Figure 1. Effect of bilateral intrahippocampal infusions of OA at different concentrations (0.01, 1 and 10 

pmol/side) immediately after step-down inhibitory avoidance training session. Control group received vehicle 

(20% dimethylsulfoxide in saline) in which OA was diluted. Columns indicate Medians (interquartile ranges) 

of step-down latencies in seconds, of training (TR) and STM and LTM tests for each group. Asterisks indicate 

significant statistical difference at p<0.05 level on the Mann-Whitney U test, to the respective control groups 

in the respective session.
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Figure 2. Effect of bilateral intrahippocampal infusions of OA on 

memory retrieval when given 15 min before test session. Control 

group received vehicle (20% dimethylsulfoxide in saline) in which 

Okadaic acid was diluted. Treated animals received Okadaic at 1 and 

10 pmol/side. Columns indicate medians, and vertical lines indicate 

interquartile ranges of step-down latencies in seconds, of training 

(TR) and LTM test for each group. Asterisks indicate significant 

statistical difference at least at p<0.05 level on the Mann-Whitney 

U test, to the respective control groups in the respective session.
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had no effect on retrieval when given 5 min prior to the 
STM or the LTM test. 

Table 1 illustrates that none of the treatments affected 
locomotion or exploration or their habituation in a 5 min 
open field session. 

Discussion
The amnestic effect of OA on both STM and LTM 

corroborate previous findings of acute and chronic treat-
ments with OA involving various tasks and species.12,19,21,33 
At a dose known to selectively inhibit PP1 (0.01 pmol/
side),21,29,30 post-training intrahippocampal OA depressed 
both STM and LTM. At a dose known to selectively inhibit 
PP2A but not PP1 (10 pmol/side),21,29,30 post-training hip-
pocampal OA specifically enhanced LTM consolidation.2,28 
At an intermediate dose (1 pmol) which does not inhibit 
either enzyme,29,30 OA had no effect on either of the two 
forms of memory. Whether administered at the lower or 
at the higher dose, intrahippocampal OA given prior to 
retention testing had no effect on retrieval. 

PP1 and PP2A interact with, and modulate, several in-
tracellular signaling pathways known to influence LTD, LTP 
and LTM consolidation.13-16,22,23 The present findings provide 
no clues as to what specific system(s) participate in the am-
nesic influence of OA at the lower dose, or the mechanisms 
underlying the enhancing effect on LTM at the highest dose. 
Nevertheless, the latter phenomenon clearly points to an 
inhibitory role of endogenous PP2A in LTM consolidation.

Phosphatases, in particular calcineurin and PP1,25 have 
been suggested to act as inhibitory constraints to memory 
formation25 and, alternatively, to represent mechanisms of 
active forgetting.34 Although the evidence available does 
not allow us to determine which is the most accurate of 
these descriptions, both hypotheses reinforce the well-
known complexity of the cognitive processes and point to 
phosphatases as important factors. The importance of a de-
gree of forgetting34,35 in order to establish new or important 

memories has been recently studied in detail,35 including its 
implications in terms of catabolic biochemical processes.36 

It is possible that the enhancement of LTM formation by 
OA, at the dose that inhibits PP2A, may be related to this 
forgetting activity. 
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