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Multimodal magnetic resonance scans of 
patients with mild cognitive impairment
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ABSTRACT. The advancement of neuroimaging technology offers a pivotal reference for the early detection of mild cognitive 
impairment (MCI), a significant area of focus in contemporary cognitive function research. Structural MRI scans present visual and 
quantitative manifestations of alterations in brain tissue, whereas functional MRI scans depict the metabolic and functional state 
of brain tissues from diverse perspectives. As various magnetic resonance techniques possess both strengths and constraints, 
this review examines the methodologies and outcomes of multimodal magnetic resonance technology in MCI diagnosis, laying 
the groundwork for subsequent diagnostic and therapeutic interventions for MCI.
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Ressonância magnética multimodal de pacientes com comprometimento cognitivo leve

RESUMO. O avanço da tecnologia de neuroimagem oferece uma referência fundamental para a detecção precoce do 
comprometimento cognitivo leve (CCL), uma área significativa de foco na pesquisa contemporânea da função cognitiva. 
A ressonância magnética estrutural apresenta manifestações visuais e quantitativas de alterações no tecido cerebral, enquanto 
a ressonância magnética funcional retrata o estado metabólico e funcional dos tecidos cerebrais sob diversas perspectivas. 
Como várias técnicas de ressonância magnética possuem pontos fortes e restrições, esta revisão examinou as metodologias 
e os resultados da tecnologia de ressonância magnética multimodal no diagnóstico de CCL, estabelecendo as bases para 
intervenções diagnósticas e terapêuticas subsequentes para CCL.
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INTRODUCTION
Mild cognitive impairment (MCI) is iden-
tified as an intermediary phase between 
healthy aging and dementia. Approxi-
mately 10–15% of individuals aged over 
65 years old are affected by MCI1. MCI is 
categorized into two subtypes: amnestic 
mild cognitive impairment (aMCI) and 
non-amnestic mild cognitive impairment 
(naMCI). Notably, the progression rate 
from aMCI to Alzheimer disease (AD) 
surpasses that of naMCI2. In a study by 
Gemma et al., out of 3,935 MCI patients 
monitored over 2-3 years, 1,314 (34%) 

progressed to AD, 33 (0.8%) advanced to 
other dementia types, while 256 (6.5%) 
remained in the MCI stage3. Early classifi-
cation of MCI is helpful for the preclinical 
detection of AD. Once MCI progresses to 
AD, the condition becomes irreversible, 
profoundly impacting the lifespan and 
quality of life of affected seniors. Clinical 
symptoms of MCI are ambiguous, and the 
absence of highly sensitive diagnostic tools 
complicates its identification. Currently, 
the primary method for MCI diagnosis re-
lies on patients’ clinical presentations and 
neuropsychological assessments4.
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In recent years, neuroimaging techniques such as 
structural magnetic resonance imaging (MRI), function-
al magnetic resonance imaging (fMRI), diffusion tensor 
imaging (DTI), diffusion weighted imaging (DWI), 
magnetic resonance spectroscopy imaging (MRS), and 
arterial spin label (ASL) have provided insights into 
brain activity, water molecule diffusion, and metabolite 
levels, among others. Furthermore, these methods as-
sist in identifying changes related to neuronal damage, 
cerebral blood flow, and metabolic processes3,5.

Structural magnetic resonance imaging
With the widespread use of high-field MRI, brain 
MRI data can be acquired quickly. High-resolution 
T1-weighted (T1WI) structural images allow for the 
quantitative analysis of patients’ gray and white mat-
ter volumes. This aids in assessing alterations in brain 
morphology and structure during disease progression6. 
Some studies have grouped individuals into naMCI, 
aMCI, and control categories and evaluated them us-
ing structural magnetic resonance imaging (sMRI)7,8. 
In the aMCI group, the volumes of the hippocampus, 
entorhinal cortex, and amygdala diminished, while 
the thickness of the cortex in the entorhinal cortex, 
fusiform gyrus, precuneus lobe, and cingulate isthmus 
decreased. In contrast, only the volume of the precu-
neus lobe showed a decline in the naMCI group. These 
findings suggest that MCI classifications can be dis-
cerned from brain structural perspectives using sMRI, 
aiding in predicting dementia types and associated 
risks. Furthermore, sMRI proves valuable in assessing 
the effectiveness of therapeutic medications7. 

A longitudinal assessment of cortical atrophy, as 
detected by sMRI, can serve to monitor the progression 
of MCI9,10. Gemma et al. posited that although sMRI 
can identify early-stage atrophy in the hippocampus 
and medial temporal lobe, its limited sensitivity and 
specificity for MCI diagnosis preclude its use as a sole 
predictor for MCI progression to AD3. Future research 
should prioritize the combination of tests, rather than 
relying solely on a single modality such as sMRI, to 
enhance early diagnosis of MCI. 

Functional magnetic resonance imaging
fMRI, also known as blood oxygen level-dependent 
(BOLD) imaging, is based on the degree of influence 
of neuronal activity on local brain tissue oxygen con-
sumption and cerebral blood flow so that the ratio of 
oxygenated hemoglobin to deoxyhemoglobin in the 
blood in the local area of the brain changes11. These 
changes lead to variations in MRI signals that offer 
insights into brain activity. A heightened blood oxygen 

level signifies augmented blood flow to a specific brain 
region, suggesting elevated activity in that area12. fMRI 
can be categorized into two types: resting-state fMRI 
(rs-fMRI) and task-based fMRI (tb-fMRI), based on 
whether a task is being performed by the subject13. 

Given its high temporal resolution, repeatability, 
non-invasiveness, and absence of radioactivity, fMRI 
is extensively employed in neuroscience and clinical 
research. This modality offers novel insights and ave-
nues for understanding and investigating neurological 
and psychiatric disorders14. Relative to sMRI and neu-
ropsychological scales, fMRI offers a more objective 
assessment. To date, several methods are available for 
analyzing fMRI data, including regional homogeneity 
analysis (ReHo)15, amplitude of low-frequency fluctu-
ations (ALFF)16, independent component analysis17, 
functional connectivity18, and graph theory methods19 
among others.

Resting-state functional magnetic resonance imaging
rs-fMRI is employed to detect spontaneous low-fre-
quency oscillations, which arise from signals dependent 
on cerebral blood oxygen levels in a resting state. This 
technique provides insights into local brain activity and 
functional networks. Its advantages include simplicity, 
non-invasiveness, and superior spatial and temporal 
resolution, making it a prevalent tool for studying brain 
functions in neuropsychiatric disorders20. 

Currently, rs-fMRI is primarily employed to de-
tect functional and connectivity alterations in AD 
patients, MCI patients, and healthy populations. 
Additionally, it offers biomarkers, including neuro-
nal dysfunction, neuronal loss, and cognitive decline 
in older adults, facilitating the early diagnosis and 
prevention of AD21,22. A comprehensive neuropsycho-
logical assessment was performed on MCI patients. 
Machine learning algorithms and cross-validation 
techniques were employed to evaluate the classifi-
cation of MCI and healthy controls. Classification 
accuracy surpassed that of sMRI data, underscoring 
the significance of rs-fMRI in MCI identification23. 

A meta-analysis examining rs-fMRI data from aMCI 
and AD patients utilized various methods, including 
regional uniformity, low-frequency fluctuation am-
plitude, amplitude fraction, and whole-brain connec-
tivity. Findings revealed reduced functional features 
in the left hippocampal gyrus of AD patients. Certain 
detection parameters, such as local consistency, 
low-frequency amplitude value, and whole-brain net-
work connection, exhibited minor changes. Both aMCI 
and AD patients demonstrated a consistent decline in 
these parameter values24. 
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Functional connection network
Functional connectivity denotes the synchronized or 
correlated brain activity across two or more functional 
brain regions over time, laying the theoretical ground-
work for exploring complex brain networks through 
graph theory25. For MCI, assessing cognitive deficits 
using fMRI-derived brain functional connectivity offers 
a dependable means to elucidate the disease’s funda-
mental pathophysiological mechanisms and estimate 
its progression stage26. In a three-year longitudinal 
study, rs-fMRI was used to assess the functional con-
nectivity of relevant brain areas in 23 MCI patients. Of 
these, 7 patients progressed to AD, while 14 remained 
cognitively stable27. 

Impaired functional connectivity in the temporal 
lobe, particularly the hippocampus and parahippocam-
pal gyrus, as well as the loss of parahippocampal white 
matter volume in MCI patients, are linked to memory 
deficits observed in both MCI and AD patients. These 
factors are viewed as predictors for MCI and AD28. 
Numerous rs-fMRI studies employing graph theory 
techniques have identified small-world network char-
acteristics in the functional connectivity networks of 
MCI patients’ brains29. Numerous studies indicate that 
there is a disruption in the whole-brain topological 
organization of the functional connectome in MCI pa-
tients. This includes disruptions in functional activity 
across expansive networks or interconnected brain re-
gions. Compared to a normal network, the small-world 
network property of an MCI patient’s brain functional 
network has altered. This suggests that the small-world 
network property might offer a valuable foundation for 
the early diagnosis, differential diagnosis, and efficacy 
evaluation of MCI and AD30,31. 

The default-mode network
Currently, the default-mode network (DMN) is the 
primary network evaluated using rs-fMRI for studying 
cognitive functions. It is associated with episodic mem-
ory, executive function, and various cognitive and emo-
tional changes27. DMN is subdivided into anterior DMN 
— which includes the medial prefrontal cortex, dorsal 
prefrontal cortex, anterior cingulate gyrus, and lateral 
temporal lobe — and posterior DMN — encompassing 
the ventral prefrontal cortex, posterior cingulate gyrus, 
parietal lobule, gyrus, hippocampus, and medial tempo-
ral lobe32. Functional connectivity alterations in DMNs 
were observed among healthy aged individuals, and 
MCI and AD patients33. Using independent component 
analysis, Damoiseaux et al. observed a decrease in DMN 
posterior connectivity and an increase in ventral and 
anterior connectivity among MCI patients34. Gardini 

et al. identified heightened DMN connectivity in MCI 
patients between the medial prefrontal lobe and sev-
eral regions, including the posterior cingulate gyrus, 
parahippocampus, and anterior hippocampus. They 
hypothesized that this could be attributed to maladap-
tive mechanisms35. 

Some studies suggested that DMN functional 
connectivity decreases with age, while Dennis’s study 
suggested that compensatory mechanisms during aging 
may cause DMN connectivity to increase with age; the 
authors speculated that this may be due to compensa-
tory mechanisms during aging36. As cognitive impair-
ment intensified, DMN connectivity in the posterior 
cingulate/anterior precuneus region diminished37. In 
healthy individuals, DMN and the central executive 
network consistently exhibit opposing activities, both 
at rest and during task performance38. DMN is believed 
to be more active during internally directed cognitive 
activities, such as self-monitoring and social functions, 
whereas the central-executive network is predominantly 
activated during externally directed higher-order cog-
nitive functions like attention, working memory, and 
decision-making39. 

The dynamic control of the switch between DMN 
and central-executive networks is an evolving area of 
research. A recently suggested triple network model 
incorporates fMRI to compare these two antagonistic 
networks and introduces a third component, the sa-
lience network40. This model aims to elucidate the con-
nectivity patterns observed in cognitively intact brains 
and the alterations evident in cognitive impairments41. 
In healthy individuals, the salience network has been 
identified as pivotal in dynamically modulating the 
antagonistic activity between DMN and central-execu-
tive networks42. Yet, it remains uncertain whether this 
dynamic modulation persists in normal aging or if it 
changes in the presence of MCI. 

Ganesh et al. utilized rs-fMRI to explore the inter-
play between MCI and the tripartite network structure 
observed in the standard population. Their findings 
indicate that in MCI patients, alongside changes in 
interaction with the central executive network, there is 
also dysfunction in the salience network. Intriguingly, 
the severity of salience network dysfunction was found 
to correlate with the degree of overall cognitive decline. 
Hence, the salience network emerges as a potential neu-
roimaging marker for cognitive impairment43. 

Some studies have applied fMRI to compare MCI 
disease and AD, tracking patients for a span of five 
years. Results indicate that hippocampal activation 
levels can be utilized as markers of cognitive dete-
rioration. Specifically, elevated activity in this area 
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is associated with significant cognitive decline and 
a heightened likelihood of MCI patients progressing 
to dementia44. Yetkin et al. examined visual memory 
functions across three groups: MCI patients, AD pa-
tients, and healthy controls. Their findings revealed 
that both MCI and AD patients displayed significantly 
heightened activity in specific functional regions when 
contrasted with healthy controls. Primarily, this in-
creased activity encompassed the right frontal superior 
gyrus, bilateral middle temporal gyrus, middle frontal 
gyrus, and the anterior segment of the bilateral cingu-
late gyrus. These observed activity patterns in unique 
functional zones present crucial insights into the 
progression of MCI and may serve as a foundational 
framework for disease diagnosis45. 

Task-based functional magnetic resonance imaging
In tb-fMRI, time series data are compared against a 
hypothesized model of neural function based upon the 
cognitive task being performed. Through the use of 
statistical inference, the hypothesis can be accepted or 
rejected for every voxel. In this way, a map of those brain 
regions that respond to the task is constructed46. Jacobs 
et al. found that the activation of dorsal and ventral 
pathways in patients with aMCI increased, activation 
of the medial and lateral parietal lobes decreased, and 
activation of the parietal and temporal lobes increased 
when performing tasks such as object recognition47. 
Dorsal pathway dysfunction is considered to be the 
anatomical basis of visual space dysfunction in patients 
with MCI and AD. 

Brain regions as adjacent lesions associated with 
visual space processing are mainly concentrated in the 
frontal parietal lobe, including two independent sys-
tems of the ventral pathway and dorsal pathway: ventral 
pathways are composed of lateral temporal lobes and 
temporal occipital lobes, which are mainly responsible 
for the recognition of object shapes; dorsal pathways are 
composed of three sub pathways — apical lobe projec-
tions to the medial temporal lobe, prefrontal lobe, and 
anterior motor region, which are mainly responsible for 
sensing and identifying objects seen by the eyes and the 
storage of visual spatial memory in the medial temporal 
lobe and hippocampus48,49.

Diffusion weighted imaging
DWI primarily assesses the microscopic movement of 
water molecules within living tissues. This diffusion rate, 
especially in instances of slowed water molecule move-
ment within the tissue, is represented by the apparent 
diffusion coefficient (ADC). A reduced ADC value results 
in a darker image appearance.

Kumar et al. carried out various examinations, 
including simple mental status tests, DWI, DTI, and 
more, on both MCI patients and control groups50. Their 
findings revealed significant changes in ADC values in 
the right temporal lobe, hippocampus, callosum, and 
other regions of MCI patients. In a separate study by 
Bergamino et al., DWI scans and cognitive evaluations 
were performed on 12 MCI patients, 13 AD patients, 
and 24 healthy individuals51. The results demonstrated 
significant alterations in ADC values of the amygdala 
and hippocampus in MCI patients compared to healthy 
controls. These findings suggest that DWI indicators 
have the potential to serve as biomarkers for MCI. 

A prior study discovered that ADC values in the 
cerebral cortex and hippocampus of MCI patients were 
significantly elevated compared to healthy volunteers. 
Furthermore, these ADC values directly correlated with 
the severity of cognitive impairment52. In a separate 
study, Kantarci et al. monitored 21 MCI patients and 
observed that, despite the absence of hippocampal 
structural atrophy, there were changes in ADC val-
ues53. Higher ADC values in the hippocampus were 
associated with an increased likelihood of the patient 
progressing to AD. This suggests that the ADC value in 
the hippocampus could be a predictive measure for MCI 
transitioning to AD, offering potentially more valuable 
insights than structural MRI data alone. 

Diffusion tensor imaging
DTI assesses the orientation and integrity of white mat-
ter tracts by measuring the diffusion rate and direction of 
water molecules. This reveals the condition of the white 
matter fiber bundles and their anatomical associations 
with adjacent lesions54. DTI primarily utilizes parameters 
such as fractional anisotropy (FA), mean diffusivity (MD), 
and ADC. In fact, FA reflects the preferential direction 
in which water molecules can diffuse. If there is no pre-
ferred direction, water molecules can equally diffuse in 
all directions, so that FA is zero, i.e. there is no preferred 
direction. In regions where FA is close to 1, it means that 
there is a preferential direction for the water molecules. 
Anatomically, for white matter fibers, water molecules 
can diffuse only in the direction of the fibers55. FA offers 
insights into the density of myelin and the structural 
wholeness of fibrous tracts. Its value lies between 0 
and 1, where a greater FA value signals superior nerve 
conduction. Conversely, a diminished FA value signifies 
notable white matter deterioration. MD predominantly 
measures the velocity and extent of water molecule dif-
fusion in tissues. Elevated MD values suggest enhanced 
water molecule diffusion capability and a heightened 
degradation of fibers integrity56. 
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In a comprehensive study, 33 patients with aMCI, 15 
with AD, and 20 healthy controls underwent evaluations 
using structural MRI, DTI, and MRS. Results indicated 
that DTI emerged as the most sensitive diagnostic tool 
for identifying MCI, boasting a sensitivity of 90.9% and 
a specificity of 50%. Additionally, when differentiating 
between MCI and AD, DTI achieved the highest speci-
ficity, reaching 87.9%57. 

In comparison to cognitively normal individuals, 
MCI patients exhibited a decrease in the FA value in the 
medial temporal lobe and an elevated MD value58. These 
findings suggest an impairment in the integrity of white 
matter fibers. Decreased FA values in brain regions, in-
cluding the corpus callosum, corona radiata, and cingu-
late gyrus, have been linked to cognitive impairments59. 
FA values in the parietal and temporal lobes, as well as 
MD values in the corpus callosum, are correlated with 
the global cognitive abilities and episodic memory in 
MCI patients60. This suggests that DTI metrics in these 
brain regions can serve as reliable markers for assessing 
the cognitive status of MCI patients. 

Shim et al. discovered that changes in the white 
matter microstructure occurred before hippocampal 
atrophy in MCI patients61. By comparing the volume 
of the hippocampus with white matter integrity, they 
suggested that assessment of white matter health by 
DTI could serve as an imaging marker for cognitive 
decline and MCI diagnosis. This could pave the way for 
its use as a potent clinical tool for early AD diagnosis 
and monitoring disease progression. 

In a longitudinal study of 132 MCI patients, struc-
tural MRI, DTI, and positron emission tomography 
(PET) scans were utilized62. Findings indicated that 
fractional anisotropy of the genu of the corpus callosum 
(FA-Genu) could serve as a predictor of cognitive decline 
severity in MCI patients. Notably, DTI, specifically 
FA-Genu, offered invaluable complementary insights 
to established AD biomarkers and underscored their 
potential in anticipating cognitive deterioration in 
MCI. In a 2.5-year longitudinal study involving 23 MCI 
patients, Mielke et al. discovered a correlation between 
FA and MD values of the vault in 6 MCI patients who 
later developed AD and the hippocampal volume63. 
Furthermore, the DTI value of the vault appeared to 
be a predictive marker for memory deterioration in 
MCI patients. 

Liu et al. employed spatial statistical analysis in 
tandem with fiber bundle tracking to conduct DTI on 
patients with aMCI64. Their findings revealed decreased 
FA values across several brain regions and heightened 
MD values in the frontal, parietal, and temporal lobes. 
Sali Dimitra et  al. studied 19 aMCI patients with 

impairments across multiple cognitive domains65. After 
utilizing a comprehensive neuropsychological assess-
ment and analyzing DTI data, they discerned that FA 
values of the callosum, posterior cingulate, anterior 
cingulate, and superior longitudinal bundles in these 
patients were markedly lower compared to a healthy 
control group. They posited that the integrity of the 
white matter fiber bundles was compromised in aMCI 
patients, leading to cognitive deficits. 

Extant literature on aMCI and AD patients re-
veals that when DTI was employed to assess cerebral 
white matter fiber bundles, a significant decrease 
in the FA value of the cingulate girdle was observed 
in aMCI patients2. In contrast, AD patients demon-
strated decreased FA values in several other brain 
regions, including the prefrontal lobe, temporal 
lobe, and hippocampus66. 

Diffusion kurtosis imaging
Diffusion kurtosis imaging (DKI) is an advanced tech-
nique derived from DTI that elucidates the non-Gauss-
ian diffusion of water molecules within tissues, allowing 
for a more detailed representation of tissue microstruc-
ture than its predecessor67. The primary parameters of 
DKI encompass mean kurtosis (MK), MD, radial kurto-
sis, and kurtosis anisotropy68. Notably, MK reveals the 
non-Gaussian diffusion characteristics in both white 
and gray matters, thereby aiding in a comprehensive 
depiction of microstructural variations in white matter 
tracts and deep gray matter regions69. 

In the context of diagnosing aMCI and AD, it is 
posited that alterations in DKI parameters, especially 
those of the bilateral hippocampus, are more indicative 
than mere hippocampal atrophy, positioning DKI as a 
superior tool in comparison to DTI70. Zhang et al. em-
phasized that in the prodromal phase of dementia, the 
predominant changes were in hippocampal microstruc-
tures71. The most salient discriminators turned out to 
be microstructural measurements: left hippocampal MK 
for subjective cognitive decline and right hippocampal 
MD for MCI. Furthermore, DKI distinctly highlights 
alterations in tissue microstructures, particularly within 
deep gray matter nuclei. Intriguingly, changes in DKI 
parameters manifest prior to any discernible shifts in 
brain morphology among MCI patients. 

Magnetic resonance spectroscopy imaging
MRS is a non-invasive method that detects energy 
metabolism and biochemical alterations in living 
tissues. This technique provides valuable metabolic 
information about tissues, making it instrumental 
for the early diagnosis and differentiation of MCI.72 
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The primary metabolites employed for diagnostic 
purposes encompass N-acetyl aspartate (NAA), cho-
line-containing compounds (Cho), myoinositol (MI), 
and creatine (Cr). NAA predominantly resides in the 
mitochondria of neurons and serves as an indicator 
of neuronal and axonal density73. A diminished NAA 
level in gray matter suggests neuronal loss and met-
abolic changes, whereas a decline in white matter 
implies axonal damage. Cho plays a pivotal role in 
the synthesis of cell membranes and myelin sheaths; 
a decreased level signifies sphingomyelin breakdown 
and cell membrane disintegration. MI acts as a glial 
cell marker, and an increase in its concentration can 
indicate glial hyperplasia. Conversely, Cr content re-
mains relatively consistent, often used as a reference 
to monitor fluctuations in other metabolite levels74. 

A study demonstrated that the diminished NAA 
concentration level in the hippocampus of MCI patients 
falls between that observed in AD patients and healthy 
aged individuals. Furthermore, this decrease in NAA was 
inversely proportional to the severity of their memory 
impairment, positioning MCI as an intermediate state 
between normal aging and AD75. Kantarci et al. tracked 
1,156 cognitively normal individuals for an average 
duration of 2.8 years, during which 214 participants 
progressed to MCI or dementia. Their findings under-
scored that both hippocampal volume reduction and 
variations in the NAA/MI ratio served as independent 
predictors of MCI76. 

Mitolo et al. embarked on a 2-year follow-up study 
involving 38 MCI patients, 23 AD patients, and 18 
healthy controls. They deduced that jointly utilizing the 
NAA/MI ratio and the volume of the parahippocampal 
gyrus could foretell the rate of AD conversion, boasting 
an impressive sensitivity of 84.6% and a specificity of 
91.7%77. Another research initiative that combined 
MRI and MRS to anticipate the progression from MCI 
to AD observed that, out of 214 healthy aging adults, 
a significant fraction progressed to either MCI or de-
mentia over a span of 2.8 years76. This progression was 
determined by conducting single-voxel proton MRS of 
the posterior cingulate gyrus and using MRI to evaluate 
both hippocampal volume and white matter hyperin-
tensity volumes.

A study employed MRS to evaluate 13 patients diag-
nosed with aMCI according to the Mayo Clinical Medical 
Center criteria78. Upon analyzing the NAA/MI, NAA/Cr, 
Cho/Cr, and MI/Cr ratios in both cingulate areas, it was 
discerned that the MI/Cr ratios in the anterior cingulate 
gyrus regions differed notably between the two sides 
in aMCI patients. This asymmetry was subsequently 
deemed a crucial biomarker for aMCI. 

Zhao et al. assessed 69 MCI patients alongside 67 
healthy controls. They calculated the NAA/Cr and Cho/
Cr ratios of the bilateral hippocampus and posterior 
cingulate gyrus and examined the relationships be-
tween these ratios and Mini-Mental State Examination 
(MMSE) scores79. Their findings indicate that MCI could 
manifest when the NAA/Cr ratio is less than 1.19 in 
either the left or right hippocampus. 

Kantarci et al. selected a diverse group comprising 21 
MCI patients, 21 AD patients, and 63 healthy controls. 
Utilizing MRS, they conducted a metabolic analysis of 
the upper temporal gyrus, posterior cingulate gyrus, 
and medial parietal lobe53. Their analysis revealed a 
lower NAA/Cr ratio in the left temporal upper gyrus and 
posterior cingulate gyrus of AD patients compared to 
the MCI and healthy control groups. Furthermore, both 
the MCI and AD groups exhibited a higher MI/Cr ratio 
in the posterior cingulate gyrus than healthy controls. 
Additionally, the AD group displayed a heightened Cho/
Cr ratio in the posterior cingulate gyrus compared to 
both MCI patients and healthy controls. An elevated 
MI/Cr ratio suggests glial hyperplasia and a progression 
from MCI to AD, while a decline in the NAA/Cr ratio 
coupled with a rise in the Cho/Cr ratio indicates an 
advanced stage of the disease. It was posited that the 
cingulate cortex NAA/Cr ratio post-MRS observation 
might be the most discerning method to differentiate 
between AD and MCI. 

Another research endeavor followed a cohort of 
sex- and age-matched MCI patients for 18 months80. It 
was observed that the NAA/Cr ratio in the posterior cin-
gulate gyrus of patients transitioning to AD was lower 
compared to those evolving into Lewy body dementia 
(LBD), highlighting the potential of MRS in predicting 
the progression direction of MCI. 

Arterial spin label
The cerebral blood flow (CBF) indicates the volume of 
blood that circulates through a specific cross-sectional 
area of cerebral vessels within a given time frame. This 
parameter is known to decline with age. By utilizing 
magnetically labeled arterial blood as an intrinsic con-
trast agent, it is feasible to directly and quantitatively 
measure CBF, providing insights into the capillary dy-
namics and, in turn, shedding light on the perfusion and 
functionality of brain tissue81. As a barometer, CBF can 
serve as a potential predictor of cognitive performance 
in aged people.

Recently, ASL, an innovative magnetic resonance 
perfusion imaging technique, has come to the fore. This 
modality boasts multiple benefits, such as the absence 
of any need for contrast medium injections, freedom 
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from radiation, reproducibility, superior spatial resolu-
tion, brief data collection duration, and no disturbance 
by the blood-brain barrier. These attributes make ASL 
an appealing, cost-effective, and safer counterpart to 
positron emission tomography for clinical research 
applications82. Given its capabilities, ASL has been 
extensively employed to detect and monitor the initial 
vascular perfusion shifts in MCI patients.

ASL perfusion maps revealed varying degrees of 
hypoperfusion in distinct regions of the brains of MCI 
patients. Johnson et al. initially utilized ASL to identify 
a decrease in CBF within the right inferior parietal lobe 
of these patients83. Subsequent research has indicated 
a correlation between the extent of CBF decline and 
disease severity84. Furthermore, Camargo et al. observed 
a notable CBF reduction in areas such as the hippocam-
pus, middle temporal lobe, ventral striatum, prefrontal 
cortex, and cerebellar regions in MCI patients85. Con-
versely, an elevation in CBF was detected in the left 
hippocampus, right amygdala, and basal ganglia regions, 
encompassing the caudate nucleus, shell nucleus, and 
globus pallidus86. 

Soman et al. observed a pronounced decrease in 
CBF within the posterior cingulate gyrus, glossal gy-
rus, and hippocampus of MCI patients87. There was a 
significant correlation between overall cognition and 
CBF alterations in the anterior wedge and temporal 
neocortex. Moreover, the severity of memory decline 
exhibited a direct positive relationship with the extent 
of CBF reduction in the medial temporal lobe. In con-
trast, Thomas et al. identified an initial increase in CBF 
in the hippocampus, inferior parietal lobe, and tempo-
ral lobe of MCI patients88. As the condition advanced, 
CBF in the temporal lobe diminished. They posited an 
inverted U-shaped trajectory in the CBF signal within 
pertinent brain regions of MCI patients, indicative of 
early neurovascular dysfunction and a heightened CBF 
to offset cognitive decline. Eventually, these patients 
transitioned into a decompensatory phase. Despite the 
disparities in study results, often attributed to meth-
odological variances and participant heterogeneity, the 
pathological evolution of MCI remains complex, with 
potential compensatory interactions between cells and 
blood vessels during early stages.

While hippocampal atrophy stands as a recognized 
indicator of AD progression, MCI patients often 
display no atrophy in regions like the hippocampus 
and medial temporal lobe. However, they do exhibit 
abnormal cerebrovascular functions. A longitudinal 
study leveraging ASL technology to anticipate cogni-
tive shifts in the aged deduced that among all brain 
regions, cerebral blood flow alterations in the frontal 

lobe were most predictive of cognitive changes. More-
over, aberrant network patterns in the medial frontal 
lobe and anterior cingulate cortex emerged as crucial 
predictors of these cognitive variations82. Li et al. em-
ployed voxel analysis, revealing that the hypoperfusion 
in areas like the frontal lobe, medial frontal cortex, 
and anterior cingulate cortex were most indicative of 
individual cognitive predictions, closely linking to the 
pathophysiology of MCI89. Such findings underscore 
their potential as robust markers for assessing ini-
tial stages of cognitive decline. Given the prognostic 
capability of CBF regarding cognitive alterations, it 
holds profound implications for forecasting cognitive 
functions in the aged and facilitating early clinical 
detection and diagnosis of MCI. 

In conclusion, early diagnosis and timely inter-
vention in MCI patients may decrease the likelihood 
of progression to dementia. Currently, there is no 
established neuroimaging reference indicator for MCI 
identification. Techniques like structural MRI, fMRI, 
DTI, DWI, MRS, and ASL offer non-invasive, accu-
rate, and high-resolution imaging with repeatability. 
However, individual MRI methods have limitations 
in isolated MCI diagnostics and differential diagno-
sis. Studies on cognitive function progression using 
rs-fMRI present both consistent and divergent results. 
These inconsistencies might arise from compensatory 
bodily mechanisms, variations in seed point selection, 
methodological differences, or clinical heterogeneity. 
While rs-fMRI is sensitive to early MCI and AD diag-
nosis, its predictive value requires further validation. 
DWI application is limited by its need for high mag-
netic field strength and artifacts near skull-based brain 
lesions. Moreover, diseases like brain tumors manifest 
diversely in DWI scans due to varied internal compo-
nents. MRS, though adept at studying brain molecular 
processes without ionizing radiation, suffers from low 
sensitivity. ASL quantifies CBF, minimizing individual 
vascular differences, but its low signal-to-noise ratio 
compromises image quality, making it less ideal for 
routine clinical use90.

By employing multimodal MRI technology, re-
searchers can harness complementary benefits, 
enabling a holistic examination of MCI from morpho-
logical, functional, and metabolic viewpoints. Such 
an approach provides a comprehensive diagnostic 
system for MCI, enriches the current understanding 
of its onset and progression, guides clinicians in 
timely MCI patient identification and treatment, and 
aids in preventing progression to AD. Future studies 
should expand sample sizes in multimodal imaging 
investigations, delve deeper into MCI pathophysiology 
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Table 1. Contrast of advantages and disadvantages.

Imaging 

modality
Advantages Disadvantages

sMRI

Using sMRI, MCI can be categorized based on brain structure, such as 
early-stage hippocampal and medial temporal lobe atrophy.  
This classification aids in predicting the specific type and risk of 
dementia. Additionally, sMRI can assist in evaluating the  
effectiveness of therapeutic medications.

Limitations of sMRI include its low sensitivity and specificity 
in diagnosing MCI. As a result, it cannot independently and 
precisely predict the progression from MCI to AD.

fMRI

This technique is non-invasive, straightforward, and provides 
enhanced spatial and temporal resolution. The activation patterns of 
different functional brain areas can further assist in predicting the 
progression of MCI, offering a pivotal basis for diagnosing the disease.

Given the consistency and variations in study findings, further 
research is imperative to enhance the value of early diagnosis.

DWI

DWI stands as the sole non-invasive magnetic resonance technique 
capable of detecting the motion of water molecules within living tissues. 
DTI is utilized to evaluate the integrity of white matter fibers throughout 
the brain. DKI vividly illustrates changes in tissue microstructure, 
particularly in deep gray matter nuclei. They are valuable tools for 
screening MCI and forecasting its progression to dementia.

DWI’s high sensitivity to movement, combined with its lengthy 
examination and scanning process, can result in skewed 
outcomes, limiting its clinical utility.

MRS

Metabolic alterations often manifest before structural ones. As 
a result, MRS has the capacity to identify metabolic anomalies 
undetectable by conventional MRI, underscoring its significance in the 
early diagnosis of MCI.

Although MRS allows for noninvasive examination of molecular 
activities in the brain without subjecting individuals to ionizing 
radiation, its efficacy is curtailed by its limited sensitivity.

ASL

ASL boasts several key advantages, including the absence of contrast 
media injections, no radiation exposure, repeatability, brief acquisition 
time, and uninfluenced performance by the blood-brain barrier. Given 
these merits, ASL emerges as a potentially cost-effective, safe, and 
practical alternative to positron emission tomography in clinical 
research. Its utility is especially evident in detecting and monitoring 
early vascular perfusion changes associated with MCI.

ASL minimizes individual variations in vascular characteristics. 
However, these variations can result in changes in signal 
intensity that clinicians might misinterpret as disease-
induced abnormalities. One notable limitation of ASL in 
clinical application is its low signal-to-noise ratio, resulting in 
diminished image quality.

Abbreviations: sMRI, structural magnetic resonance imaging; MCI, mild cognitive impairment; AD, Alzheimer’s disease; fMRI, functional magnetic resonance imaging; DWI, Diffusion-

weighted imaging; DTI, Diffusion Tensor Imaging; DKI, Diffusion kurtosis imaging; MRS, Magnetic Resonance Spectroscopy; ASL, Arterial Spin Labeling.
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