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Abstract 
The influence of various drying characteristics in the experiment was explored in this study. The drying time and 
moisture content were used to evaluate the experimental outcomes. The drying of bitter gourd slices using a 
halogen dryer was done at varied thicknesses (3, 5, and 7 mm) and temperatures (60 °C, 65 °C and 70 °C). The results 
revealed that the drying time and equilibrium moisture content are considerably affected by the material drying 
thickness and drying temperature. Furthermore, the Generalized Regression Neural Network (GRNN) model is 
employed in this study to train and predict the moisture content of bitter gourd as an output parameter. The 
temperature, bitter gourd thickness, and drying time were considered as input parameters for the GRNN model. 
Three statistic measures as the R-square, the Root mean square error (RMSE) and the Mean relative percent error 
(P) were used to validate the accuracy of the trained GRNN model. In training with nine experimental condition 
datasets, the average score values of R-square, RMSE and P were obtained at 0.995197, 1.498966 and 0.091617, 
respectively. The test of trained GRNN has been conducted with good agreement between experimental data points 
and predicted points. The result revealed that GRNN was effective in predicting the moisture content of bitter gourd 
in a halogen dryer. 

Keywords: ANN model; Drying temperature; Modeling; Moisture content; Prediction; Radiative drying. 

Highlights 

• The behavior of the sliced bitter gourd drying process is captured by employing Generalized Regression 
Neural Network model 

• The predictable performance of Generalized Regression Neural Network is validated by using statistical 
measures 
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1 Introduction 

Aside from freezing, drying is one of the oldest food preservation procedures and is essential to the 
operations of the food industry. It is critical to increase the fresh item shelf life while lowering packing 
costs and transportation weights. Therefore, drying is now widely used in a variety of fields which could 
be found in (Omari et al., 2018; Yan et al., 2019), particularly in the field of food preservation 
(Ahmed et al., 2013). Drying is a traditional technique for dealing with post-harvest agricultural products 
by removing moisture. During a drying process, heat and mass transfer from the inner to the outer surfaces 
of a drying material will occur simultaneously under the influence of external environmental factors such 
as temperature, humidity, velocity, time drying, as well as the properties and physical structure of the 
material. This is a thermodynamic and physical process interaction to lower moisture content to a minimum 
permissible limit that restricts microbial development and activity in agricultural products. The moisture 
content should be removed to the extent that the intended quality of the dried product can be maintained 
for a longer period of time. To accomplish this goal, the relationships between the components influencing 
the drying process must be modeled. However, it is clear that the drying process is greatly difficult due to 
impacted factors (Movagharnejad & Nikzad, 2007). Consequently, developing a mathematical equation 
that adequately describes the relationship between heat-mass transfer occurring inside the material and 
factors influencing the drying process is still difficult. As a result, dryness has increasingly developed 
during the last few decades. 

A predictable model which is obtained by relating a set of input variables and response variables has 
become an essential strategy in the drying field. An accurate prediction of the drying model is possible 
resulting in optimized energy use and operating conditions, improved dried product, and thus efficient drying. 
Artificial Neural Networks (ANN) have been adopted for years in food processing to describe the drying 
behavior of various agricultural products due to their predictability. The strength of ANN is able to capture 
well patterns and nonlinear relationships in the experimental data provided, especially when mathematical 
information or any analytical solution for describing a relationship is nonexistent by Septien et al. (2020). 
Generally, the structure of an ANN consists of three layers such as the input layer, the hidden layer and the 
output layer. These layers have interconnected neurons or nodes. Each link connecting each neuron has an 
associated weight which is adjusted in the training phase to reduce the errors between the actual and the 
output values. Several studies based on ANNs have been conducted to identify nonlinear and complex drying 
systems and process behaviors. The ANN model (Backpropagation algorithm for feed-forward neural 
network) was employed to predict the dehydration characteristics of the pineapple slice in the entire drying 
process (Sarkar et al., 2020). This study observed the effects of hot air oven, microwave, microwave 
convection and freeze-drying on the dehydration behavior of sliced pineapple. Their result reported that the 
coefficient of correlation through the competent prediction of ANN models for dehydration kinetics of 
differently dried pineapple was highly accurate. The accuracy of multilayer perceptron ANN models for 
predicting the moisture content evolution was validated by using experimental data of quince slices in 
convective drying (Chasiotis et al., 2020). It was evident that MLP ANNs were robust enough to apply for 
various agricultural products. Similar works, ANNs have been also found by Bai et al. (2018), 
Azadbakht et al. (2018) and Di Scala et al. (2013), so on. Generally, the results of these studies indicated that 
the ANNs model selected was appropriate for modeling the drying process. Among ANN models, General 
Regression Neural Network (GRNN) which have also been widely used in different fields in past decades, is 
accepted as a model to evaluate the drying process in this study. 

Bitter gourd is commonly found in tropical and subtropical areas such as Africa, Asia, and Australia. 
Because of its incredible nutritional value, bitter gourd is commonly recognized as an essential ingredient in 
Vietnam cuisine. It is also referred to as an herbal medicine with numerous therapeutic applications for people 
(Biswas et al., 2018). Accordingly, bitter gourd has received considerable attention in recent years 
(Yan et al., 2019; Yasmin et al., 2022; Jin et al., 2019; Bhattacharjee et al., 2016). Bitter gourd, on the other 
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hand, has long been used as a traditional medicinal plant in Vietnam. Therefore, the nutritional benefits and 
numerous uses stated above are driving up demand for the dried bitter gourd product. In Vietnam, dried bitter 
gourd is commonly used to make herbal tea. 

Numerous drying technologies are now being developed and used in the manufacturing business. In 
general, drying systems are divided into two categories: natural drying systems and artificial drying systems. 
Natural drying systems that use solar energy, geothermal energy, and wind energy offer the advantage of 
being less expensive. However, these still have significant disadvantages, such as the need for more initiative 
and the capacity to manage the drying process parameters. As a result, meeting the increasing demands for 
quality drying products in the industrial system would be difficult. Artificial drying technologies are highly 
developed such as convection drying, radiation drying (Chasiotis et al., 2020), radio wave drying (Ling et al., 
2018), microwave drying (Omari et al., 2018), and so on. Among the drying systems described above, 
halogen drying technology has been developed by (Hebbar et al., 2004). Essentially, the findings of these 
published works demonstrated that drying technology utilizing halogen lamps is increasingly being used in 
the drying process due to its simplicity and efficiency in controlling the drying temperature, which is one of 
the most important factors in the drying process. 

From a literature survey mentioned above, the drying process of sliced bitter gourd on a halogen dryer is 
adopted. Also, GRNN is developed as an approximating tool for predicting the drying process of bitter gourd 
slices on a halogen dryer such as the moisture content of the drying material through the parameters of 
thickness, temperature, and drying time. 

2 Material and methods 

2.1 Material 

The fresh bitter gourds were purchased at a local market every morning. Moreover, the total quantity of 
gourds purchased is about 5 kg for all experiments. Whole bitter gourds were cleaned, and they were dried 
in a natural environment before conducting the experiment. The initial moisture content of the bitter gourd 
slices was dried in an oven at 105oC until reaching constant mass (Jin et al., 2019). The experiment was 
carried out in a university laboratory, in Vietnam. On average, the initial moisture content of bitter gourd was 
determined about 92% - 95% (w.b.), and the results were quite similar to published researches of Biswas et al. 
(2018), Jin et al. (2019) and Yan et al. (2019). 

2.2 Drying equipment 

Drying was carried out in a halogen dryer that was self-made, as shown in Figure 1. The dryer’s overall 
dimensions are 550 mm in length, 550 mm in width and 850 mm in height, including 2 rotary plates with 4 
stainless steel trays. Each tray has various diameters of 4 mm holes. Each plate has 3 halogen lamps with a 
capacity of 100 W per bulb, so the maximum capacity of the halogen used in the drying model is 600 W. The 
maximum temperature in this halogen dryer chamber is 90 °C. The stainless-steel trays are placed on a 
rotating shaft, adjusted in rotation speed through the inverter device. The drying temperature was controlled 
by the SSR (Solid-state relay) device. When the temperature reaches the preset level, the SSR device 
regulates the halogen bulbs light intensity to lower the emitting temperature. In the drying model, there are 4 
temperature sensors. One was at outside locations to receive temperature information environment. Each 
compartment has two temperature sensors that collect data on the drying temperature inside the chamber. 
The last one was placed at the outlet to measure the temperature information after the drying process. The 
moisture was removed from the chamber by two fans situated on the top of the oven. 

Before each drying experiment, the halogen dryer was run for roughly 30 minutes without the samples until the 
necessary conditions were reached. When drying conditions were met, the drying process began. The bitter gourd 
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samples were dried on dryer trays. During the experiment, temperature data is collected using the DDC-C46 device 
(Figure 1b) which is supplied by PNTECH Co., and it connects to the computer via the RS32 connection. 

 
Figure 1. Halogen dryer– (a) The dryer; (b) DDC-C46 controller. 

2.3 Determination of moisture content 

During the drying process, the sample weight loss of the drying material was determined periodically 
every 30 minutes and calculated according to the following formula (Equation 1) in published articles by 
Jin et al. (2019) and Yasmin et al. (2022): 

𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑐𝑐−𝑚𝑚𝑘𝑘
𝑚𝑚𝑘𝑘

𝑥𝑥100  (1) 

where, 
MC: moisture content wet basis of drying material at the time of determination, [%] 
mc: mass of drying material at time t, [g] 
mk: mass of drying material at the time of determination t + 1, [g] 
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2.4 GRNN modeling 

GRNN is also a popular model for solving any complex, dynamic and non-linear problem from the data. 
The GRNN has totally four layers which are the input layer, two hidden layers (pattern layer, summation 
layer) and the output layer, as shown in Figure 2. 

 
Figure 2. The basic structure of GRNN. 

The input layer is connected to the pattern layer through the weights of the pattern layer. In this layer, each 
neuron presents a training pattern and its output. The pattern layer and summation layer are connected 
together. The summation layer has two different types: a single division unit and a summation unit. The 
summation and output layer together perform a normalization of the output set. In the training of networks, 
radial basis functions and linear activation functions are used in hidden and output layers. Each pattern layer 
unit is connected to the two neurons in the summation layer, S and D summation neurons. S summation 
neuron computes the sum of weighted responses of the pattern layer. On the other hand, D summation neuron 
is used to calculate unweighted outputs of pattern neurons. The output layer merely divides the output of 
each S-summation neuron by that of each D-summation neuron, yielding the predicted value 𝑌𝑌𝑌𝑌�  to an 
unknown input vector x. The predicted value 𝑌𝑌𝑌𝑌�  can be calculated in the Equations 2 and 3 as presented in 
Hannan et al. (2010). 

𝑦𝑦�𝑖𝑖 =  ∑ 𝑦𝑦𝑖𝑖.exp[−𝐷𝐷(𝑥𝑥,𝑥𝑥𝑖𝑖)]𝑛𝑛
𝑖𝑖=1
∑ exp[−𝐷𝐷(𝑥𝑥,𝑥𝑥𝑖𝑖)]𝑛𝑛
𝑖𝑖=1

  (2) 

𝐷𝐷(𝑥𝑥, 𝑥𝑥𝑖𝑖) = ∑ �𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖𝑖𝑖
𝜎𝜎

�
2

𝑚𝑚
𝑘𝑘=1   (3) 

yi is the weight connection between the ith neuron in the pattern layer and the S-summation neuron, n is 
the number of the training patterns, D is the Gaussian function, m is the number of elements of an input 
vector, xk and xik are the jth element of x and xi, respectively, σ is the spread parameter, whose optimal value 
is determined experimentally. 

For the evaluation of the GRNN model, a regression analysis was performed using statistical indicators 
such as Correlation coefficient (R-square) (Equation 4) and Root mean square error (RMSE) (Equation 5) 
which were obtained in Chasiotis et al. (2020), and Mean relative percent error (P) (Equation 6) which 
published in Movagharnejad & Nikzad (2007) as follows 

(a) The R-square (R2) is given by: 
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𝑅𝑅2 = 1 −  ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛

𝑖𝑖=1⁄   (4) 

(b) Root mean square error (RSME): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
  (5) 

(c) Mean relative percent error (P)  

𝑃𝑃 = 1
𝑛𝑛
∑ �𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖
� 𝑛𝑛

𝑖𝑖=1   (6) 

where yi is the measured value of the observed target in the experiment and 𝑦𝑦�𝑖𝑖 is the predicted value from 
observation of ith- target, n is the number of validation points. The accuracy assessment of a model is a 
compromise between these measured values. The larger the value of R-square and the smaller the value of 
RSME and P, the more accurate the model is. 

3 Experimental setup 

According to several published studies (Yan et al., 2019; Biswas et al., 2018), the drying temperature for 
bitter gourd ranges from 40 °C to 80 °C, depending on the thickness of the bitter gourd and the drying process. 
Hence, this study will investigate temperature drying and sample thickness as components influencing the 
drying process. Temperature values of 60 °C, 65 °C, and 70 °C were established. Also, bitter gourd slices 
with thicknesses of 3 mm, 5 mm, and 7 mm were chosen. The drying time was fixed at 9 h for all conditions 
of experiments. Each experiment was repeated three times, and an average value was computed for each. 

4 Results and discussion 

4.1 Results of experiment 

The results of all experimental conditions were illustrated in Figure 3. There were three levels of 
temperature drying, i.e., 60 °C, 65 °C and 70 °C. Each drying temperature has three thicknesses of bitter 
gourd on trays. 

Figure 3 depicts the effect of slice thickness on bitter gourd drying kinetics in a cabinet dryer. These curves 
clearly show that moisture loss was more remarkable at a thin slice. Almost half of the moisture was 
eliminated in 2 to 3 hours, and the remainder was reduced from 5 to 7 hours. This quick moisture loss occurred 
in the product's free water. The drying of bound water was seen to be slower. 

Regarding the same temperature, Figure 3 indicates a shorter drying time for thin slices of bitter gourd and 
a longer drying time for thicker slices of bitter gourd. In the case of 60 °C, the 3 mm thickness of bitter gourd 
slices were only taken 6 hours to reach the equilibrium moisture content, while the drying time took 8 hours 
to reach the equilibrium moisture content for the 7 mm thickness of bitter gourd slices. Similar tendencies 
were illustrated for other experimental conditions. In particular, at 65 °C and the 3, 5 and 7 mm thicknesses 
were 6 h and 7 h, at 70 °C and the 3, 5 and 7 mm thicknesses were 3 h, 3 h and 7 h. The shortest drying time 
was with a drying condition of 70 °C (highest temperature) and 3mm-thick slices (thinnest thickness). Thinly 
sliced items dried faster because of the increased surface area exposed for a given volume of product. 
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Figure 3. The moisture content of bitter gourd varied depending on the drying conditions. 

Considering the same thickness, it is apparent from these curves that the rate of moisture removal was rapid at a 
high temperature. Figure 3 also indicates that increasing the drying temperature from 60 º C to 70 º C results in a 
considerable drop in bitter gourd moisture content. As the drying temperature rises, so does the entire drying time. 
For example, when the temperature was raised from 60 º C to 70 º C, the drying time of a 3 mm thick bitter gourd 
slice was lowered from 6 to 3 hours, i.e., at the time of obtaining balanced moisture content. A similar trend was seen 
for 5 mm and 7 mm thick-sliced bitter gourd at the same temperatures. This look is due to the stiff texture of bitter 
gourd, which takes a long time to dry. Higher temperatures increased the thermal energy in the samples, requiring 
them to dry faster. 

Furthermore, the results in this study on the influence of drying temperature and the thickness of the drying 
material on the drying process were similar to those in the published articles (Yasmin et al., 2022; Sadin et al., 
2014; Ocoró-zamora & Ayala-aponte, 2013). 

4.2 Performance of models for predict drying moisture content 

In this investigation, 270 data points were obtained from the nine conditions. One experiment condition 
was repeated three times. These experimental data were utilized to train and test a GRNN model for predicting 
the moisture content of bitter gourd during the drying process. The experimental results were divided into 
two groups at random. One set of data was utilized for training, while the other was used to test the model. 
Three independent variables, namely drying time, thickness, and temperature, as well as one dependent 
variable, namely moisture content, were used to train GRNN. When the test error (RMSE) and the mean 
relative percent error (P) are minimum and R-square is greatest, trained GRNN performs best. The Table 1 
shows the results of nine conditions on training performance. 

Table 1. The findings of the measurements of error in the drying time prediction results of the GRNN model. 

No. dataset Temperature Thickness R-square RSME P 
1 60 3 0.999835 0.752876 0.051395 
2 60 5 0.993648 1.878589 0.151456 
3 60 7 0.999708 1.046925 0.067594 
4 65 3 0.973659 2.614232 0.157713 
5 65 5 0.995643 1.673283 0.171586 
6 65 7 0.999594 1.064946 0.032563 
7 70 3 0.999121 0.952297 0.04191 
8 70 5 0.996503 1.460628 0.092816 
9 70 7 0.999061 1.105271 0.057524 
 Average-score values 0.995197 1.498966 0.091617 
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Consequently, the average R-square RMSE, and P values for training the GRNN model were 0.995197, 
1.498966 and 0.091617, respectively. In comparison, the results of GRNN performance from the datasets of 
2, 4 and 5 were lower than others. Overall, the results of the R-square value, the RMSE and the P value 
indicate that GRNN is highly accurate in approximating for the drying process. 

For the test of the trained GRNN model, three experimental conditions such as the temperature of 70 °C 
and the thickness of 3, 5 and 7 mm were chosen. Figure 4 depicts the measured experimental moisture content 
bitter gourd values and the predicted moisture content bitter gourd values of the GRNN model. A flawless 
forecast is depicted in Figure 4 by a diagonal line inclined at 45 degrees from horizontal. It demonstrates that 
the bulk of data points along the training line are exceptionally close to this line, indicating accurate training 
prediction. In comparison, the prediction performance of the trained GRNN model at 70 °C and 5 mm 
thickness performed worse than in the other two cases. 

 
Figure 4. The prediction of GRNN for moisture content of bitter gourd on the three drying conditions. 

5 Conclusion 
This analysis assessed the drying characteristics of bitter gourd slices dried in a halogen dryer at various 

temperatures and material slice thicknesses. Drying time and ultimate moisture content were significantly 
affected by drying temperature and drying material slice thickness. During the drying process of almost all 
bitter gourd slices, decreasing rate phases were observed. According to the findings, the drying properties of 
bitter gourd in the drying process at a temperature range of 60 °C to 70 °C, the drying temperature, and 
material thickness all had a significant influence on moisture content and drying time. The shorter the drying 
time is, the higher the drying temperature or the thinner the thickness of the drying material is. 

The Generalized Regression Neural Network (GRNN) model was also utilized to forecast the decrease in 
moisture content of bitter gourd slices during the halogen drying process. The drying behavior of bitter gourd 
in a halogen dryer, as well as the relationship between bitter gourd moisture content at drying temperatures 
of 70 º C and material thicknesses of 3 mm, 5 mm and 7 mm, were collected and forecasted using the GRNN 
model. The evaluation of GRNN model in the training stage of the nine-condition experiment was 
implemented. The results in average-score values of the evaluation model achieved an R-square value of 
0.995197, an RSME value of 1.498966 and a P value of 0.091617. The validation of the predicable GRNN 
model was also performed. The outcome demonstrated that GRNN is an appropriate method for estimating 
the moisture content of bitter gourd in a halogen dryer. In addition, GRNN is also a promising model for 
optimizing the drying process to improve drying efficiency and save energy for industrial drying. 
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