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ABSTRACT 
Outliers in observation set badly affect all the estimated unknown parameters and 
residuals, that is because outlier detection has a great importance for reliable 
estimation results. Tests for outliers (e.g. Baarda’s and Pope’s tests) are frequently 
used to detect outliers in geodetic applications. In order to reduce the computational 
time, sometimes elimination of some unknown parameters, which are not of 
interest, is performed. In this case, although the estimated unknown parameters and 
residuals do not change, the cofactor matrix of the residuals and the redundancies of 
the observations change. In this study, the effects of the elimination of the unknown 
parameters on tests for outliers have been investigated. We have proved that the 
redundancies in initial functional model (IFM) are smaller than the ones in reduced 
functional model (RFM) where elimination is performed. To show this situation, a 
horizontal control network was simulated and then many experiences were 
performed. According to simulation results, tests for outlier in IFM are more reliable 
than the ones in RFM. 
Keywords: Elimination; Tests for Outliers; Reliability; Adjustment. 
 

RESUMO 
Erros grosseiros nas observações afetam de forma negativa todos os parâmetros 
estimados e os resíduos, razão pela qual a detecção de erros grosseiros tem grande 
importância na estimativa confiável dos resultados. Diversos testes (por exemplo 
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testes de Baarda e Pope) são utilizados frequentemente na detecção de erros 
grosseiros em aplicações geodésicas. Muitas vezes, visando reduzir o tempo 
computacional, é realizada a eliminação de alguns parâmetros que não são de 
interesse. Nesse caso, embora a estimativa dos parâmetros e resíduos não sofra 
modificações, a matriz cofatora dos resíduos e a redundância das observações 
mudam. Nesse estudo, são realizados testes para erros grosseiros e investigados os 
efeitos da eliminação dos parâmetros desconhecidos. Foi provado que quando a 
eliminação é realizada, as redundâncias no modelo funcional inicial (IFM – Initial 
Functional Model) são menores que no modelo funcional reduzido (RFM – 
Reduced Functional Model). Para ilustrar essa situação, uma rede de controle 
horizontal foi simulada e muitos experimentos foram realizados. De acordo com os 
resultados da simulação, testes para erros grosseiros com IFM são mais confiáveis 
que com RFM. 
Palavras-chave: Eliminação; Testes para Erros Grosseiros; Confiabilidade; 
Ajustamento. 
 
 
1. INTRODUCTION 

Outlier detection has a great importance in geodetic networks. The efficacy of 
the unknown parameters and their standard deviations depends on whether the 
observation set includes outliers or not. Sometimes, observations may contain one 
or more outliers. In this case, these outliers must be detected and removed or re-
measured. Tests for outliers are mostly used for the outlier detection (BAARDA, 
1968; POPE, 1976; KOCH, 1999). The efficacies of the tests for outliers change 
depending on the number of outliers and the magnitudes of outliers (HEKIMOGLU 
and KOCH, 2000). Tests for outliers can detect only one outlier reliably 
(HEKIMOGLU, 1997; BASELGA, 2007; HEKIMOGLU et al., 2011). If the 
observations include more than one outlier, the tests for outliers cannot detect them 
reliably due to masking effect or swamping effect, especially when the magnitudes 
of multiple outliers are small (HEKIMOGLU, 2000 and 2005). 

Until recently, capacity of computers was bounded. Therefore, the number of 
unknown parameters in geodetic networks should be small so that some unknowns 
that are not related directly to the coordinates can be eliminated in adjustment 
model. The normal equations may then be inverted by using computer. Herewith, 
large geodetic networks are divided into sub-networks in Helmert-Block method 
and the coordinates of the points (except connection points) are eliminated (WOLF, 
1968; HÖPCKE, 1980). Furthermore, elimination of the unknown parameters as 
bundle block adjustment is preferred in the photogrammetry (MIKHAIL and 
ACKERMANN, 1976; ALBERTZ and KREILING, 1989; KRAUS, 1997). In the 
process of GPS observations, we may want to eliminate the ambiguity unknowns 
(KING et al., 1987; STRANG and BORRE, 1997; GHILANI and WOLF, 2006); 
also in the adjustment model, constraints sometimes may be eliminated to reduce 
the number of parameters (MIKHAIL and ACKERMANN, 1976). 
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To apply outlier detection, the observations of the geodetic networks are 
adjusted as a free network. First, the unknown parameters, which are not related to 
the coordinates of the points, are eliminated to interpret the unconstrained 
adjustment model geometrically (NIEMEIER, 2002). A similar problem to 
eliminate the orientation parameters is commonly occurred in triangulation 
networks. Some unknown parameters that are not of interest are generally 
eliminated. In this context, two different functional models come up: (1) the initial 
functional model (IFM) and (2) the reduced functional model (RFM), where 
elimination is performed.    

Although the estimated unknown parameters and residuals in RFM are the same 
as the ones in IFM, the cofactor matrix of residuals and redundancies ri of the 
observations are different. In this study, firstly, we figure out this situation. 
Secondly, we investigate whether the differences among the redundancies may 
affect the outlier detection or not. Also, the following question is investigated: must 
the outlier detection be applied to RFM or IFM where a group of unknowns is not 
eliminated? To compare the reliabilities of tests for outliers in RFM and IFM, mean 
success rate (MSR) is used. The MSR was introduced to measure the efficacy of the 
tests for outliers (HEKIMOGLU and KOCH, 2000). The MSR is globally the 
number of successful detections over the number of experiments. The MSR also 
means the estimated power of the test (AYDIN, 2011). 

 
2. ELIMINATION BY PARTITIONING BLOCKS 

A general approach for eliminating some (or a group) unknown parameters is to 
split the functional model into blocks. The linearized IFM is given as follows: 

ܔ ൅ ܞ ൌ ,ܠۯ ܔܔ۱ ൌ ଴ߪ
ଶܔܔۿ ൌ ଴ߪ

ଶି۾૚                                      (1) 
where l is the observation vector, v is the residual vector, A is the coefficient 
(design) matrix of the unknown parameters, x is the unknown vector, ߪ଴

ଶ is the 
variance of unit weight, P is the diagonal weight matrix, ܔܔۿ is the cofactor matrix of 
the observations and ۱ܔܔ is the variance covariance matrix of the observations. Then 
the design matrix and the unknown vector given in Eq. (1) are divided into two sub-
matrices and sub-vectors: 

ۯ ൌ ሾۯ૚ ,૛ሿۯ ܠ ൌ ቂ
૚ܠ
૛ܠ

ቃ                                   (2) 
where the sizes of A1, A2, x1 and x2 are n x p, n x q, p x 1 and q x 1, respectively. X1 
contains the main unknown parameters, x2 also contains the unknown parameters, 
which are eliminated. N is the number of observations, p is the number of main 
unknown parameters and q is the number of eliminated unknown parameters. In this 
case, Eq. (1) can be written as follows: 

ܞ ൌ ሾۯ૚ ૛ሿۯ ቂ
૚ܠ
૛ܠ

ቃ െ  (3)                                ܔ
The stochastic model of Eq. (3) is the same as given in Eq. (1); it does not 

change (NIEMEIER, 2002). In principle, the normal equations and the right side of 
the equations can be expressed as in terms of divided blocks: 
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ܠۼ െ ܖ ൌ ૙ ՜ ൤ۼ૚૚ ૚૛ۼ
૛૚ۼ ૛૛ۼ

൨ ቂ
૚ܠ
૛ܠ

ቃ െ ቂ
૚ܖ
૛ܖ

ቃ ൌ ૙                               (4) 

ۼ ൌ ۯ۾܂ۯ ൌ ቈۯ૚
܂

૛ۯ
቉܂ ૚ۯሾ۾ ૛ሿۯ ൌ ቈۯ૚

૚ۯ۾܂ ૚ۯ
૛ۯ۾܂

૛ۯ
૚ۯ۾܂ ૛ۯ

૛ۯ۾܂
቉ ൌ ൤ۼ૚૚ ૚૛ۼ

૛૚ۼ ૛૛ۼ
൨         (5) 

ܖ ൌ ܔ۾܂ۯ ൌ ቈۯ૚
܂

૛ۯ
቉܂ ܔ۾ ൌ ቈۯ૚

ܔ۾܂
૛ۯ

ܔ۾܂
቉ ൌ ቂ

૚ܖ
૛ܖ

ቃ                         (6) 

 Here, if ۼ૛૛ is invertible, in the Eq. (4) x2 can be written as a function of x1: 
૛ܠ ൌ ૛૛ۼ

ି૚ሺܖ૛ െ ૚ሻܠ૛૚ۼ ൌ ૛૛ۼ
ି૚ܖ૛ െ ૛૛ۼ

ି૚ۼ૛૚ܠ૚      (7) 
 If Eq. (7) is put in the first equation of the Eq. (4), 

൫ۼ૚૚ െ ૛૛ۼ૚૛ۼ
ି૚ۼ૛૚൯ܠ૚ ൌ ૚ܖ െ ૛૛ۼ૚૛ۼ

ି૚ܖ૛   (8) 
 Eq. (8) can be written shortly, 

૚ܠഥ૚૚ۼ ൌ  ഥ૚                         (9)ܖ
 Eq. (10) is obtained for the inverse of the ۼഥ૚૚, 

ഥ૚૚ۿ ൌ ሺۼ૚૚ െ ૛૛ۼ૚૛ۼ
ି૚ۼ૛૚ሻିଵ ൌ ሺۼഥ૚૚ሻିଵ                        (10) 

 In this way, the solution of the vector x1 for RFM can be obtained from Eq. 
(9): 

૚ܠ ൌ  ഥ૚                        (11)ܖഥ૚૚ۿ
As calculating the block matrices in IFM, the sub-matrices of the cofactor 

matrix Q are determined. To obtain the sub-matrices, the following equations are 
usually used: 

൤ۼ૚૚ ૚૛ۼ
૛૚ۼ ૛૛ۼ

൨ ൤ۿ૚૚ ૚૛ۿ
૛૚ۿ ૛૛ۿ

൨ ൌ ቂ۳ ૙
૙ ۳ቃ        (12) 

where E denotes the identity matrix. If the sub-matrix N22 is regular, i.e. it is 
invertible; the following equations can be obtained as (Faddejew and Faddejewa, 
1976): 

૛૛ۿ ൌ ૛૛ۼ
ି૚ െ ૛૛ۼ

ି૚ۼ૛૚ۿ૚૛                                 (13) 
૛૚ۿ ൌ െۼ૛૛

ି૚ۼ૛૚ۿ૚૚                 (14) 
 Also, if Eq. (14) is considered in Eq. (12): 

૚૚ۿ ൌ ሺۼ૚૚ െ ૛૛ۼ૚૛ۼ
ି૚ۼ૛૚ሻିଵ                (15) 

The above equation can be obtained, by taking advantage of the symmetry 
property, the following equation can be written as follows: 

૚૛ۿ ൌ ૛૚ۿ
܂ ൌ െۿ૚૚ۼ૛૚

܂ ૛૛ۼ
ି૚ ൌ െۿ૚૚ۼ૚૛ۼ૛૛

ି૚                   (16) 
If Eq. (10) and Eq. (15) are compared to each other, it can be seen that the 

cofactor matrix ۿഥ૚૚ of the x1 is equal to the cofactor matrix Q11 in IFM, i.e.  
૚૚ۿ ൌ  .ഥ૚૚. Elimination does not change the cofactor matrixۿ

To determine the unknown vector x2 in RFM, x1 is obtained from Eq. (11) and 
put into Eq. (7). It is important to determine the residuals in RFM. If x2 is obtained 
from Eq. (7) and put into Eq. (3), the residuals can be computed as follows: 

ܞ ൌ ൫ۯ૚ െ ૛૛ۼ૛ۯ
ି૚ۼ૛૚൯ܠ૚ െ ሺܔ െ ૛૛ۼ૛ۯ

ି૚ܖ૛ሻ                 (17) 
 If the terms of this equation are shortened as follows: 

ܞ ൌ ૚ܠഥۯ െ   ҧ             (18)ܔ
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ഥۯ ൌ ૚ۯ െ ૛૛ۼ૛ۯ
ି૚ۼ૛૚ ൌ ૚ۯ െ ૛ۯ૛ሺۯ

૛ۯ૛ሻି૚ۯ۾܂
 ૚                    (19)ۯ۾܂

ҧܔ ൌ ܔ െ ૛૛ۼ૛ۯ
ି૚ܖ૛ ൌ ܔ െ ૛ۯ૛ሺۯ

૛ۯ૛ሻି૚ۯ۾܂
 (20)                  ܔ۾܂

 Eq. (18) can be written differently: 
ܞ ൌ ቀ۳ െ ૛ۯ૛൫ۯ

૛ۯ૛൯ିଵۯ۾܂
ቁ۾܂ ሺۯ૚ܠ૚ െ  ሻ                  (21)ܔ

 There will not be any change for the estimation value ߪො଴
ଶ of the variance ߪ଴

ଶ. 
ො଴ߪ

ଶ ൌ ܞ۾܂ܞ
௡ି௨

                                                            (22) 
 The equations in this section can be adapted to free network adjustment 
(HECK, 1975). 
 
3. COMPARING THE REDUNDANCIES OF THE OBSERVATIONS IN 

RFM WITH THE ONES IN IFM 
The H and R matrices in IFM are given as follows: 

۶ ൌ ۾܂ۯሻିଵۯ۾܂ۯሺۯ ൌ  (23)                  ۾܂ۯܠܠۿۯ
܀ ൌ ۷ െ ۶ ൌ ۷ െ ۾܂ۯሻିଵۯ۾܂ۯሺۯ ൌ ۷ െ  (24)    ۾܂ۯܠܠۿۯ

where H denotes the hat matrix in statistics and ܠܠۿ matrix can be written from Eq. 

(4) as ܠܠۿ ൌ ሾۼ૚૚ ૚૛ۼ
૛૚ۼ ૛૛ۼ

ሿିଵ  and the hat matrix can be written from Eq. (23) as 

below. 

۶ ൌ ሾۯ૚ ૛ሿۯ ൤ۿ૚૚ ૚૛ۿ
૛૚ۿ ૛૛ۿ

൨ ቈۯ૚
܂

૛ۯ
቉܂  (25)                   ۾

۶ ൌ ૚ۯ૚૚ۿ૚ۯൣ
܂ ൅ ૚ۯ૛૚ۿ૛ۯ

܂ ൅ ૛ۯ૚૛ۿ૚ۯ
܂ ൅ ૛ۯ૛૛ۿ૛ۯ

 (26)     ۾൧܂
 If Eq. (13) and Eq. (14) are considered, the following Eq. can be obtained: 

۶ ൌ ૚ۯ૚૚ۿ૚ۯൣ
܂ ൅ ૛૛ۼ૛൫െۯ

ି૚ۼ૛૚ۿ૚૚൯ۯ૚
܂ ൅ ૛ۯ૚૛ۿ૚ۯ

܂ ൅ ૛૛ۼ૛ۯ
ି૚ሺ۷ െ ૛ۯ૚૛ሻۿ૛૚ۼ

 ۾൧܂
(27) 

 Since the symmetry property, ۼ૛૚ ൌ ૚૛ۼ
܂ , Eq. (27) can be rewritten as below: 

۶ ൌ ૚ۯ૚૚ۿ૚ۯൣ
܂ ൅ ૛૛ۼ૛൫െۯ

ି૚ۼ૚૛
܂ ૚ۯ૚૚൯ۿ

܂ ൅ ૛ۯ૚૛ۿ૚ۯ
܂ ൅ ૛૛ۼ૛ۯ

ି૚ሺ۷ െ ૛ۯ૚૛ሻۿ૛૚ۼ
 ۾൧܂
(28) 

 If Eq. (16) is considered in Eq. (28), Eq. (29) can be obtained: 
۶ ൌ ૚ۯ૚૚ۿ૚ۯൣ

܂ െ ૛૛ۼ૛ۯ
ି૚ۼ૚૛

܂ ૚ۯ૚૚ۿ
܂ ൅ ૛૛ۼ૚૛ۼ૚૚ۿ૚൫െۯ

ି૚൯ۯ૛
܂ ൅ ૛૛ۼ૛ۯ

ି૚ۯ૛
܂ െ

૛૛ۼ૛ۯ
ି૚ۼ૛૚ۿ૚૛ۯ૛

 (29)                  ۾൧܂
Since; 
૛૛ۼ૛ۯ

ି૚ۼ૛૚ۿ૚૛ۯ૛
܂ ൌ െۯ૛ۼ૛૛

ି૚ۼ૛૚൫െۿ૚૚ۼ૚૛ۼ૛૛
ି૚൯ۯ૛

܂ ൌ ૛૛ۼ૛ۯ
ି૚ۼ૛૚ۿ૚૚ۼ૚૛ۼ૛૛

ି૚ۯ૛
 ܂

 H can be rewritten as follows: 
۶ ൌ ૚ۯ૚૚ۿ૚ۯൣ

܂ െ ૛૛ۼ૛ۯ
ି૚ۼ૚૛

܂ ૚ۯ૚૚ۿ
܂ െ ૛૛ۼ૚૛ۼ૚૚ۿ૚ۯ

ି૚ۯ૛
܂ ൅ ૛૛ۼ૛ۯ

ି૚ۯ૛
܂ െ

૛૛ۼ૛ۯ
ି૚ۼ૛૚ۿ૚૚ۼ૚૛ۼ૛૛

ି૚ۯ૛
 ሿ P         (30)܂

 For RFM, the following two equations from the Eq. (18) can be written:  
 ۶ഥ ൌ  (31)                                   ۾܂ഥۯഥሻିଵۯ۾܂ഥۯഥሺۯ

ഥ܀ ൌ ۷ െ ۶ഥ ൌ ۷ െ  (32)              ۾܂ഥۯഥሻିଵۯ۾܂ഥۯഥሺۯ
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Since ۯ ൌ ૚ۯ െ ૛૛ۼ૛ۯ
ି૚ۼ૛૚,ܠܠۿ ൌ ܠܠۿ ,૚ିۼ ൌ ൤ۿ૚૚ ૚૛ۿ

૛૚ۿ ૛૛ۿ
൨ and ܠܠۿ ൌ ૚૚ۼ

ି૚ ൌ

ഥ૚૚ۿ ൌ  :૚૚, Eq. (31) can be written as belowۿ
۶ഥ ൌ ૚ۯൣ െ ૛૛ۼ૛ۯ

ି૚ۼ૛૚൧ۿ૚૚ൣۯ૚ െ ૛૛ۼ૛ۯ
ି૚ۼ૛૚൧்(33)                            ۾ 

۶ഥ ൌ ૚૚ۿ૚ۯൣ െ ૛૛ۼ૛ۯ
ି૚ۼ૛૚ۿ૚૚൧ൣۯ૚

܂ െ ૛૚ۼ
܂ ૛૛ۼ

ି૚ۯ૛
 (34)                          ۾൧܂

۶ഥ ൌ
૚ۯ૚૚ۿ૚ۯൣ

܂ െ ૛૛ۼ૛ۯ
ି૚ۼ૛૚ۿ૚૚ۯ૚

܂ െ ૛૚ۼ૚૚ۿ૚ۯ
܂ ૛૛ۼ

ି૚ۯ૛
܂ ൅ ૛૛ۼ૛ۯ

ି૚ۼ૛૚ۿ૚૚ۼ૛૚
܂ ૛૛ۼ

ି૚ۯ૛
  ۾൧܂
(35) 

 If Eq. (30) and (35) are taken into account, Eq. (36) can be obtained:  
۶ ൌ ۶ഥ ൅ ૛૛ۼ૛ۯ

ି૚ۯ૛
 (36)                ۾܂

Since ۯ૛ۼ૛૛
ି૚ۯ૛

૛૛ۼ૛ۯis a quadratic form, it can be expressed as ሺ  ۾܂
ି૚ۯ૛

ሻܑܑ۾܂ ൐
0. Therefore ݄௜௜ ሺൌ ሺ۶ሻ௜௜ሻ is always bigger than hത୧୧ ሺൌ ሺ۶ഥሻ௜௜ሻ, i.e. ሺh୧୧ ൐ hത୧୧ሻ and 
also ݎ௜ሺൌ ሺ܀ሻ௜௜ሻ ൏ ҧ௜ሺൌݎ ሺ܀ഥሻ௜௜ሻ, since ݄௜௜ ൌ 1 െ ௜ and ത݄௜௜ݎ ൌ 1 െ   .ҧ௜ݎ

The equations in this section can be adapted to free network adjustment 
(HECK, 1975). 
 
4. TESTS FOR OUTLIERS 

Outlier detection procedures were proposed by Baarda (1968) and Pope (1976) 
for geodesy. In these outlier detection processes, “good” observations originate from 
the same distribution, which is generally expressed as a normal distribution 
ܰሺߤ, ଴ߪ

ଶሻ. Observations that contain outliers are called as “bad” observations. 
Let an observation l୧

′′ has an outlier δl୧ with l୧
′′ ൌ l୧

′ ൅ δl୧. The hypothesis 
H଴: δl୧ ൌ 0 against Hଵ: δl୧ ് 0 is tested. If the observations are uncorrelated and the 
variance σ଴

ଶ is known, the standardized residuals derived from IFM can be presented 
as: 

௜ݓ ൌ |௩೔|
ఙబඥ௤ೡ೔ೡ೔

                                          (37ª) 

where ݍ௩௜௩௜ is the diagonal elements of ܞܞۿ. 
If ݓ௜ ൐ ଵିఈݖ ଶ⁄ , which is the upper ߙ 2⁄  percentage point of the normal 

distribution, the observation ݈௜
′′ is accepted as a bad observation where α is chosen as 

0.001. This is called as Baarda’s method. If there is more than one outlier among the 
observations, Baarda’s method is used iteratively (BAARDA, 1968).  

If the variance ߪ଴
ଶ is not known before, the studentized residual is used for 

Pope’s test: 

߬௜ ൌ |௩೔|
ఙෝబඥ௤ೡ೔ೡ೔

                                 (37b) 

where ߪො଴ is given in Eq. (22). If the level of significance α is related to all 
observations, the level of each observation must be ߙ ݊⁄ . ܲ൫߬௜ ൐ ܿଵିఈ,௡,௡ି௨൯ ൌ 1 െ
ߙ 2⁄  where ܿଵିఈ,௡,௡ି௨ ൌ ߬ଵିఈ ௡⁄ ,ଵ,௡ି௨ିଵ.  

If the following relations are taken into account,  
ܞܞۿ ൌ ܔܔۿ െ ܂ۯܠܠۿۯ ൌ ૚ି۾ െ  (38)     ܂ۯܠܠۿۯ
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۾ܞܞۿ ൌ ۷ െ ۾܂ۯܠܠۿۯ ൌ  (39)           ܀
૚ି۾۾ܞܞۿ ൌ ૚ି۾܀ ՜ ܞܞۿ ൌ  ૚                  (40)ି۾܀

the below relation can be written as: 
௩௜௩௜ݍ ൌ ௥೔

௣೔
ൌ ሺܞܞۿሻ௜௜ ൌ ሺି۾܀૚ሻ௜௜                   (41) 

 If the Eqs. (37a) and (37b) are rewritten by considering Eq. (41), the following 
equations can be obtained 

௜ݓ ൌ |௩೔|ඥ௣೔

ఙబඥ௥೔
                      (42ª) 

߬௜ ൌ |௩೔|ඥ௣೔

ఙෝబඥ௥೔
                      (42b) 

If rank A=q holds in the Gauss-Markov model, then 
ܿଵିఈ,௡,௡ି௤ ൌ ߬ଵିఈ ௡⁄ ,ଵ,௡ି௤ିଵ, where α is generally chosen as 0.05 or 0.01 (Koch, 
1999). 

For RFM, we can generate the following equations similar to Eqs. (39) and 
(40). 

۾ܞܞഥۿ ൌ ۷ െ ۾܂ഥۯܠܠۿഥۯ ൌ  ഥ                              (43)܀
૚ି۾۾ܞܞഥۿ ൌ ૚ି۾ഥ܀ ՜ ܞܞഥۿ ൌ  ૚           (44)ି۾ഥ܀

If above two equations are considered, the following equation can be written as 

ത௩௜௩௜ݍ ൌ ௥ҧ೔
௣೔

                              (45) 

and similar to Eqs. (42a) and (42b), the followings can be obtained: 

ഥ௜ݓ ൌ |௩೔|ඥ௣೔

ఙబඥ௥ҧ೔
                            (46ª) 

߬ҧ௜ ൌ |௩೔|ඥ௣೔

ఙෝబඥ௥ҧ೔
                                   (46b) 

Since ݎ௜ ൏  .ഥ௜ and ߬ҧ௜ in RFM, respectivelyݓ  ௜ and ߬௜ in IFM are bigger thanݓ ,ҧ௜ݎ
It means that the effects of the outlier with small magnitude in IFM may be reflected 
stronger than the ones in RFM on the standardized or studentized residuals. 
Therefore, the MSRs of the tests for outliers in IFM become bigger than the MSRs 
of the ones in RFM.  
 
5. CASE STUDIES 
 
5.1  Elimination of orientation parameters in triangulation network 

The method dating back to C. F. Gauss uses the elimination of the orientation 
parameters at triangulation networks. If we consider only one unknown parameter, 
which has the same coefficient in the residual equations, it can be regarded as a 
special case of the elimination. For elimination of the only one unknown x2 (q=1 in 
Eq. (2)), the related design matrix can be written: 

૛ሺ୬୶ଵሻۯ ൌ ቂ܍
૙ቃ , T܍

ሺ૚ܓܠሻ ൌ ሾ1 1 1 … 1ሿ, ૙T
ሺ୬ି୩,ଵሻ ൌ ሾ0 0 0 … 0ሿ            (47) 
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where the size of the A2 is nx1 and k is the number of direction observations at one 
station. If P = I, the reduced approach according to Eq. (19) is given as follows: 

ഥۯ ൌ ૚ۯ െ  ૚                     (48)ۯ܂܍ሻିଵ܍܂܍ሺ܍
ഥۯ ൌ ૚ۯ െ ଵ

௞
 ૚                        (49)ۯ܂܍܍

where ۯ܂܍૚ means column sum of the A1 (it must be multiply by 1/k) (Niemeier, 
2002). At the same time, it should be eliminated from the initial residual equations. ܔҧ 
is obtained similarly, 

ҧܔ ൌ ܔ െ  (50)                                    ܔ܂܍ሻିଵ܍܂܍ሺ܍
ҧܔ ൌ ܔ െ ଵ

௞
 (51)                      ܔ܂܍܍

where column sum of ܔ܂܍ is similarly divided by k and reduced from li. Mean 
residual equation that is eliminated from each residual equation is computed as 
follows: 

ଵ
௞

૚ܠ૚ۯ܂܍ ൌ ଵ
௞

ܔ܂܍ ൌ 0                           (52) 
In practice, Eq. (52) is computed for each station by which direction 

observations are made at the network. The linearized residual equations for a 
station, in which k direction measurements are made can be written with the 
orientation parameter o: 

ଵݒ ൌ ܽଵଵݔଵ ൅ ܾଵଵݕଵ ൅ ܽଵଶݔଶ ൅ ܾଵଶݕଶ ൅ ڮ െ ݋ െ ݈ଵ  
ଶݒ ൌ ܽଶଵݔଵ ൅ ܾଶଵݕଵ ൅ ܽଶଶݔଶ ൅ ܾଶଶݕଶ ൅ ڮ െ ݋ െ ݈ଶ       (53) 

 ڮ
௞ݒ ൌ ܽ௞ଵݔଵ ൅ ܾ௞ଵݕଵ ൅ ܽ௞ଶݔଶ ൅ ܾ௞ଶݕଶ ൅ ڮ െ ݋ െ ݈௞ 

 Reduced residual equations are obtained as follows: 
ଵݒ ൌ തܽଵଵݔଵ ൅ തܾଵଵݕଵ ൅ തܽଵଶݔଶ ൅ തܾଵଶݕଶ ൅ ڮ ݈ ҧଵ  

ଶݒ ൌ തܽଶଵݔଵ ൅ തܾଶଵݕଵ ൅ തܽଶଶݔଶ ൅ തܾଶଶݕଶ ൅ ڮ ݈ ҧଶ                (54) 
 ڮ

௞ݒ ൌ തܽ௞ଵݔଵ ൅ തܾ௞ଵݕଵ ൅ തܽ௞ଶݔଶ ൅ തܾ௞ଶݕଶ ൅ ڮ ݈ ҧ௞ 
where തܽ௜௝ ൌ ܽ௜௝ െ ଵ

௞
∑ ܽ௜௝

௞
௜ୀଵ ,  തܾ௜௝ ൌ ܾ௜௝ െ ଵ

௞
∑ ܾ௜௝

௞
௜ୀଵ , ݈ ҧ௜ ൌ ݈௜ െ ଵ

௞
∑ ݈௜

௞
௜ୀଵ  

 
 5.2 Simulation 

In this study, a Monte-Carlo simulation technique has been used to demonstrate 
as above described case. To measure the reliability of tests for outliers in IFM and 
RFM, a horizontal control network was simulated. Fig. 1 presents the positions of 
the points and observations for the horizontal control. The simulated horizontal 
control network given in Figure 1 consists of 7 points where n = 48, u = 21 and 
degrees of freedom f = 30. The MSRs for IFM and RFM are presented for the same 
network. All results have been obtained using MATLAB version R2006a.  

The random errors ݁௜ are generated from a normal distribution ܰሺߤ, ଴ߪ
ଶሻ with 

expected value (ߤ ൌ 0) and variance ߪ଴
ଶ by using the random number generator of 

MATLAB. The process of simulating the good observations ݈௜ and bad observations 
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݈௜
ᇱᇱ are obtained as the same as Hekimoglu and Erenoglu (2007), Erenoglu and 

Hekimoglu (2010), Hekimoglu et al. (2011). 
For the horizontal control network, the observations, such as direction 

measurements ݈ଵ௜
ᇱ  and distance measurements ݈ଶ௝

ᇱ  are computed from the coordinates 
of the points. They are free of random errors. The random errors are generated from 
a normal distribution as follows: for direction measurements ݁௟ଵ~ܰሺߤ, ௟ଵߪ

ଶ ሻ with 
௟ଵߪ ൌ 3 mgon and for the distance measurements ݁௟ଶ௝~ܰ൫ߤ, ௟ଶ௝ߪ

ଶ ൯ with ߪ௟ଶ௝ ൌ
േሺ3 ݉݉ ൅ 10ି଺ݔ2

௜ܵ௝ሻ where Sij is the distance between ith and jth points. The 
random errors are added to the distance and direction measurements such as 
݈ଵ௜ ൌ ݈ଵ௜

′ ൅ ݁ଵ௜ and ݈ଶ௝ ൌ ݈ଶ௝
′ ൅ ݁ଶ௝. Hereby, the good observations ݈௜  are obtained. 

Then, the random error ݁௜ is replaced by the outlier ݈ߜ௜ in the related observation as 
݈௜
′′ ൌ ݈௜

′ ൅ ௜, thus the contaminated observations ݈௜݈ߜ
′′ are obtained. The approximate 

values of the point coordinates are given in Table 1. The direction measurements 
and distance measurements are also given Table 2 and Table 3, respectively. 

 
Figure 1 – Simulated horizontal control network.

 
 

Table 1 – The approximate values of the points’ coordinates shown in Fig. 1. 
 Y (m) X (m) 
1 -45162.050 4405916.380
2 -42162.060 4405916.376
3 -39162.681 4405916.459
4 -43565.155 4403318.288
5 -40565.774 4403318.360
6 -44824.810 4408514.459
7 -41824.248 4408514.467
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Table 2 – The direction measurements and standard deviations. 

Observation  
Number 

Directions 
From      to

Observed 
values     
(gon) 

Standard 
Deviations 

(mgon) 
1 1 6 20.0004 0.3 
2  7 69.6757 0.3 
3  2 111.7825 0.3 
4  5 144.5358 0.3 
5  4 176.6981 0.3 
6 2 7 19.9987 0.3 
7  3 111.7675 0.3 
8  5 176.6938 0.3 
9  4 243.2922 0.3 

10  1 311.7673 0.3 
11  6 360.9849 0.3 
12 3 5 20.0002 0.3 
13  4 54.5348 0.3 
14  2 88.4752 0.3 
15  7 137.7074 0.3 
16 4 2 20.0008 0.3 
17  3 54.5355 0.3 
18  5 88.4755 0.3 
19  1 353.3907 0.3 
20  6 373.3349 0.3 
21 5 3 20.0003 0.3 
22  4 288.4753 0.3 
23  1 321.2286 0.3 
24  2 353.4017 0.3 
25 6 7 19.9992 0.3 
26  2 69.2171 0.3 
27  4 104.8596 0.3 
28  1 128.2172 0.3 
29 7 3 20.0001 0.3 
30  2 79.0007 0.3 
31  1 128.6606 0.3 
32  6 170.7682 0.3 
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Table 3 – The distance measurements and standard deviations. 

Observation  
Number 

Distances 
From       to

Observed 
values    

(m) 

Standard 
Deviations 

(mm) 
33 1 2 3000.018 9.0 
34 4 3049.578 9.1 
35 5 5279.687 13.6 
36 6 2619.875 8.2 
37 7 4229.810 11.5 
38 2 3 2999.380 9.0 
39 4 2952.770 8.9 
40 5 3049.246 9.1 
41 6 3720.252 10.4 
42 7 2619.961 8.2 
43 3 4 5111.976 13.2 
44 5 2952.760 8.9 
45 7 3719.352 10.4 
46 4 5 2999.381 9.0 
47 6 5346.651 13.7 
48 6 7 3000.622 9.0 

 
 

To test the reliabilities of the IFM and RFM for tests for outliers, 6th 
observation (i.e. direction from 2 to 7) is contaminated by the outlier. The 
magnitude of the outlier is -1.255 mgon. The 6th observation given in Table 2 
includes this outlier. After adding the outlier to the observation, Baarda’s method 
(i.e. assume that the a priori variance ߪ଴

ଶ is known) and Pope’s method (i.e. assume 
that the a priori variance ߪ଴

ଶ is unknown before) are applied; and obtained 
redundancies, standardized and studentized residuals are represented for IFM and 
RFM in Table 4. In this study, ߙ is chosen 0.001 for Baarda’s test and 0.05 for 
Pope’s test, respectively. As it is seen from Table 4, the standardized and 
studentized residuals of the IFM are bigger than the ones of RFM. Although the 
outlier (6th observation) can be detected in IFM, it cannot be detected in RFM. But, 
one sample is not enough to decide that the results of the IFM are more reliable than 
the RFM, that’s why, a hundred different contaminated samples of ܔᇱᇱ are simulated 
for each of the data sets l. For a hundred different data sets l, totally 10000 different 
contaminated samples of ܔᇱᇱ, are obtained separately. Baarda’s test and Pope’s test 
are applied on these contaminated samples. 
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Table 4 - The redundancy, standardized and studentized residuals for 
 IFM and RFM. 

Obs.    
Num 

Residual 
(mgon, 
mm) 

IFM RFM 
Standardized  

Residuals 
Studentized   
Residuals Redundancy Standardized  

Residuals 
Studentized   
Residuals 

Redun-
dancy 

1 -0.076 0.334 0.302 0.57 0.287 0.260 0.77 
2 0.157 0.613 0.555 0.72 0.543 0.491 0.92 
3 0.034 0.133 0.121 0.72 0.118 0.107 0.92 
4 -0.146 0.568 0.514 0.73 0.504 0.456 0.93 
5 0.031 0.129 0.117 0.64 0.113 0.102 0.84 
6 0.808 3.428 3.102 0.62 3.042 2.753 0.78 
7 -0.292 1.236 1.119 0.62 1.097 0.993 0.79 
8 0.004 0.015 0.014 0.65 0.013 0.012 0.81 
9 0.005 0.021 0.019 0.67 0.019 0.017 0.83 
10 -0.121 0.487 0.441 0.68 0.436 0.395 0.85 
11 -0.404 1.619 1.465 0.69 1.454 1.316 0.86 
12 -0.107 0.458 0.415 0.61 0.386 0.349 0.86 
13 0.159 0.633 0.573 0.70 0.543 0.492 0.95 
14 0.010 0.041 0.037 0.68 0.035 0.031 0.93 
15 -0.062 0.262 0.237 0.62 0.221 0.200 0.87 
16 -0.325 1.274 1.154 0.72 1.128 1.021 0.92 
17 -0.227 0.883 0.799 0.73 0.783 0.708 0.93 
18 -0.087 0.363 0.329 0.63 0.317 0.287 0.83 
19 0.337 1.384 1.253 0.66 1.212 1.097 0.86 
20 0.301 1.177 1.066 0.73 1.043 0.944 0.93 
21 -0.052 0.233 0.211 0.56 0.194 0.176 0.81 
22 -0.058 0.248 0.224 0.61 0.209 0.189 0.86 
23 -0.173 0.689 0.624 0.70 0.592 0.536 0.95 
24 0.283 1.147 1.038 0.68 0.980 0.887 0.93 
25 0.335 1.444 1.307 0.60 1.213 1.098 0.85 
26 -0.204 0.811 0.734 0.70 0.696 0.630 0.95 
27 -0.277 1.104 0.999 0.70 0.947 0.858 0.95 
28 0.146 0.622 0.563 0.61 0.524 0.474 0.86 
29 0.012 0.053 0.048 0.59 0.044 0.040 0.84 
30 -0.422 1.754 1.587 0.64 1.488 1.347 0.89 
31 0.654 2.625 2.376 0.69 2.249 2.035 0.94 
32 -0.244 1.064 0.963 0.58 0.890 0.806 0.83 
33 -10.925 1.551 1.404 0.61 1.551 1.404 0.61 
34 -5.233 0.822 0.744 0.49 0.822 0.744 0.49 
35 14.686 1.259 1.140 0.74 1.259 1.140 0.74 
36 3.389 0.653 0.591 0.40 0.653 0.591 0.40 
37 6.943 0.739 0.669 0.67 0.739 0.669 0.67 
38 -8.292 1.242 1.124 0.55 1.242 1.124 0.55 
39 -2.695 0.395 0.358 0.59 0.395 0.358 0.59 
40 -4.843 0.705 0.638 0.57 0.705 0.638 0.57 
41 7.656 0.905 0.820 0.66 0.905 0.820 0.66 
42 -0.514 0.089 0.081 0.49 0.089 0.081 0.49 
43 -1.631 0.145 0.132 0.72 0.145 0.132 0.72 
44 2.599 0.471 0.426 0.38 0.471 0.426 0.38 
45 19.291 2.715 2.458 0.46 2.715 2.458 0.46 
46 -1.724 0.285 0.258 0.45 0.285 0.258 0.45 
47 -6.861 0.587 0.531 0.73 0.587 0.531 0.73 
48 -7.625 1.322 1.197 0.41 1.322 1.197 0.41 
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To measure the reliabilities of the tests for outliers, the MSR criterion has been 

handled. A test for outlier is regarded as successful when the test statistics can 
separate the null hypothesis H0 from the alternative hypothesis H1 at the significance 
level α. The mean success rate (MSR) is defined with dividing the number of 
success by the number of experiments. If a good sample is contaminated by 
replacing any number of the observations with arbitrary values, then a contaminated 
sample obtained. Many good samples can be obtained by generating the different 
subsets of random errors. Thus, for each good sample, many contaminated samples 
are generated by replacing any number of good observations with  arbitrary values.  

Since a simulation is used to generate the outliers, it is possible to know exactly 
whether an observation is contaminated or not, in advance of carrying out the 
analysis. After applying the outlier detection method, if the observation is identified 
as an outlier and it corresponds to truly contaminated observation, the method is 
regarded as successful. If the method fails, it is considered unsuccessful 
(HEKIMOGLU and ERENOGLU 2007, HEKIMOGLU and KOCH 2000, 
ERENOGLU and HEKIMOGLU 2010, HEKIMOGLU et al. 2011). Owing to using 
simulation techniques, a lot of samples can be generated easily.  The MSR is 
globally the number of successful detections over the number of experiments. 

The magnitudes of the small outliers (whose magnitudes lie between 3ߪ and 
 are generated ,(ߪand 12 ߪwhose magnitudes lie between 6) and large outliers ,(ߪ6
separately.  Also, both tests for outliers are iteratively applied. Only the observation 
with the largest normalized or studentized residual is tested and in case it is rejected, 
it is removed and the remaining observations are then adjusted again. But, in this 
case, a geometric defect of the network may occur. To prevent such a geometric 
defect, the detected observation is not removed; instead of this, the related weight ݌௜ 
of the observation ݈௜ is set smaller for the next iteration step, for example pi=0.001 x 
pi. In this case, the initial approximation of the orientation is estimated by using the 
weighted arithmetic mean. 

 
Table 5 – The MSRs of IFM and RFM for the magnitudes which lie between  

3σ and 6σ. 

The number of 
outlier(s) 

IFM RFM 
Baarda 

(%) 
Pope 
(%) 

Baarda 
(%) 

Pope 
(%) 

0 05 02 01 00 
1 55.2±13.5 45.1±18.0 43.7±8.3 26.1±15.3 
2 30.2±9.3 15.3±13.6 18.0±5.5 3.3±5.0 
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Table 6 – The MSRs of IFM and RFM for the magnitudes which lie between 
6σ and 12σ. 

The number of 
outlier(s) 

IFM RFM 
Baarda 

(%) 
Pope 
(%) 

Baarda 
(%) 

Pope 
(%) 

1 94.5±19.9 96.7±10.9 95.6±10.9 95.1±5.9 
2 93.6±18.1 92.1±11.6 90.3±10.5 75.8±13.9 

 
The orientation parameters are eliminated in RFM; whereas they are estimated 

in IFM.  Also, the observations at the network given in Fig. 1 were adjusted as free 
network.  Tables 5 and 6 include the MSRs of both Baarda’s and Pope’s tests for 
IFM and RFM. The MSRs are increased by 11.5% (55.2% - 43.7%) and 19.0% 
(45.1% - 26.1%) for the Baarda’s and Pope’s tests, respectively, for one small 
outlier. Also, the reliability of IFM for two outliers is bigger than the ones of RFM. 
However, the MSRs of IFM are bigger than the RFM when there is no outlier in 
observation set. This is the type I error. The increase in type I error for IFM is 4% 
(5% - 1%) for Baarda’s test and 2% (2% - 0%) for Pope’s test. The advantage of 
IFM is 7.5% (11.5% - 4%) for Baarda’s test and 17% (19% - 2%) for Pope’s test. 
However, for one large outlier the MSRs for both tests are not increased 
significantly. 
 
6. CONCLUSION  

Elimination of the unknown parameters in adjustment model is sometimes 
preferred to shorten the calculation time. Although the estimated unknown 
parameters, residuals, cofactor matrix of the unknown parameters in IFM are the 
same as the ones in RFM, the cofactor matrix of the residuals and redundancies of 
the observations are different. The redundancies in IFM are smaller than the ones in 
RFM; this situation is proved in this study. Since the diagonal elements of the 
cofactor matrix of the residuals in RFM is bigger than the ones in IFM, the 
standardized residuals or studentized residuals in IFM are bigger than RFM. 
Therefore, the effects of the outliers do not appear strongly on the residuals for 
some cases of RFM where the magnitude of outlier is small, and the outliers cannot 
be detected.  

In this study, two models are regarded for simulation. The orientation 
parameters are considered as unknowns in IFM and they are eliminated in RFM. To 
compare the reliabilities of tests for outliers in RFM and IFM, tests for outliers are 
applied on simulated horizontal control network. The reliability is measured by 
MSR. According to simulation results, the reliabilities of the tests for outliers in 
IFM are bigger than the ones in RFM for small and large outliers in condition that 
the observation set contains one and two outliers. For this reason, to apply tests for 
outliers on IFM should be preferred.  
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