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ABSTRACT
Outliers in observation set badly affect all the estimated unknown parameters and
residuals, that is because outlier detection has a great importance for reliable
estimation results. Tests for outliers (e.g. Baarda’s and Pope’s tests) are frequently
used to detect outliers in geodetic applications. In order to reduce the computational
time, sometimes elimination of some unknown parameters, which are not of
interest, is performed. In this case, although the estimated unknown parameters and
residuals do not change, the cofactor matrix of the residuals and the redundancies of
the observations change. In this study, the effects of the elimination of the unknown
parameters on tests for outliers have been investigated. We have proved that the
redundancies in initial functional model (IFM) are smaller than the ones in reduced
functional model (RFM) where elimination is performed. To show this situation, a
horizontal control network was simulated and then many experiences were
performed. According to simulation results, tests for outlier in IFM are more reliable
than the ones in RFM.
Keywords: Elimination; Tests for Outliers; Reliability; Adjustment.

RESUMO
Erros grosseiros nas observagdes afetam de forma negativa todos os parametros
estimados e os residuos, razdo pela qual a detec¢do de erros grosseiros tem grande
importancia na estimativa confidvel dos resultados. Diversos testes (por exemplo
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348 Elimination of some unknown parameters and its effect on outlier detections.

testes de Baarda e Pope) sdo utilizados frequentemente na deteccdo de erros
grosseiros em aplicagdes geodésicas. Muitas vezes, visando reduzir o tempo
computacional, é realizada a eliminagdo de alguns parametros que ndo sdo de
interesse. Nesse caso, embora a estimativa dos parametros ¢ residuos ndo sofra
modifica¢des, a matriz cofatora dos residuos e a redundancia das observagdes
mudam. Nesse estudo, sdo realizados testes para erros grosseiros e investigados os
efeitos da eliminacdo dos parametros desconhecidos. Foi provado que quando a
eliminagdo ¢ realizada, as redundéancias no modelo funcional inicial (IFM — Initial
Functional Model) sdo menores que no modelo funcional reduzido (RFM -
Reduced Functional Model). Para ilustrar essa situagdo, uma rede de controle
horizontal foi simulada e muitos experimentos foram realizados. De acordo com os
resultados da simulacdo, testes para erros grosseiros com IFM sdo mais confiaveis
que com RFM.

Palavras-chave: Eliminagdo; Testes para Erros Grosseiros; Confiabilidade;
Ajustamento.

1. INTRODUCTION

Outlier detection has a great importance in geodetic networks. The efficacy of
the unknown parameters and their standard deviations depends on whether the
observation set includes outliers or not. Sometimes, observations may contain one
or more outliers. In this case, these outliers must be detected and removed or re-
measured. Tests for outliers are mostly used for the outlier detection (BAARDA,
1968; POPE, 1976; KOCH, 1999). The efficacies of the tests for outliers change
depending on the number of outliers and the magnitudes of outliers (HEKIMOGLU
and KOCH, 2000). Tests for outliers can detect only one outlier reliably
(HEKIMOGLU, 1997; BASELGA, 2007; HEKIMOGLU et al., 2011). If the
observations include more than one outlier, the tests for outliers cannot detect them
reliably due to masking effect or swamping effect, especially when the magnitudes
of multiple outliers are small (HEKIMOGLU, 2000 and 2005).

Until recently, capacity of computers was bounded. Therefore, the number of
unknown parameters in geodetic networks should be small so that some unknowns
that are not related directly to the coordinates can be eliminated in adjustment
model. The normal equations may then be inverted by using computer. Herewith,
large geodetic networks are divided into sub-networks in Helmert-Block method
and the coordinates of the points (except connection points) are eliminated (WOLF,
1968; HOPCKE, 1980). Furthermore, elimination of the unknown parameters as
bundle block adjustment is preferred in the photogrammetry (MIKHAIL and
ACKERMANN, 1976; ALBERTZ and KREILING, 1989; KRAUS, 1997). In the
process of GPS observations, we may want to eliminate the ambiguity unknowns
(KING et al., 1987; STRANG and BORRE, 1997; GHILANI and WOLF, 2006);
also in the adjustment model, constraints sometimes may be eliminated to reduce
the number of parameters (MIKHAIL and ACKERMANN, 1976).
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To apply outlier detection, the observations of the geodetic networks are
adjusted as a free network. First, the unknown parameters, which are not related to
the coordinates of the points, are eliminated to interpret the unconstrained
adjustment model geometrically (NIEMEIER, 2002). A similar problem to
eliminate the orientation parameters is commonly occurred in triangulation
networks. Some unknown parameters that are not of interest are generally
eliminated. In this context, two different functional models come up: (1) the initial
functional model (IFM) and (2) the reduced functional model (RFM), where
elimination is performed.

Although the estimated unknown parameters and residuals in RFM are the same
as the ones in IFM, the cofactor matrix of residuals and redundancies r; of the
observations are different. In this study, firstly, we figure out this situation.
Secondly, we investigate whether the differences among the redundancies may
affect the outlier detection or not. Also, the following question is investigated: must
the outlier detection be applied to RFM or IFM where a group of unknowns is not
eliminated? To compare the reliabilities of tests for outliers in RFM and IFM, mean
success rate (MSR) is used. The MSR was introduced to measure the efficacy of the
tests for outliers (HEKIMOGLU and KOCH, 2000). The MSR is globally the
number of successful detections over the number of experiments. The MSR also
means the estimated power of the test (AYDIN, 2011).

2. ELIMINATION BY PARTITIONING BLOCKS

A general approach for eliminating some (or a group) unknown parameters is to
split the functional model into blocks. The linearized IFM is given as follows:

l+V=AX,C“ =0'02Q“ :O'OZP_]' (1)

where | is the observation vector, Vv is the residual vector, A is the coefficient
(design) matrix of the unknown parameters, X is the unknown vector, o¢ is the
variance of unit weight, P is the diagonal weight matrix, Qy is the cofactor matrix of
the observations and Cy; is the variance covariance matrix of the observations. Then
the design matrix and the unknown vector given in Eq. (1) are divided into two sub-
matrices and sub-vectors:

A=A Arlx=[]] @

where the sizes of A;, Ay, X; and X, arenx p,nx q, p x 1 and q x 1, respectively. X;
contains the main unknown parameters, X, also contains the unknown parameters,
which are eliminated. N is the number of observations, p is the number of main
unknown parameters and q is the number of eliminated unknown parameters. In this
case, Eq. (1) can be written as follows:

X
v=[Ar Aj[ |1 3)
The stochastic model of Eq. (3) is the same as given in Eq. (1); it does not

change (NIEMEIER, 2002). In principle, the normal equations and the right side of
the equations can be expressed as in terms of divided blocks:
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o Ni4 N1z] X1] M) _
Nx—n=0- [N21 N,, [Xz] [nz] =0 4)
Al ATPA; ATPA
N=ATPA = [1IP[A; Ap)= [TID D[R] )
A} ATPA, AlPA,| [N21 Ny
Al ATPI]  my
n=ATPI=| 1|PI=| 1 |= 6
[Ag [A;pl] na) ©
Here, if N5, is invertible, in the Eq. (4) X, can be written as a function of X;:
Xz = N33 (2 — Np;Xq) = N3zmp — Nz7Npgxy (7)
If Eq. (7) is put in the first equation of the Eq. (4),
(N33 — N32N37N2p)x4 = ng — NqipNoin, (¥
Eq. (8) can be written shortly, B
N11X1_: ﬁ1 (9)
Eq. (10) is obtaine_d for the inverse of the Ny,
Q11 = (Nyg — NgpN33 Ny )™t = (Nyy) ™! (10)

In this way, the solution of the vector X; for RFM can be obtained from Eq.
): -
X1 = Qq1y (11)
As calculating the block matrices in IFM, the sub-matrices of the cofactor
matrix Q are determined. To obtain the sub-matrices, the following equations are
usually used:
Niq N1z] [Qn le] _ [E 0 (12)
N2:1 N2zl {Q21 Qa2 0 E
where E denotes the identity matrix. If the sub-matrix Ny, is regular, i.e. it is
invertible; the following equations can be obtained as (Faddejew and Faddejewa,
1976):

Q22 = N37 — N37N31Qs2 (13)
Q21 = —N37N21 Q4 (14)

Also, if Eq. (14) is considered in Eq. (12):
Q11 = (N33 — N32N37Npq) ™ (15)

The above equation can be obtained, by taking advantage of the symmetry

property, the following equation can be written as follows:
Q2 = Q31 = —Q11N71N;; = —QqyNpNz; (16)

If Eq. (10) and Eq. (15) are compared to each other, it can be seen that the
cofactor matrix Qq, of the X; is equal to the cofactor matrix Qm; in IFM, i.e.
Q11 = Qq;. Elimination does not change the cofactor matrix.

To determine the unknown vector X, in RFM, X; is obtained from Eq. (11) and
put into Eq. (7). It is important to determine the residuals in RFM. If X, is obtained
from Eq. (7) and put into Eq. (3), the residuals can be computed as follows:

v = (A1 — AsN33Npq )xg — (1— ANz ny) 17)
If the terms of this equation are shortened as follows:
v=Ax;—1 (18)
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A=Ay = AoNgiNyy = Ay - Ay (ATPA,) 1 ATPA, (19)
1=1-A,N;}n, =1-A,(ATPA,) 1AlPI (20)
Eq. (18) can be written differently:
v= (E - AZ(AEPAZ)_lAEP) (A%, — 1) @1
There will not be any change for the estimation value 62 of the variance 6.
63 =12 (22)

The equations in this section can be adapted to free network adjustment
(HECK, 1975).

3. COMPARING THE REDUNDANCIES OF THE OBSERVATIONS IN
RFM WITH THE ONES IN IFM
The H and R matrices in IFM are given as follows:

H = A(ATPA)ATP = AQ,,ATP (23)
R=1-H=1-A(ATPA)!ATP = I — AQ,,ATP (24)
where H denotes the hat matrix in statistics and Q,, matrix can be written from Eq.
(4) as Qi = [211 le] 1 and the hat matrix can be written from Eq. (23) as
21
below.
Q11 Q12]
=[A; A;] P 25
S @3
H = [A;Qu1AT + A2Qz1AT + A1Qq2A7 + A2Q;A7|P (26)

If Eq. (13) and Eq. (14) are considered, the following Eq. can be obtained:
= [A1Q41AT + Az(—N37N31Qq1)AT + A1 QAT + A;NZ7 (1 - N21Q12)A£2]P
7
Since the symmetry property, Ny; = NJ,, Eq. (27) can be rewritten as belo(w: )
H = [A1Q11AT + Ax(—N37N1,Qq1)AT + A1Q12AT + ANy (1 - 1\'21(212)1\'52]8P
If Eq. (16) is considered in Eq. (28), Eq. (29) can be obtained: 2%
H =[A1Qq:AT — A;N;37NT,Q41AT + A;(—Q11N12N37 )AY + ANz 7AT —
A;N37N2; QAT [P 29
Since;
A;N3;N21Q12A% = —AzN;; N21( Q11N12N3; )Az = A;N32;N21Q11Ny2N;7 A7
H can be rewritten as follows:
H = [A1Qq1AT — A;N;7NT,Q41AT — A;Q14N;2 N7 AT + A;N;7 AT —

AN33N31Qq1N1oN37 A7 P (30)

For RFM, the following two equations from the Eq. (18) can be written:
H = A(ATPA)'A"P 31)
R=1-H=1-AA'PA)'ATP (32)
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Since A=A; —A;N7iN;1,Qx = N1, Q= [82 8;:] and Qu = Nij =

Q11 = Q41, Eq. (31) can be written as below:
= _ _ T
H= [A; — A;N33N21]Qq1[Ay — A;N73Noy | P (33)
H =[A1Qq1 — A2N37N2;Qq4|[A] — N Nz AT|P (34)

[A1Q11A1 A2N33N21Q11AT — A1Qq1N7 Nz; A + A;N33 N21Qq1N7 N33 A7 ]P
(33)
If Eq. (30) and (35) are taken into account, Eq. (36) can be obtained:
H=H+ A,N;;AlP (36)
Since A;N;2ATP is a quadratic form, it can be expressed as (A;N;2ALP); >
0. Therefore h; (= (H);;) is always blgger than h;; (= (H)”) i.e. (hy > h;) and
also 7;(= (R);;) < 7i(= (R);;),since hj; =1 —r;and h;; = 1 — 7.
The equations in this section can be adapted to free network adjustment
(HECK, 1975).

4. TESTS FOR OUTLIERS

Outlier detection procedures were proposed by Baarda (1968) and Pope (1976)
for geodesy. In these outlier detection processes, “good” observations originate from
the same distribution, which is generally expressed as a normal distribution
N(u, 62). Observations that contain outliers are called as “bad” observations.

Let an observation l; has an outlier 8l; with I =1; + 8l;. The hypothesis
Hy: 8]; = 0 against H;: 8l; # 0 is tested. If the observations are uncorrelated and the
variance 64 is known, the standardized residuals derived from IFM can be presented
as:

lvil
Uom
where q,,;,,; is the diagonal elements of Q.

If w; > 2z,_4/,, which is the upper a/2 percentage point of the normal

distribution, the observation [; is accepted as a bad observation where a is chosen as
0.001. This is called as Baarda’s method. If there is more than one outlier among the
observations, Baarda’s method is used iteratively (BAARDA, 1968).

If the variance ¢ is not known before, the studentized residual is used for
Pope’s test:

w; = (37)

lvil
Go+/ Avivi
where &, is given in Eq. (22). If the level of significance o is related to all
observations, the level of each observation must be a/n. P (‘rl- > Cl—a,n,n—u) =1-
a/2 where Cl—ann-u = T1-a/n1,n-u—1-

If the following relations are taken into account,
Qv = Qu — AQAT = P71 — AQ, AT (€1
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Q. ,P=1-AQ,,ATP =R (39)
QVVPP_1 =RP 1> Qw = RP™! (40)
the below relation can be written as:
_ i _ — -1
Qvivi = p—li = (Qw)ii = (RP™); (41)

If the Egs. (37a) and (37b) are rewritten by considering Eq. (41), the following
equations can be obtained
_ lvilypi

Wi = (42)
= lovmi (42b)

T; Bo \/T_l
If rank A=q holds in the Gauss-Markov  model, then
Ci—ann-q = T1—a/nin-q—1, Where a is generally chosen as 0.05 or 0.01 (Koch,
1999).
For RFM, we can generate the following equations similar to Eqgs. (39) and
(40).

Q.P=1-AQ,A"P=R (43)

Q. PP"!=RP'-Q,, =RP! (44)

If above two equations are considered, the following equation can be written as
— Ti

Quivi =7 (45)

L
and similar to Eqgs. (42a) and (42b), the followings can be obtained:

W= lvil/pi

= (46
7, = hvn (46b)

Tl' Bo \/f_l

Since 1; < 7;, w; and 7; in IFM are bigger than w; and T; in RFM, respectively.

It means that the effects of the outlier with small magnitude in IFM may be reflected

stronger than the ones in RFM on the standardized or studentized residuals.

Therefore, the MSRs of the tests for outliers in [FM become bigger than the MSRs
of the ones in RFM.

5. CASE STUDIES

5.1 Elimination of orientation parameters in triangulation network

The method dating back to C. F. Gauss uses the elimination of the orientation
parameters at triangulation networks. If we consider only one unknown parameter,
which has the same coefficient in the residual equations, it can be regarded as a
special case of the elimination. For elimination of the only one unknown X; (q=1 in
Eq. (2)), the related design matrix can be written:

e
Az gty = [0] veTiyo = [111..11,07 ;) = [000...0] A7)
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where the size of the A, is nx1 and k is the number of direction observations at one
station. If P = 1, the reduced approach according to Eq. (19) is given as follows:

A=A; —e(eTe)teTA, (48)

A=A, eeTA; (49)

where eTA; means column sum of the A; (it must be multiply by 1/k) (Niemeier,

2002). At the same time, it should be eliminated from the initial residual equations. 1

is obtained similarly,

1=1--e(eTe) el (50)

T=1-eel (51)

where column sum of eTl is similarly divided by k and reduced from 1. Mean

residual equation that is eliminated from each residual equation is computed as

follows:
~eTA;x; =€l =0 (52)
In practice, Eq. (52) is computed for each station by which direction
observations are made at the network. The linearized residual equations for a
station, in which k direction measurements are made can be written with the

orientation parameter o:

Uy = Q11X + b1gY1 + QX + by, +or—o0— g
Vy = A1X1 + ba1Yy + QppXp + bypy, + - —0 — 1 (53)
Vi = Qi Xq + by Y1 + QpaXp + by, + - — 0 — I

Reduced residual equations are obtained as follows:
V1 = A11% + byayr + QuaXp + bypy, 0l
Uy = Ap1X1 + ba1y1 + ApaXy + bpoyo + -0 Ly (54)

Vi = Qg1 Xy + b Yy + QuaXy + bioys + - i

- 1ok T 1ok T _ 1ok
where a;; = a;; — ;Zi=1 a;j, bij = bj — ;Zi=1 bij, ;i = 1; — =1 l;

5.2 Simulation

In this study, a Monte-Carlo simulation technique has been used to demonstrate
as above described case. To measure the reliability of tests for outliers in [FM and
RFM, a horizontal control network was simulated. Fig. 1 presents the positions of
the points and observations for the horizontal control. The simulated horizontal
control network given in Figure 1 consists of 7 points where n = 48, u = 21 and
degrees of freedom f = 30. The MSRs for IFM and RFM are presented for the same
network. All results have been obtained using MATLAB version R2006a.

The random errors e; are generated from a normal distribution N(u, 62) with
expected value (u = 0) and variance gZ by using the random number generator of
MATLAB. The process of simulating the good observations [; and bad observations
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li" are obtained as the same as Hekimoglu and Erenoglu (2007), Erenoglu and
Hekimoglu (2010), Hekimoglu et al. (2011).

For the horizontal control network, the observations, such as direction
measurements /;; and distance measurements l,; are computed from the coordinates
of the points. They are free of random errors. The random errors are generated from
a normal distribution as follows: for direction measurements e;;~N(u, o) with
0;; = 3 mgon and for the distance measurements e;;;j~N (,u, o5 j) with op,; =
+(3mm + 2x1076S;;) where S; is the distance between i" and j" points. The
random errors are added to the distance and direction measurements such as
Li;=1; +ey and [, = L, j 1 ezj. Hereby, the good observations [; are obtained.
Then, the random error e; is replaced by the outlier §1; in the related observation as
l; = l; + 81;, thus the contaminated observations [; are obtained. The approximate
values of the point coordinates are given in Table 1. The direction measurements
and distance measurements are also given Table 2 and Table 3, respectively.

Figure 1 — Simulated horizontal control network.

Table 1 — The approximate values of the points’ coordinates shown in Fig. 1.
Y (m) X (m)
-45162.050 | 4405916.380
-42162.060 | 4405916.376
-39162.681 | 4405916.459
-43565.155 | 4403318.288
-40565.774 | 4403318.360
-44824.810 | 4408514.459
-41824.248 | 4408514.467

~N | | B (W N |
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Table 2 — The direction measurements and standard deviations.

Observation | Directions Observed Stapdgrd
Number | From to values | Deviations
(gon) (mgon)
1 1 | 6 [ 20.0004 03
2 7 | 69.6757 03
3 2 | 111.7825 03
4 5 | 1445358 03
S 4 |176.6981 03
6 2 | 7 | 19.9987 03
7 3 | 111.7675 03
8 5 |176.6938 03
9 4 | 2432922 03
10 1 |311.7673 03
11 6 | 360.9849 03
12 3 | 5 [ 20.0002 03
13 4 | 545348 03
14 2 | 884752 03
15 7 | 137.7074 03
16 4 | 2 | 20.0008 03
17 3 | 54.5355 03
18 5 | 88.4755 03
19 1 |353.3907 03
20 6 | 373.3349 03
21 5 | 3 [ 20.0003 03
22 4 | 288.4753 03
23 1 3212286 | 0.3
24 2 | 353.4017 03
25 6 | 7 [ 19.9992 03
26 2 | 692171 03
27 4 |104.8596 03
28 1 [ 1282172 03
29 7 | 3 ] 20.0001 03
30 2 | 79.0007 03
31 1 | 128.6606 03
32 6 | 170.7682 03
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Table 3 — The distance measurements and standard deviations.

Observation | Distances Observed Stapdgrd
Number |From to values | Deviations
(m) (mm)
33 1 | 2 [3000018] 9.0
34 4 [3049578| 9.1
35 5 [5279.687] 13.6
36 6 |2619.875 82
37 7 [4229810] 115
38 2 3 [2999.380 9.0
39 4 2952770 8.9
40 5 [3049246| 9.1
41 6 |3720252] 104
42 7 [2619.961 82
43 3 | 4 [5111976] 132
44 5 [2952.760 89
45 7 [3719352] 104
46 4 5 [2999.381 9.0
47 6 |5346.651| 13.7
48 6 | 7 [3000.622] 9.0

To test the reliabilities of the IFM and RFM for tests for outliers, 6"
observation (i.e. direction from 2 to 7) is contaminated by the outlier. The
magnitude of the outlier is -1.255 mgon. The 6™ observation given in Table 2
includes this outlier. After adding the outlier to the observation, Baarda’s method
(i.e. assume that the a priori variance o is known) and Pope’s method (i.e. assume
that the a priori variance of is unknown before) are applied; and obtained
redundancies, standardized and studentized residuals are represented for IFM and
RFM in Table 4. In this study, a is chosen 0.001 for Baarda’s test and 0.05 for
Pope’s test, respectively. As it is seen from Table 4, the standardized and
studentized residuals of the IFM are bigger than the ones of RFM. Although the
outlier (6™ observation) can be detected in IFM, it cannot be detected in RFM. But,
one sample is not enough to decide that the results of the IFM are more reliable than
the RFM, that’s why, a hundred different contaminated samples of 1"’ are simulated
for each of the data sets I. For a hundred different data sets |, totally 10000 different
contaminated samples of 1", are obtained separately. Baarda’s test and Pope’s test
are applied on these contaminated samples.
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Table 4 - The redundancy, standardized and studentized residuals for

IFM and RFM.
Obs Residual IFM RFM
Nun:1 (mgon, | Standardized | Studentized Redundanc Standardized | Studentized | Redun-
mm) Residuals Residuals Y| Residuals Residuals dancy
1 -0.076 0.334 0.302 0.57 0.287 0.260 0.77
2 0.157 0.613 0.555 0.72 0.543 0.491 0.92
3 0.034 0.133 0.121 0.72 0.118 0.107 0.92
4 -0.146 0.568 0.514 0.73 0.504 0.456 0.93
5 0.031 0.129 0.117 0.64 0.113 0.102 0.84
6 0.808 3.428 3.102 0.62 3.042 2.753 0.78
7 -0.292 1.236 1.119 0.62 1.097 0.993 0.79
8 0.004 0.015 0.014 0.65 0.013 0.012 0.81
9 0.005 0.021 0.019 0.67 0.019 0.017 0.83
10 -0.121 0.487 0.441 0.68 0.436 0.395 0.85
11 -0.404 1.619 1.465 0.69 1.454 1.316 0.86
12 -0.107 0.458 0.415 0.61 0.386 0.349 0.86
13 0.159 0.633 0.573 0.70 0.543 0.492 0.95
14 0.010 0.041 0.037 0.68 0.035 0.031 0.93
15 -0.062 0.262 0.237 0.62 0.221 0.200 0.87
16 -0.325 1.274 1.154 0.72 1.128 1.021 0.92
17 -0.227 0.883 0.799 0.73 0.783 0.708 0.93
18 -0.087 0.363 0.329 0.63 0.317 0.287 0.83
19 0.337 1.384 1.253 0.66 1.212 1.097 0.86
20 0.301 1.177 1.066 0.73 1.043 0.944 0.93
21 -0.052 0.233 0.211 0.56 0.194 0.176 0.81
22 -0.058 0.248 0.224 0.61 0.209 0.189 0.86
23 -0.173 0.689 0.624 0.70 0.592 0.536 0.95
24 0.283 1.147 1.038 0.68 0.980 0.887 0.93
25 0.335 1.444 1.307 0.60 1.213 1.098 0.85
26 -0.204 0.811 0.734 0.70 0.696 0.630 0.95
27 -0.277 1.104 0.999 0.70 0.947 0.858 0.95
28 0.146 0.622 0.563 0.61 0.524 0.474 0.86
29 0.012 0.053 0.048 0.59 0.044 0.040 0.84
30 -0.422 1.754 1.587 0.64 1.488 1.347 0.89
31 0.654 2.625 2.376 0.69 2.249 2.035 0.94
32 -0.244 1.064 0.963 0.58 0.890 0.806 0.83
33 -10.925 1.551 1.404 0.61 1.551 1.404 0.61
34 -5.233 0.822 0.744 0.49 0.822 0.744 0.49
35 14.686 1.259 1.140 0.74 1.259 1.140 0.74
36 3.389 0.653 0.591 0.40 0.653 0.591 0.40
37 6.943 0.739 0.669 0.67 0.739 0.669 0.67
38 -8.292 1.242 1.124 0.55 1.242 1.124 0.55
39 -2.695 0.395 0.358 0.59 0.395 0.358 0.59
40 -4.843 0.705 0.638 0.57 0.705 0.638 0.57
41 7.656 0.905 0.820 0.66 0.905 0.820 0.66
42 -0.514 0.089 0.081 0.49 0.089 0.081 0.49
43 -1.631 0.145 0.132 0.72 0.145 0.132 0.72
44 2.599 0.471 0.426 0.38 0.471 0.426 0.38
45 19.291 2.715 2.458 0.46 2.715 2.458 0.46
46 -1.724 0.285 0.258 0.45 0.285 0.258 0.45
47 -6.861 0.587 0.531 0.73 0.587 0.531 0.73
48 -7.625 1.322 1.197 0.41 1.322 1.197 0.41
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To measure the reliabilities of the tests for outliers, the MSR criterion has been
handled. A test for outlier is regarded as successful when the test statistics can
separate the null hypothesis Hy from the alternative hypothesis H; at the significance
level a. The mean success rate (MSR) is defined with dividing the number of
success by the number of experiments. If a good sample is contaminated by
replacing any number of the observations with arbitrary values, then a contaminated
sample obtained. Many good samples can be obtained by generating the different
subsets of random errors. Thus, for each good sample, many contaminated samples
are generated by replacing any number of good observations with arbitrary values.

Since a simulation is used to generate the outliers, it is possible to know exactly
whether an observation is contaminated or not, in advance of carrying out the
analysis. After applying the outlier detection method, if the observation is identified
as an outlier and it corresponds to truly contaminated observation, the method is
regarded as successful. If the method fails, it is considered unsuccessful
(HEKIMOGLU and ERENOGLU 2007, HEKIMOGLU and KOCH 2000,
ERENOGLU and HEKIMOGLU 2010, HEKIMOGLU et al. 2011). Owing to using
simulation techniques, a lot of samples can be generated easily. The MSR is
globally the number of successful detections over the number of experiments.

The magnitudes of the small outliers (whose magnitudes lie between 30 and
60), and large outliers (whose magnitudes lie between 60 and 120), are generated
separately. Also, both tests for outliers are iteratively applied. Only the observation
with the largest normalized or studentized residual is tested and in case it is rejected,
it is removed and the remaining observations are then adjusted again. But, in this
case, a geometric defect of the network may occur. To prevent such a geometric
defect, the detected observation is not removed; instead of this, the related weight p;
of the observation [; is set smaller for the next iteration step, for example p=0.001 x
p:. In this case, the initial approximation of the orientation is estimated by using the
weighted arithmetic mean.

Table 5 — The MSRs of IFM and RFM for the magnitudes which lie between

3o and 60.
The number of I'M REM
outlier(s) Baarda Pope Baarda Pope
(%) (%) (%) (%)
0 05 02 01 00
1 55.2+13.5 45.1£18.0 43.7483  26.1%15.3
2 30.249.3  15.3+£13.6 18.0+£5.5 3.3+5.0
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Table 6 — The MSRs of IFM and RFM for the magnitudes which lie between

66 and 126.
The number of I'M REM
outlier(s) Baarda Pope Baarda Pope
(%) (%) (%) (%)
1 94.5+£19.9 96.7£10.9 95.6+10.9  95.1£5.9
2 93.6+18.1 92.1+11.6 90.3+10.5 75.8413.9

The orientation parameters are eliminated in RFM; whereas they are estimated
in [FM. Also, the observations at the network given in Fig. 1 were adjusted as free
network. Tables 5 and 6 include the MSRs of both Baarda’s and Pope’s tests for
IFM and RFM. The MSRs are increased by 11.5% (55.2% - 43.7%) and 19.0%
(45.1% - 26.1%) for the Baarda’s and Pope’s tests, respectively, for one small
outlier. Also, the reliability of IFM for two outliers is bigger than the ones of RFM.
However, the MSRs of IFM are bigger than the RFM when there is no outlier in
observation set. This is the type I error. The increase in type I error for IFM is 4%
(5% - 1%) for Baarda’s test and 2% (2% - 0%) for Pope’s test. The advantage of
IFM is 7.5% (11.5% - 4%) for Baarda’s test and 17% (19% - 2%) for Pope’s test.
However, for one large outlier the MSRs for both tests are not increased
significantly.

6. CONCLUSION

Elimination of the unknown parameters in adjustment model is sometimes
preferred to shorten the calculation time. Although the estimated unknown
parameters, residuals, cofactor matrix of the unknown parameters in I[FM are the
same as the ones in RFM, the cofactor matrix of the residuals and redundancies of
the observations are different. The redundancies in IFM are smaller than the ones in
RFM; this situation is proved in this study. Since the diagonal elements of the
cofactor matrix of the residuals in RFM is bigger than the ones in IFM, the
standardized residuals or studentized residuals in IFM are bigger than RFM.
Therefore, the effects of the outliers do not appear strongly on the residuals for
some cases of RFM where the magnitude of outlier is small, and the outliers cannot
be detected.

In this study, two models are regarded for simulation. The orientation
parameters are considered as unknowns in IFM and they are eliminated in RFM. To
compare the reliabilities of tests for outliers in RFM and IFM, tests for outliers are
applied on simulated horizontal control network. The reliability is measured by
MSR. According to simulation results, the reliabilities of the tests for outliers in
IFM are bigger than the ones in RFM for small and large outliers in condition that
the observation set contains one and two outliers. For this reason, to apply tests for
outliers on IFM should be preferred.
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