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Abstract: 

In this paper, we present techniques for ellipsoid fitting which are based on minimizing the 

sum of the squares of the geometric distances between the data and the ellipsoid. The 

literature often uses “orthogonal fitting” in place of “geometric fitting” or “best-fit”. For many 

different purposes, the best-fit ellipsoid fitting to a set of points is required. The problem of 

fitting ellipsoid is encountered frequently in theimage processing, face recognition, computer 

games, geodesy etc. Today, increasing GPS and satellite measurements precision will allow 

usto determine amore realistic Earth ellipsoid. Several studies have shown that the Earth, 

other planets, natural satellites, asteroids and comets can be modeled as triaxial ellipsoids 

Burša and Šima (1980), Iz et al (2011). Determining the reference ellipsoid for the Earth is an 

important ellipsoid fitting application, because all geodetic calculations are performed on the 

reference ellipsoid. Algebraic fitting methods solve the linear least squares (LS) problem, and 

are relatively straightforward and fast. Fitting orthogonal ellipsoid is a difficult issue. Usually, 

it is impossible to reach a solution with classic LS algorithms. Because they are often faced 

with the problem of convergence. Therefore, it is necessary to use special algorithms e.g. 

nonlinear least square algorithms. We propose to use geometric fitting as opposed to algebraic 

fitting. This is computationally more intensive, but it provides scope for placing visually 

apparent constraints on ellipsoid parameter estimation and is free from curvature bias Ray and 

Srivastava (2008). 

Keywords: Fitting Ellipsoid; Orthogonal Fitting; Algebraic Fitting; Nonlinear Least Square 

Problem. 

 

 

Resumo: Neste trabalho, apresentamos a adequação do elipsóide com base na soma dos 

mínimos quadrados das distâncias geométricas entre os dados e o elipsóide. A literatura 

muitas vezes aborda a “adequação ortogonal” em lugar da “adequação geométrica” na 

“melhor adequação”. Para muitos propósitos diferentes, a melhor adequação do elipsóide para 

o conjunto de pontos é necessária. O problema da adequação do elipsóide é encontrado 

frequentemente no processamento de imagens, reconhecimento de superfícies, jogos de 

computador, geodésia, etc. Hoje, o aumento da precisão das medidas GPS e de satélites 

permite que se determine um elipsóide da Terra mais realístico. Diversos estudos, tem 

demonstrado que a Terra, outros planetas, satélites naturais, asteróides e cometas podem ser 

modelados com o elipsóides triaxiais, Bursa e Sima (1980), Iz et al (2011). Determinar o 
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elipsóide adequado para a Terra é importante porque se aplica a todos os cálculos geodésicos 

que são executados sobre o elipsóide de referência. Métodos adequados algebricamente 

resolvem o problema de adequação por mínimos quadrados lineares, e são relativamente 

rápaidos e diretos. A adequação do elipsóide ortogonal é um assunto difícil. Normalmente, é 

impossível encontrar uma solução com algorítimos clássicos de mínimos quadrados. A razão 

é que eles são frequentemente encontrados com problemas de convergência. Portanto, é 

necessário usar algorítimos especiais, por exemplo, algorítimos de mínimos quadrados com 

não lineares. Nós propomos o uso da adequação geométrica em contraste com a adequação 

algébrica. Isto é computacionalmente mais intensivo, mas dá margem ao uso de injunções 

relativas na estimação a dos parâmetros do elipsóide e elimina as tendências da curvatura, Ray 

e Srivastava (2008). 

Palavras-chave:  Adequação do Elipsóide; Adaptação Ortogonal; Adequação Algébrica; 

Problema de Mínimos Quadrados Não-Linear. 

 

 

 

1. INTRODUCTION 
 

 

Fitting an ellipsoid to an arbitrary set of points is a problem of fundamental importance in 

many wide fields of applied science ranging from astronomy, geodesy, digital image 

processing and robotics to metrology etc. Ellipsoids, though a bit simple in representing 3D 

shapes in general, are the only bounded and centric quadrics that can provide information of 

center and orientation of an object. Fitting ellipsoid has been discussed widely and some 

excellent work has been done in literature. However, most of these fitting techniques are 

algebraic fitting, but not orthogonal fitting. Various “least- squares” fitting approaches have 

been formulated over the years Zhang (1997), but they all fall into two categories; (1) 

algebraic methods, which are extensively used due to their linear nature, simplicity and 

computationally efficiency, and (2) geometric methods that solve a nonlinear problemRay and 

Srivastava (2008). 

We could not find enough studies with numerical examples in the literature. Turner et al 

(1999) gave a numerical application, but the application’s data are not given Turner et al 

(1999). No other comparable orthogonal fitting ellipsoid application could be found in 

literature. Against this background, the purpose of the study is to give an orthogonal fitting 

ellipsoid with numerical examples. In this article, we demonstrate that the geometric fitting 

approach, provides a more robust alternative than algebraic fitting approach-although it is 

computationally more intensive.  

The paper has eight parts. First, the basic ellipsoid will introduce some mathematical 

equationsto explainthe concepts. Then, it reviews the extended literature relevant to ellipsoid 

fitting. And we discussed in this research which estimators is used. Next, comes the part 

which deals with algebraic fitting, orthogonal fitting and numerical example. You will find 

ellipsoid fitting application based on both l1-norm and l2-norm methods. The paper concludes 

with a discussion of theoretical and managerial implications and directions for further 

research. 

 

1.1 Ellipsoid 

An ellipsoid is a closed quadric surface that is analogue of an ellipse. Ellipsoid has three 

different axes (ax>ay>b) in Figure 1. Mathematical literature often uses “ellipsoid” in place of 

“Triaxial ellipsoid or General ellipsoid”. Scientific literature (particularly geodesy) often uses 
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“ellipsoid” in place of “biaxial ellipsoid, rotational ellipsoid or ellipsoid revolution”. Older 

literature uses ‘spheroid’ in place of rotational ellipsoid. The standard equation of an ellipsoid 

centered at the origin of a cartesian coordinate system and aligned with the axes is shown with 

this formula: 

 
 

 
Figure 1: Ellipsoid 

 

Although ellipsoid equation is quite simple and smooth, computations are quite difficult on 

the ellipsoid. The main reason for this difficulty is the lack of symmetry. Generally, an 

ellipsoid is defined with 9 parameters. These parameters are; 3 coordinates of center 

(Xo,Yo,Zo), 3 semi-axes (ax, ay, b) and 3 rotational angles (, , ) which represent rotations 

around x-,y- and z- axes respectively  in Figure 2. These angles control the orientation of the 

ellipsoid.  

 

R1,R2,R3 are plane rotation matrices 

 
 

R-rotation matrix is obtained from R1,R2,R3 by multiplying the reverse order 
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Figure 2: Shifted - oriented  ellipsoid 

 

 

 

2. FITTING ELLIPSOID 
 

 

For the solution of the fitting problem, the linear or linearized relationship, written between 

the given data points and unknown parameters (one equation per data points), consists of 

equations, including unknown parameters.  

 

 
Here, A  is design matrix, x is unknown parameters, lis measurements vector or data points, 

For this minimization problem to have a unique solution the necessary conditions is to be n>= 

9 and the data points lie in general position (e.g., not all data points should lie is an elliptic 

plane). Throughout this paper, we assume that these conditions are satisfied. 

u=9 : number of unknown parameter 

n: number of given data point (or measurements) 

f=n-u :degree of freedom 

-If  f = 0  there is  only one (exact) solution, algebraic solution 

-If  f<0  there is  no solution. The solutioncan be found with based on the extra constraint 

-If  f> 0 is most commonly encountered situation. The given data points (or measurements), 

which are much greater than the required number cause discrepancy, and in this case, the 

solution is not unique. There is an over determined system. Because n > u, in other words the 

number of equations is greater than the number of unknowns. 

The system of linear equations (3) must be solved. Therefore, this system must be consistent 

with the rang of design matrix, and design matrix extended with constant terms, must be 

equal, so that rang(A) =rang(A:l); whereas, the system of (3) is inconsistent, because x 

unknown parameters that provide  (3), can not be calculated. In this case, rang(A) ≤ u. The 

extended matrix with l measurements rang(A:l) is generally more than rang(A) . There is no 

solution of inconsistent equations, and only the approximate solution of the system can be 

derived. The equation system with approximate solution is calculated by adding    residuals 

(or corrections) at the right side of  (3).  
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 Depending on the choice of  residuals vector, infinite solutions can be obtained. The unique 

solution can be derived only according to an estimator (objective function). For example, the 

LS always give an unique solution Bektas and Sisman (2010).  Here, the question of which 

estimation method to use comes to mind?  

 

 

3. WHICH ESTIMATOR SHOULD BE USED? 
 

 

It is hoped that the residuals will be small. The more suitable estimation method is one that 

creates smaller residuals. It is seen that usually the objective functions are formed based on 

the minimization of corrections or a function of corrections. There are numerous estimators, 

some of these are l1-norm, l2-norm,lp-norm, Fair, Huber, Cauchy, German-McClure, Welsch 

and Tukey. Two estimator methods come to the forefront.The most used estimators are shown 

below: 

(i) [] = min. ( l2-norm) Least Squares Method (LSM) 

(ii) [II] = min. ( l1-norm) Least Absolute Values Method (LAVM). 

 

 

3.1. The Comparison of l1 and l2-Norm Methods 
 

 

The solution of the l2-norm method is always unique, and this solution is easily calculated. 

The l2-norm method is widely used in parameters estimation. The l2-norm method has 

indisputable superiority in parameter estimation. 

The disadvantages of the l2-norm method are that is affected by outlying (gross errors) and it 

distributes to the sensitivity measurements. In this case, ellipsoid fitting is a very nice 

application. 

With least-squares techniques, even one or two outliers in a large set can wreak havoc! 

Outlying data give an effect so strong in the minimization that the parameters thus estimated 

by those outlying data are distorted. Numerous studies have been conducted, which clearly 

show that least-squares estimators are vulnerable to the violation of these assumptions. 

Sometimes, even when the data contains only one bad measurement, l2-norm method 

estimates may be completely perturbed Zhang (1997). 

The solution of the l1-norm method is not always unique, and there may be several solutions. 

Also, the solution of the l1-norm method is not generally obtained directly, but iteratively 

calculations are made. Therefore, the solution is not easily calculated like in the l2-norm 

method. Notwithstanding, when the computational tools, computer capacity and speed are 

considered, the difficulty of calculations are eliminated. The advantages of the l1-norm 

method are non-sensitivity against measurements, including gross errors, and the solution is 

not or is little affected by these measurements.  

The author of this study proposed and used the l2-norm method in the solution of parameter 

estimation (optimization problems, adjustment calculus), after the measurement group cleaned 

up gross and systematic errors using the l1-norm method. For further information see Bektas 

and Sisman (2010). 

 

4. ALGEBRAIC ELLIPSOID FITTING METHODS 
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The general equation of an ellipsoid is given as 

 

 
 

(5) contains ten parameters. In fact, nine of those ten parameters are independent. For 

example, if all the coefficients in this equation multiply by (-1/K’), we get a new equation 

which contains nine unknown parameters, and its constant term will be equal to “-1”. 

 
In this algorithm, we need to check whether a fitted shape is an ellipsoid. In theory, the 

conditions that ensure a quadratic surface to be an ellipsoid have been well investigated and 

explicitly stated in analytic geometry textbooks. An ellipsoid can be degenerated into other 

kinds of elliptic quadrics, such as an elliptic paraboloid. Therefore, a proper constraint must 

be added. Li and Griffiths gave the following definitions Li and Griffiths (2004). 

 

 

 
 

However  4j-i2> 0 is just a sufficient condition to guarantee that an equation of second degree 

in three variables represent an ellipsoid, but it is not  necessary. In this paper, we assume that 

these conditions are satisfied. 

The algebraic method is a linear problem. It is solving the problem directly and easily. The 

fitting ellipsoid to a given the data set ((x,y,z)i , i=1,2,…,n), is obtained by the solution in the 

LS sense of  in the following: 

 

 
Where  

nxu = Design matrix 

vu = [ A  B  C  D  E  F  G  H  I ]Tunknown conic parameters 

ln = [1  1  1…1]T   unit vector : right side vector   

ith row of the  nx9 matrix  

 

 
It is solved easily in the LS sense  as below 

 

 
or it is solved easily by MATLAB  as below 

 

 
If there are differences in weights or correlations between given data points, P weight matrix 

is added in the solution, and then 

 

 
P=Kll

-1Kll:nxn variance-covariance matrix of data points 

Residual (or correction) vector is computed as below 
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LS optimization give us  |||| =min. 

Algebraic methods all have indisputable advantages of solving linear LS problems. The 

methods for this are well known and fast. However, it is intuitively unclear what it is we are 

minimizing geometrically in (6) is often referred to as the “algebraic distance” to be 

minimized Ray and Srivastava (2008). A geometric interpretation given by Bookstein (1979) 

clearly demonstrates that algebraic methods neglect points far from the center.  

 

 

 

5. FITTING OF ELLIPSOID USING ORTHOGONAL 

DISTANCES 
 

 

To overcome the problems with the algebraic distances, it is natural to replace them by the 

orthogonal distances which are invariant to transformations in Euclidean space and which do 

not exhibit the high curvature bias.  An ellipsoid of best fit in the LS sense to the given data 

points can be found by minimizing the sum of the squares of the geometric distances from the 

data to the ellipsoid. The geometric distance is defined to be the distance between a data point 

and its closest point on the ellipsoid.  

Determining best fit ellipsoid is a nonlinear least squares problem which in principle can be 

solved by using  the Levenberg-Marquardt (LM)algorithm. Generally, non-linear least squares 

is a complicated issue. It is very difficult to develop methods which can find the global 

minimizer with certainty in this situation. When a local minimizer has been discovered, we do 

not know whether it is a global minimizer or one of the local minimizer Zisserman (2013). 

There are a variety of nonlinear optimization techniques. Such as Newton, Gauss-Newton, 

Gradient Descent, Levenberg-Marquardt approximation etc.However, these fitting techniques 

involve a highly nonlinear optimization procedure, which often stops at a local minimum and 

cannot guarantee an optimal solution Li and Griffiths (2004). 

Away from the minimum, in regions of negative curvature, the Gauss-Newton approximation 

is not very good.  In such regions, a simple steepest-descent step is probably the best plan. 

The Levenberg-Marquardt method is a mechanism for varying between steepest-descent and 

Gauss-Newton steps depending on how good the HGN approximation is locally. 

The Levenberg-Marquardt method uses the modified Hessian 

H(x,λ) = HGN +λ.I  ( I : identity matrix ) 

• When λ is small, H approximates the Gauss-Newton Hessian. 

• When λ is large, H is close to the identity, causing steepest-descent steps to be taken. 

This algorithm does not require explicit line searches. More iterations than Gauss-Newton, 

but, no line search required, and more frequently converge suppose that we have a unknowns 

parameter set    

v= [ A  B  C  D  E  F  G  H  I ]T     are unknown conic parameters. The general conic equation 

for an ellipsoid is given as (6) 

 

We will reach the solution by establishing relationships between variations in the conical 

coefficients and the orthogonal distances. 

The initial parameters were derived from the algebraic fitting ellipsoid. 

: Projection coordinates (onto ellipsoid) of given Pi data points 
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ith row of the  nx10 matrix J  (jakobien matrix) 

 

 
ith row of the  right side vector  hnx1 

 

 
We obtained the below linearized equation 

 

 

 
 

The fitted orthogonal ellipsoid is obtained by the solution in the LS sense with the L-M 

algorithm. 

 

 

5.1 The Levenberg-Marquardt Algorithm 
 

1-Solve algebraic methods and find initial values for v 

set  λ=1 (say) 

2- Compute  J-jacobien matrix and hi orthogonal distances from all given data points  

minh= hTh 

3- Solve ( JTJ + λ  I ) dv=  JTh 

 v=v+dv , new conic parameter 

Find  again hi orthogonal distances from all given data points 

newh= hTh 

4-  ifnewh<minh    % yes there is improvement, reduce λ 

minh=newh; λ=λ/2 

goto 3 

else % no improvement, increase λ 

λ=2*λ 

goto 3 

end 

5.2. Finding Orthogonal Distances from the Ellipsoid 
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In this paper, we present techniques for ellipsoid fitting which are based on minimizing the 

sum of the squares of the geometric distances between the data and the ellipsoid. The most 

time-consuming part is the computation of the orthogonal distances between each point and 

the ellipsoid. Our aim to find the orthogonal distances from a shifted-oriented ellipsoid see 

Figure 2. For detailed information on this subject refer to Bektas (2014).  

 

 

6. NUMERICAL EXAMPLE 
 

 

For numerical applications 12 triplets (x,y,z) cartesian coordinates were produced.  

Here data points coordinates,  

x: [  7     7      9      9    11    11      8      8    10    10    12    12  ] 

y: [22   19    23    19    24    20    21    17    22    18    23    19  ] 

z: [31   28    31    27    29    26    32    29    32    28    31    28  ] 

This problem is also solved by Least Absolute Values Method( l1-norm) and the following 

results were obtained.  

The conical coefficients in the Least Squares Method is, 

v=[-0.0006   -0.0008   -0.0010    0.0005   -0.0005    0.0003    0.0092    0.0050    0.0278] 

The conical coefficients in the Least Absolute Values Method is, 

v=[  -0.0071   -0.0084   -0.0096    0.0047   -0.0040    0.0023    0.0880   0.0061   0.0271] 

 

 We show both the algebraic and orthogonal fitting results are as shown in Table-1. 

 

Table-1: The result of algebraic and orthogonal fitting ellipsoid 

 
*RSS:  The residual sum of squares of the orthogonal distances 

 

 

7. DISCUSSION 
 

 

Orthogonal least-squares has a much sounder basis, but is usually difficult to implement. Why 

are algebraic distances usually not satisfactory? The big advantage of use of algebraic 

distances is the gain in computational efficiency, because closed-form solutions can usually 

be obtained. In general, however, the results are not satisfactory.The function to minimize is 

usually not invariant under Euclidean transformations. For example, the function with 

normalization K’ = -1 in (5)  is not invariant with respect to translations. This is a feature we 

dislike, because we usually do not know in practice where the best coordinate system to 

represent the data is. A point may contribute differently to the parameter estimation 

depending on its position on the conic. If a priori all points are corrupted by the same amount 
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of noise, it is desirable for them to contribute the same way Zhang (1997). More importantly, 

algebraic methods have an inherent curvature bias – data corrupted by the same amount of 

noise will misfit unequally at different curvatures Ray and Srivastava (2008). Our experience 

tells us that if the coordinates of given points consists of a large number this will cause bad 

condition. Therefore, before fitting, you must shift the given coordinates to the center of 

gravity, after fitting operation the coordinates of ellipsoid’s center must be shifted back to the 

previous position. 

 

 

8. CONCLUSION 
 

In this paper, we studied on the orthogonal fitting ellipsoid. The problem offitting ellipsoid is 

encounteredfrequently intheimage processing, face recognition, computer games, geodesy-

determiningmore realistic Earth ellipsoid etc. The paper has presented a new method of 

orthogonal fitting ellipsoid. The new method relies on solving an over determined system of 

nonlinear equations with the use of the L-M method. In conclusion, the presented method may 

be considered as fast, accurate and reliable and may be successfully used in other areas. The 

presented orthogonal fitting algorithm can be applied easily to biaxial ellipsoid, sphere and 

also other surfaces such as paraboloid, hyperboloid,etc. 
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