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Abstract: 

There are several techniques for determining geoid heights using ground gravity data, the 

geopotential models, the astro-geodetic components or a combination of them. Among the 

techniques used, the Remove-Compute-Restore (RCR) technique has been widely applied for the 

accurate determination of the geoid heights. This technique takes into account short, medium and 

long wavelength components derived from the elevation data obtained from Digital Terrain 

Models (DTM), ground gravity data and global geopotential models, respectively. This technique 

can be applied after adopting the procedures to compute gravity anomalies and, then, the geoid 

model, considering the integration of different wavelengths mentioned, and their compatibility 

with the vertical datum adopted. Thus, this paper presents the procedures, involving the RCR 

technique, following Helmert's condensation method, and its application to compute one local 

geoid model for the Federal District, Brazil. As a result, the local geoid model computed for the 

studied area was consistent with the available values of geoid heights derived from geometrical 

levelling technique supported by GNSS positioning. 

Keywords:  Local geoid model; Helmert's condensation method; Remove-Compute-Restore 

technique. 

 

Resumo: 

Existem diversas técnicas de determinação das alturas geoidais, seja utilizando os dados 

gravimétricos terrestres, os modelos do geopotencial, as componentes astro-geodésicas ou pela 

combinação deles. Dentre as técnicas utilizadas, uma que vêm sendo amplamente aplicada para a 

determinação precisa da altura geoidal é a Remoção-Cálculo-Restauração (RCR), que considera 

as componentes de curto, médio e longo comprimentos de onda, derivados de dados de altitude 

através de um Modelo Digital do Terreno (MDT), de dados gravimétricos terrestres e de modelos 
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do geopotencial global, respectivamente. Para a aplicação desta técnica, torna-se necessário, 

primeiramente, adotar procedimentos para o cálculo de anomalias de gravidade, para em seguida 

calcular o modelo geoidal, considerando a integração dos diferentes comprimentos de onda citados 

e a compatibilização do modelo ao datum vertical adotado. Este trabalho apresenta uma revisão 

dos procedimentos adotados para cálculo de modelos geoidais, com base na técnica RCR e no 

método de condensação de Helmert, e suas aplicações para o cálculo de um modelo geoidal local 

no Distrito Federal, Brasil. Como resultado, o modelo geoidal local calculado para a área de estudo 

apresentou-se consistente com os valores disponíveis de alturas geoidais obtidas da associação do 

nivelamento geométrico com posicionamento GNSS (Global Navigation Satellite System). 

Palavras-chave: Modelo geoidal local; Método de condensação de Helmert; Técnica Remove-

Computa-Restaura. 

 

 

1. Introduction 

 

 

Height determination and vertical control with a precise geoid model constitutes one of the most 

challenging research subjects of geodesy, and it attracts more attention since 1980s, related with 

the wide spread and intensive use of GNSS techniques in surveying (Erol and Erol 2013). 

According to Sjoberg (2005) and Hirt (2011), many strategies used in gravity field modeling were 

developed at a time when the precision goal to determine the geoid height was 10 cm or less. 

Currently, according to Hirt (2011), to determine the geoid and quasi-geoid heights with an 

precision of centimeters or better, it is necessary to evaluate carefully, and, if necessary, correct 

the approaches that are inherent to the methods and the techniques used. 

There are several methods for determining geoid heights using groung gravity data, the 

geopotential models, the astro-geodetic components or a combination of them. Among the 

techniques used to determine the geoid models using the gravity data at regional level, the best-

known approach in the literature is the RCR, according to Schwarz et al. (1990) and Abbak et al. 

(2012). This approach has been used in many parts of the world, and among them Canada, Turkey, 

Austria, United States, Australia and Brazil (Schwarz et al. 1990; Ayhan 1993; Zhang et al. 1998; 

Fotopoulos et al. 1999; Smith and Small 1999; Featherstone et al. 2004; Abbak et al. 2012; 

Blitzkow et al. 2012). 

The RCR technique, according Sansò and Sideris (2013), takes into account the short, medium 

and long wavelength components that are derived from the elevation data obtained from Digital 

Terrain Models (DTM), ground gravity data and global geopotential models, respectively. This 

technique requires adopting procedures to compute gravity anomalies and then of the geoid model, 

considering the integration of the different wavelengths mentioned, and their compatibility to the 

vertical datum adopted. 

Given the above, this work presents the procedures, involving the RCR technique, following 

Helmert's condensation method, and its application to compute one local geoid model for the 

Federal District, Brazil. The motivation for this work is due to cities development  within the 

Federal District occur in flat areas  with several infrastructure problems, such as water supply and 

drainage of rainwater and sewage, which demand accurate knowledge of orthometric height to 

solve them. 
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2. RCR Approach  

 

 

The RCR technique for calculating the geoid model can be divided in three distinct stages. The 

first is the removal of the long wavelength component of the gravity anomaly generated by 

Helmert’s second condensation method ( HELg ). The said component is estimated by the gravity 

anomaly ( GMg ) using the global geopotential models. This process yields the Helmert residual 

anomaly (  RESg ). The second stage calculates the residual co-geoid model ( RESN ) using the 

Helmert residual anomaly; the co-geoid model for the long wavelength components ( GMN ) using 

the global geopotential models; and the primary indirect effect of topography ( IEN ), which is the 

vertical distance between the geoid and co-geoid. The third and final stage is the estimation of the 

geoid model ( N ) using the calculated values of GMN , RESN  and IEN . 

  

   RES HEL GMg g g                                                        (1) 

  GM RES IEN N N N                                                        (2) 

To develop the technique,  GMg  and GMN  can be estimated according to Smith (1998), using the 

geopotential coefficients adopted to a pre-set degree, to comprise only the long wavelength 

components. 
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gGM  and ga  are the geocentric gravitational constant and the equatorial scale factor of the 

geopotential model adopted, respectively, according to Smith (1998) and Smith and Small (1999); 

r  is the geocentric radius; a , b  and e  are the semimajor and semiminor axis, and the first 

eccentricity of the reference ellipsoid;   and   are the longitude and latitude of geodetic points of 

interest;   is the geocentric latitude (Torge 1991); 0 ,  a  and  b  are the normal gravity in the 

latitude of the point of interest, at the equator and the poles, respectively (Moritz 1984). , n mC  and 

, n mS  are the fully normalized spherical harmonic coefficients of the disturbing potential; and 

 , n mP sin  are the fully normalized Legendre functions (Schwarz et al. 1990) of degree n  and 

order m . 

According to Holmes and Featherstone (2002), the most commonly used recursive algorithm for 

calculating  , n mP sin  can be obtained by full normalization, which produces a recursive non-

sectorial calculation (i.e., n m ). Thus, considering  t sin  and  u cos , the following 

recursive equation appears: 
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In the sectorial calculation, ( n m ),  ,n mP t  work as the intial values for the recursion, and are 

calculated using the following initial values  0,0 1P t  and  1,1 3P t u . The n  and m  higher 

values of  ,n mP t  are calculated by: 
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To calculate  GMg  and GMN , it is also necessary to subtract the fully normalized spherical 

harmonic coefficients of the gravitational potential of  the coefficients implicit in the reference 
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ellipsoid. This is done by the zonal spherical harmonic coefficients of the gravitational potential   

( 2 ,0nC ), according to Moritz (1984) and Smith (1998). Thus: 

 

2
2 ,0 2 ,0

4 1


   
         

n

n
n n

g g

JGM a
C C

GM a n
                                        (13) 

where 

 
  

2
1 2

2 2

3
1 1 5

2 1 2 3

  
    

   

n
n

n

Je
J n n

n n e
                                   (14) 

 

and 2J  is calculated as demonstrated by Cook (1959): 
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GM ,   and f  are the geocentric gravitational constant, angular velocity and the flattening of 

the reference ellipsoid, respectively. 

For all other coefficients, it is assumed: 
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,  n mC and ,n mS  are the fully normalized spherical harmonic coefficients of the gravitational 

potential. 

According to Blitzkow (1986), the equations 13, 17 and 18 represent, generically, the relationship 

between the coefficients linked to disturbing and gravitational potentials. In practice, the 

aforementioned equations show that the gravitational potential of the normal earth use only 0m  

and n  pair, and that does not contain terms which depend of  sin m .  

Equations 3 and 4 do not consider the zero degree term in gravity anomaly ( 0g ) and co-geoid (

0N ). Therefore, to compute  GMg  and GMN  considering a reference ellipsoid adopted, this term 

must be added on the equations 3 and 4, respectively. According to Kirby and Featherstone (1997), 

the degree zero term may be computed by: 
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0W  is the gravity potential on the surface of the geoid. U  is the normal gravity potential on the 

surface of the normal ellipsoid and may be computed by: 
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'e  is the second eccentricity of the reference ellipsoid. 

The RESN  is calculated based on the principle of Stokes (Stokes 1849), which allows to estimate 

the values of the geoid height ( N ) using the gravity anomaly values ( g ) obtained on the 

physical surface of the Earth, considered as spherical. In the discrete form of the surface elements, 

N  becomes (Sideris and She 1995): 
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 ', ' g  represents the average gravity anomaly of an area in a grid with  n  parallels and m  

meridians;   and   are the variations in geodetic coordinates, latitude and longitude, which 

comprises each area; '  and '  are the geodetic coordinates at the center of the area; 0  is the 

average normal gravity of each area;   is the spherical distance between two points; and  MS  

is the modified Stokes function, used to remove the low-degree terms of the Legendre polynomials 

from the  S  (original Stokes function).  

According Vaníček and Kleusberg (1987),  MS  can be computed by: 
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where according Wong and Gore (1969): 
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L  is the maximum degree, nP  is the Legendre polynomial of order n , kt  is the coefficient of 

Vaníček and Kleusberg. 

According to Hofmann-Wellenhof and Moritz (2005),  S  can be calculated as: 
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The discrete calculation of N  presents a singularity when 0  . To work around this problem, 

Sideris and She (1995) proposed: 

0
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Where 0s  is the radius of the next considered area.  

Then, the calculation of the geoid model using the Stokes discrete formula is given by 

 

  
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In the RCR technique,    ', ' ', '      RESg g . To calculate  RESg , it is necessary to find the 

gravity anomaly. The second condensation method of Helmert ( HELg ) is the most often used 

because it produces the small indirect effect of topography (Heiskanen and Moritz 1985). 
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 FAg  is the free-air anomaly, ATMC  the atmospheric correction, TC  is the terrain correction and  

 g  is the indirect effect of topography (Heiskanen and Moritz, 1967), also known as the indirect 

secondary effect. 
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0.3086 g IEN                                                         (33) 

obsg  is the gravity observed on the physical surface of the Earth.  FAg  is calculated according to 

Featherstone and Dentith (1997), ATMC  is calculated according to Kuroishi (1995), in mGal.  x , y  

and z  represent the planar coordinates and orthometric heights of the integration points and of the 

computation points ( p ). 

The IEN  is calculated also using the planar approach, according Wichiencharoen (1982). 
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To calculate TC , IEN ,  g  and estimate  HELg , the height data are extracted from a previously 

defined DTM. This is necessary to eliminate the differences in the height values determined by 

different source data. 

To estimate  N , the  HELg  values were interpolated to generate a regular grid and enable the 

operations using the RCR technique. The inverse distance squared was used as the interpolation 

method. In general, first, the Bouguer correction ( BC ) is added to each point ( p ) for which  HELg  

has been calculated, followed by the interpolation of values for the points of the regular grid. 

Finally, BC  is eliminated from the generated grid, thus yielding the Helmert anomaly estimated for 

the regular grid (
Grid

HELg ). The values of BC  are used to smooth the values of  HELg  in the 

interpolation process and generate 
Grid

HELg . 

 2 B pC G H                                                         (35) 

 

 

3.  Adjustment of the Gravimetric Geoid Model 

 

 

The geoid height computed using gravity data can be evaluated by comparing GravN  with the geoid 

height ( /GNSS LEVN ) estimated by geometric altitudes ( h ), determined by GNSS positioning 

techniques and ( H ) orthometric heights, determined by geometric levelling taking as origin the 

local vertical reference datum. 

/  GNSS Lev GNSS LevellingN h H                                                 (36) 

/  Grav GNSS LevN N N                                                      (37) 

To perform the evaluation, it is necessary to make the geoid height computed using gravity data 

compatible with the vertical reference datum location. As described by Sansò and Sideris (2013), 

the RCR technique refers to the geocentric reference system implicit in the geopotential model 

used. Also, the local levelling datum to which the orthometric heights refer will not likely 

correspond to the reference potential value of the geopotential model or the GPS reference system. 

To solve this problem, it is necessary to combine the heterogeneous height data. 

The compatibility of the geoid height can, therefore, be performed by the Least Square Method 

(LSM), whose functional linear model follows this consideration: 
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where, A  is the design matrix; 0X , vector of initial parameters; aX , vector of adjusted 

parameters; X , vector of corrections; bL , vector of observed values ( N ); and V , residue 

vector.  

Among the functional models adopted, we have the classical four-parameter linear model 

presented by Sanso and Sideris (2013): 

        a i i i i iN a bcos cos ccos sin dsin                                   (39) 

where b , c and d  are the translation parameters; a  is the change of the reference value of the 

potential; and i  and i  are Latitude and longitude of the GNSS/Levelling points. 

After compute the parameters by LSM, the obtained geoid height is compatible with the local 

vertical datum adopted. 

 

 Final Grav aN N N                                                         (40) 

Besides making the vertical data compatible, it is correct to affirm that the LSM using the 

parametric model also takes into account: the random errors derived from N , h  and H ; 

systematic effects and distortions of height data; theoretical assumptions and approximations made 

when processing the observed data; and the instability of the monument of the reference station 

over time, for example.  

 

 

4. Evaluation of the local geoid model 

 

 

The local geoid models computed can be evaluated on two ways, as presented by Tocho et al. 

(2013).  

The first involves descriptive statistics of the absolute differences between the geoid heights (N

) extracted from the computed geoid models ( N ) and from GNSS/levelling ( /GNSS LevN ) points. 

Those differences can be expressed by: 

/   GNSS Lev
i i iN N N                                                    (41) 

 

i  is the point used in the evaluation. 

The second involves descriptive statistics of the relative geoid heights differences ( relN ) formed 

for the baselines computed from pairs of points, using the computed geoid model and the GNSS / 

levelling points. It can be shown by: 
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                                      (42) 

i  and j  are the points used to form the baseline in the evaluation. ijS  is the baseline distance. 

If the value of N  is in mm and the value of S  is in km,  relN  has the value in ppm. 

 

 

5. Procedures adopted to compute the local geoid model 

 

 

Figure 1 shows the flowchart of computations used to estimate the local geoid model according to 

equations presented to implement the RCR technique and to adapt the geoid height. The flowchart 

includes a whole set of routines developed for reading the input data, for computation procedures 

and results generation. All routines, here called GRAVTool, were implemented based on the 

MATLAB® software. 

As shown in Figure 1, the input data used for the calculation procedures include: global 

geopotential model (*.gfc), provided by the International Centre for Global Earth Models - 

ICGEM; DTM image (*.tiff and *.tfw); ground gravity data in ASCII (*.txt), containing the 

geodetic coordinates, orthometric height and observed gravity of used points; constants related to 

the reference ellipsoid and average density; and terrestrial data that originated from the GNSS 

positioning and geometric levelling, in ASCII (*.txt) containing geodetic coordinates, and the 

geometric and orthometric altitude of each point. All gravity anomaly and geoid height results, 

calculated using the equations shown in previous sections, are available as ASCII (*.txt). 

 

Figure 1: Flowchart of the sequence of calculations to estimate the gravimetric geoid model. 1) 

input data, and 2) sequence of calculations and output results. 
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6. A local geoid model at the Federal District, Brazil 

 

 

The region of the Federal District of Brazil was chosen to compute the local geoid model (LGM). 

This region is located between 48.25ºW and 47.33ºW and 16.06ºS and 15.45ºS (Figure 2), with a 

slightly wavy relief, ranging from 600 to 1340 meters above sea level. 

To compute a local geoid model at the study region, the following material was used:  

- GECO (Goce and Egm2008 COmbination) geopotential model (GGM), developed by Gilardoni 

et al. (2015) and made available by the ICGEM. GECO was chosen because it is the newest highest 

resolution geopotencial model based on the integration of the EGM2008 (Earth Gravitational 

Model 2008) and of the GOCE (Gravity field and steady-state Ocean Circulation Explorer) 

satellite tracking data (fifth release of the time-wise GOCE solution). 

- DTM from the Shuttle Radar Topography Mission (SRTM), with spatial resolution of 90 m. The 

DTM are located between 49.75ºW and 45.83ºW and 17.56ºS and 13.95ºS (Figure 2). 

- 2312 ground gravity stations (GGS) provided by the Brazilian Institute of Geography and 

Statistics - IBGE, the National Petroleum Agency - ANP, including 323 new stations acquired by 

the authors. In addition, to complete the ground gravity data in regions without ground gravity 

stations, GECO up to degree and order 2190 was used. In this case, the ground gravity data were 

computed using the gravity anomaly and the height data extracted by ETOPO1 model, provided 

by National Oceanic and Atmospheric Administration - NOAA. All of the gravity data are located 

between 49.25ºW and 46.33ºW and 17.06ºS and 14.45ºS (Figure 2). 

To analyze the results and to adjust the local geoid model to the local vertical datum (Imbituba 

vertical Datum), 24 points whose geoid heights were obtained by GNSS positioning and geometric 

levelling, provided by IBGE, were used. 

 

Figure 2: Spatial distribution of the ground gravity stations (GGS) and ground gravity data 

computed from GECO geopotential model (GGM), tide free, up to degree and order 2190. 

Boundaries of the DTM, GGM, GGS, LGM and states are presented, too. 
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The RCR technique used the GECO geopotential model (tide free) up to degree and order 360 

considering only the long wavelengths for the calculation of  GMg  and GMN  in the study area 

(Figures 3 and 4, respectively).  HELg  and 
Grid

HELg  of the study area were computed using the 

ground gravity data and the DTM, following gravity anomaly and reductions involving   FAg , 

ATMC , TC ,  g  and BC  (Equations 29 to 33 and 35; Figure 5). Finally, the  RESg  was computed 

(Equation 1).  

 

 

Figure 3:   GMg  calculated for the study area, using , n mC  and , n mS  up to degree and order 360, 

based on the GECO geopotential model. The black polygon shows the geographical boundaries 

of the Federal District.  

 

Figure 4: GMN  calculated for the study area, using , n mC  and , n mS  up to degree and order 360, 

based on the GECO geopotential model. The black polygon shows the geographical boundaries 

of the Federal District. 
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GECO has contribution of GOCE data up to the 250 degree. However, the choice of the degree up 

to 360 to compute  GMg  and GMN  on this study was made because it presented less dispersion of 

the differences between GMN  and /GNSS LevN . 

 

Figure 5: 
Grid

HELg  calculated using the ground gravity data and DTM of the study area. The 

black polygon shows the geographical boundaries of the Federal District.   

 

The constants used in this work are shown in Table 1. These constants are presented by Moritz 

(1984) and IERS (International Earth Rotation and Reference Systems Service) Technical Note 

(Petit and Luzum, 2010). 

Table 1: Constants values used to compute the geoid model.  

Reference ellipsoid GRS80 

a  6378137m  Semimajor axis 

b  6356752.3141m  Semiminor axis 

GM  143.986005 10 3 2m /s   Geocentric gravitational constant 

ω  57.292115 10 rad/s   Nominal mean Earth's angular velocity 

aγ  9.7803267715 2m/s   Normal gravity at equator 

bγ  .   29 8321863685m/s  Normal gravity at pole 

G   116.67428 10 3 2m / kg.s   Constant of gravitation 

0W  62636856.0 2 2m /s   Potential of the geoid 

Density 

ρ  2670  3kg/m  Average crustal density 

 

The local geoid model (Equation 2 and Figure 6) with a spatial resolution of 2.5’ was obtained 

following the calculation of GMN  (Equation 4), RESN  (Equations 22 and 28), the zero degree term 
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(Equations 19 and 20) and IEN  (Equation 34). The zero degree term computed and added in   GMg  

and GMN  was -0.152 mGal and -0.442 m, respectively. 

The LSM (Equations 38 and 39) was used to adjust the local geoid model to the local vertical 

datum, using as reference 24 points whose geoid heights were obtained by GNSS positioning and 

geometrical levelling (Figure 6). The altimetric precision of the points used as reference is 

approximately 0.073 m. As there are only a few points to apply the SLM, and that the lack of one 

of them can affect considerably the results of the adjustment, this study did not include part of 

these points as checkpoints. 

  

Figure 6: Calculation of the local geoid model ( GravN ). The red points are geometrical levelling 

technique associated with GNSS positioning used to evaluate and to adjust GravN  to the local 

vertical datum in the study area.  The black polygon shows the geographical boundaries of the 

Federal District. 

 

After adjusting the parameters (Equation 39), the local geoid model was estimated (Equation 40 

and Figure 8) free of systematic components -  aN . The systematic components are presented on 

Figure 7.  

 

Figure 7:  aN  (systematic component) adjusted by the LSM, using as reference points whose 

geoid heights were obtained by GNSS positioning and geometric levelling for the study area.  

The black polygon shows the geographical boundaries of the Federal District. 
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Figure 8: FinalN  after applying  aN  in the study area. The black polygon shows the geographical 

boundaries of the Federal District. 

To evaluate the results, it was analyzed the absolute and relative differences between the geoid 

heights extracted from GravN  and /GNSS LevN . In both analyzes, the official geoid model adopted 

in Brazil (MAPGEO2015) was included to verify the performance of this work computed models. 

Although this study did not include checkpoints to analyze the FinalN , the residual value for the 

reference points extracted from the LSM was used too. 

Table 2 and Figure 9 shown the descriptive statistics of the absolute differences between the geoid 

heights of the local geoid models and the geoid heights computed from the 24 GNSS/levelling 

points (Equation 41). It can be seen that the Quartile Coefficient of kurtosis is similar for all the 

models, but the GravN  (Figure 6) and FinalN  (Figure 8) values have less discrepancy and greater 

accuracy than the 2015MAPGEON  values. Furthermore, the GravN  presented more symmetric than 

the other models and the discrepancies of the differences (    maximum minimumdifferences ) of the 

 GravN  (0.254 m) and FinalN  (0.251 m) are similar. 

Table 2: Descriptive statistics of the differences between geoid heights from different models (

MAPGEO2015N , GravN  and FinalN )  and from 24 GNSS/levelling points ( GNSS / LevN ). 

Statistics MAPGEO2015 GNSS / LevN N  Grav GNSS / LevN N  Final GNSS / LevN N  

Maximum (m) 0.320 0.205 0.162 

Minimum (m) -0.065 -0.049 -0.089 

Average (m) 0.069 0.060 0.000 

Root-mean-square deviation (m) 0.102 0.081 0.051 

Asymmetry 1.261 0.267 1.001 

Quartile Coefficient of kurtosis 0.260 0.277 0.295 
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Figure 9: Differences between geoid heights from different models and from 24 GNSS/levelling 

points. a) 2015 / MAPGEO GNSS LevN N . b) /–  Grav GNSS LevN N . c) /–  Final GNSS LevN N . 

Table 3 and Figure 10 have shown the descriptive statistics of the relative differences of the geoid 

heights with pairs of points (Equation 42). In this case, 265 baselines formed with minimum 

distances of 1 km were used, considering the 24 GNSS/levelling points. 

 Table 3: Descriptive statistics of relative differences of geoid heights with 265 pairs of points, 

formed with minimum distances of 1 km, considering GNSS / LevN  as reference and MAPGEO2015N , 

GravN  and FinalN . 

Statistics MAPGEO2015N  GravN  FinalN  

Maximum (ppm) 26.231 22.561 23.451 

Minimum(ppm) 0.016 0.000 0.003 

Average (ppm) 2.896 1.985 2.348 

Root-mean-square deviation (ppm) 4.853 3.428 4.156 

 

 

Figure 10: Relative differences of geoid heights with 265 pairs of points, formed with minimum 

distances of 1 km, considering /GNSS LevN  as reference and: a) 2015MAPGEON ; b) GravN ; and c) 

FinalN . 
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The Table 3 and Figure 10 shown that GravN  has better results than the otter models, with 

maximum, average and root-mean-square deviation values of relative differences of 22.561 ppm, 

1.985 ppm and 3.428 ppm, respectively. The maximum relative difference values are presents until 

13 km of baselines for GravN  and FINALN  (Figure 10). After this, the relative difference values are 

less than 10 ppm. 

Analyzing the results, although FINALN  presents less average and root-mean-square deviation 

values of the absolute differences, GravN  presents more symmetric than the other models analyzed. 

Also, GravN  shown maximum, average and root-mean-square deviation values of relative 

differences less than the otter models analyzed. Beside this, GravN  are not adjusted with the points 

used as reference and may not be dependent of the spatial distribution of them. So, this study 

suggests that GravN  is the best model to be used for Federal District. 

 

 

7. Conclusion 

 

 

This paper presents a review of the procedures adopted to compute local geoid models and their 

application at Federal District, Brazil, using procedures, called GRAVTool, developed and based 

on MATLAB® software. 

The numerical results for the study area show that the geoid height values ( GravN  and FINALN ) 

extracted from the local geoid model computed had lower difference values compared to those 

extracted from the regional geoid model ( 2015MAPGEON ) available for the area. This shows better 

compatibility of the geoid model calculated with the geoid heights derived from the geometrical 

levelling technique supported by GNSS positioning. 

In addition to the compatibility, the calculated root-mean-square-deviation of the geoid height is 

near to the uncertainty of the geoid heights used as a reference, which suggests that the local geoid 

model calculated is consistent. 

Although FINALN  presents less average and root-mean-square deviation values of the absolute 

differences, GravN  presents more symmetry than the FINALN  and 2015MAPGEON . Also, GravN  

shown lower maximum, average and root-mean-square deviation values of relative differences less 

than the otter models analyzed. Beside this, GravN  are not adjusted with the points used as 

reference and, because this, may not be dependent of the spatial distribution of them. So, this study 

suggests that GravN  is the best model to be used of Federal District. 

It is important to mention that the large amount of ground gravity data provided by the IBGE, ANP 

and collected in the field together with a suitable geopotential model improved the results for the 

geoid models. 
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