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Abstract 

The social and environmental challenges are directly related to the 

existing population concentration in urban environments, contributing 

to more than 75% of the world’s Gross Domestic Product (GDP). Thus, 

the Land Use and Land Cover (LULC) dynamics are essential to 

support public policy elaboration and implementation. SAR systems, 

especially the interferometry techniques, have shown remarkable 

results in this challenge since they do not have direct influence from 

the atmosphere. Few studies used interferometric coherence from the 

Sentinel-1 image in an urban environment. This research aims to 

classify the LULC in the Distrito Federal, Brazil, based on different 

dimensions considering the intensity and interferometric coherence for 

the year 2018. The results measured from the Kappa and F1 metrics 

indicate that the insertion of a time series of interferometric 

coherencies improves the performance of the classification, from 0.50 

to 0.75 (Kappa) and from 0.54to 0.79 (F1), a fact that was evident in 

the improved performance of the thematic classes related to 

vegetation cover. Furthermore, the best identification of urban objects 

used only the intensities (VV and VH) in the classification. 

                                                           
1 Universidade de Brasília, Departamento de Geografia, Brasília, DF, Brazil. felipelrb@gmail.com 
2 Universidade de Brasília, Departamento de Geografia, LSIE, Brasília, DF, Brazil. renatofg@unb.br 
3 Universidade de Brasília, Departamento de Geografia, LSIE, Brasília, DF, Brazil. osmarjr@unb.br 
4 Universidade de Brasília, Departamento de Geografia, LSIE, Brasília, DF, Brazil. robertogomes@unb.br 

about:blank
mailto:renatofg@unb.br
mailto:osmarjr@unb.br
mailto:robertogomes@unb.br


BARBOSA et al. Land Use/Land Cover classification in Distrito Federal 

 

2 

 
Soc. Nat. | Uberlândia, MG | v.33 | e55954 | 2021 | ISSN 1982-4513 

INTRODUCTION 

 

 

The concentration of population in Brazilian 

cities is responsible for a significant part of the 

social and environmental problems, since 

approximately 160 million people live in the 

urban environment, about 85% of the 

population, as said by 2010 Demographic 

Census prepared by the Instituto Brasileiro de 

Geografia e Estatística (IBGE). According to 

Zhu et al. (2019), urban areas guarantee more 

than 75% of the world's Gross Domestic 

Product (GDP). 

Land Use/ Land Cover (LULC) information 

is indispensable for public environmental 

policies (KHALIL; HAQUE, 2018). The LULC 

dynamic is one of the most expressive areas in 

remote sensing, being a key element in the 

environmental impact assessment, ecological 

monitoring, global change monitoring, 

territorial planning, development of regulatory 

policies, and identification and prevention of 

irregular urban expansion. 

Synthetic Aperture Radar (SAR) image has 

the advantage of being nearly free of 

atmospheric interference and cloud cover, 

facilitating the analysis of changes over time. 

SAR data has improved and popularized the 

development of studies focused on LULC 

classification (DINIZ; GAMA, 2019; MIGUEL; 

SANO, 2019), optical and radar data fusion 

(RAJAH et al., 2018; WERNER et al., 2014), oil 

spills (CHATURVEDI et al., 2019; OZIGIS et 

al., 2020), mass gravitational movements 

(AUBLANC et al., 2018; LI et al., 2020) and 

agricultural mapping (PICHIERRI et al., 2018; 

SEKERTEKIN et al., 2020). 

SAR systems also have the potential for 

identifying urban objects. The radiation control 

emitted and received by the sensor allows a 

better understanding of the structures and 

geometric objects on the ground, as their 

dielectric properties affect electromagnetic 

radiation's polarization (WERNER et al., 2014). 

However, the SAR system presents some 

factors that interfere with the quality of 

imaging of natural and artificial surfaces due 

to abrupt changes in height, orientation, shape, 

and size of objects, which together promote a 

spectral confusion between the LULC classes to 

be mapped (GRIFFITHS et al., 2010). 

The use of the interferometric technique 

(InSAR) allows the enhancement of LULC 

classifications. The wave phase (Φ) in the SAR 

signal represents the electromagnetic wave's 

return moment and is related to the distance 

between the satellite antenna and the targets. 

Therefore, it can be used as information on the 

derivation of distortions in the terrain (mass 

movements, undercuts, Digital Terrain Models, 

and others). The wave phase (Φ) calculation 

considers the following mathematical equation 

(Equation 1), whereas the sinusoidal nature 

respects a circle of 2π. 

 

Φ =
2𝜋

𝜆
2𝑅 =

4𝜋

𝜆
𝑅v                                       (1) 

 

This technique measures the difference 

between the phases of two SAR scenes from the 

same area and obtained at different incident 

angles, which defines the phase change, or 

interferometric phase (ΔΦ). Hypothetical 

geometry of an InSAR system obtained from 

two orbits apart by an interferometric baseline 

(Figure 1). 

 

Figure 1. InSAR geometry scheme obtained 

from two orbits 

 
Org.: Authors, 2020 

Figure 1 shows the measurements directly 

relate to the distance covered by the signal, the 

interferometric baseline, the viewing angles, 

and the wavelength (λ). Equations 2 and 3 

describe the geometric interface of the 

interferogram concept. 

 

Φ1 =
4𝜋𝑅

𝜆
, Φ2 =

4𝜋(𝑅+𝛥𝑅)

𝜆
                              (2) 

 

𝛥Φ = Φ2 − Φ1 =  
4𝜋𝛥𝑅

𝜆
                                (3) 

 

InSAR techniques provide helpful 

information to support urban environment 

studies, mainly focused on identifying 

subsidence movements through surface 

deformation analysis (CIAMPALINI et al., 

2019; HU et al., 2019). Hence, it is essential to 
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ensure a good quality of both return signals to 

perform interferometric analysis. 

Coherence (γ) is an ancillary interferometric 

measurement that ranges from 0 to 1 and 

indicates the degree of similarity of the phases 

of both return signals in an InSAR system. 

This metric indicates the areas that may be 

subject to interferometric studies, a direct 

result of the combination of a specific geometric 

pattern of the system and the environmental 

conditions during the registration of both 

signals. Equation 4 defines the interferometric 

coherence between two SAR images, resulting 

from the relation between the real and 

expected values of the amplitudes |u1| and 

|u2| of the two original SAR images. 

 

γ =
𝐸[𝑢1 𝑢2]

√𝐸[|𝑢1|2].√𝐸[|𝑢2|2]
                                      (4) 

 

Interferometric coherence is valuable 

supplementary information for landscape 

classification (OLESK at al., 2016; 

WEGMULLER et al., 2015), once its values are 

associated with temporal, geometric, 

volumetric, and signal processing 

characteristics. Studies use coherence in the 

vegetation cover identification (DINIZ; GAMA, 

2019; MOHAMMADIMANESH et al., 2018), 

due to its volumetric behavior in time series. 

Such areas are quite heterogeneous and show 

high texture changes over time, caused by 

different weather conditions or LULC 

conversion. The coherence variation caused by 

the temporal correlation helps identify 

different spectro-temporal curves of targets and 

serves as ancillary information for their 

classification. 

Coherence has a high potential for urban 

mapping (MIGUEL; SANO, 2019; SICA et al., 

2019; ZHANG et al., 2018). Urban objects 

(buildings, houses, walls) do not have great 

backscatter values variation regarding a time 

series, which leads to the registration of high 

coherence rates over such areas. Further, few 

studies use interferometric coherence from the 

Sentinel-1 satellite in urban environments 

(KHALIL; HAQUE, 2018). 

This study aims to classify LULC in part of 

the Distrito Federal (DF) using a SAR time 

series from the Sentinel-1 image for the year 

2018. For this purpose, we tested different 

temporal arrangements considering the 

intensity (dB) and interferometric coherence in 

the image classification. 

 

 

AREA OF STUDY 

 

 

Distrito Federal (DF) has a population of 

approximately 3,000,000 inhabitants with 

asymmetrical distribution between rural 

(3.38%) and urban (96.62%), as shown in its 

Ecological-Economic Zoning (BRASIL, 2018). 

The DF urban environment has several 

arrangements that mostly materialize in its 

planned part, with buildings and residences 

arranged in wooded areas, or unplanned, which 

tends to behave as typical urban arrangements 

found in other Brazilian cities. Figure 2 

illustrates different urban object arrangements 

in the DF. 

The study area comprises the perimeter 

established between the coordinates 48º5'57.31 

"W 15º34'23.04" S and 47º49'50,10 "W 

15º57'8,3" S (Figure 3). This area's choice is due 

to (i) diversification of the urban morphology 

and Cerrado vegetation types; and (ii) limited 

computational capacity in the SAR processing 

for the entire year of 2018, mainly 

interferometric data. 

 

Figure 2. Several urban arrangements in the DF. (a) Planned and largely wooded area; (b) Planned 

and less wooded area; (c) Recent unplanned expansion area. 

   
                           (a)                                                 (b)                                                   (c) 

Org.: Authors, 2020 
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Figure 3. Area of study relative to the part of the DF. 

 
Org.: Authors, 2020 

 

MATERIALS AND METHODS 

 

 

We organized the methodology into three 

stages (Figure 4). The first stage refers to the 

pre-processing of radar signals and the 

construction of time cubes. The second stage 

concerns the class definition and the choice of 

training samples. The third stage deals with 

the classification and evaluation procedures. 

 

Figure 4. Flowchart of the methodological stages 

 
Org.: Authors, 2020 
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Radar signal pre-processing and time cubes 
construction (Stage 1) 
 

Sentinel 1, an initiative of the European 

Commission and European Space Agency 

(ESA), is a constellation of two orbital 

platforms operating in the C band (5,405 GHz) 

of the microwave, in two polarizations (VV and 

VH), and has 4 (four) acquisition modes: (i) 

Stripmap (SM); (ii) Interferometric Wide Swath 

(IW); (iii) Extra-Wide Swath (EW); and (iv) 

Wave mode (WV). We chose the IW acquisition 

mode, with a 250-km imaging range, moderate 

resolution (5m by 20m), and structured in 

Terrain Observation with Progressive Scans 

SAR (TOPSAR), which ensures homogeneous 

image quality (DE ZAN; GUARNIERI, 2006). 

The LULC mapping widely uses the IW 

acquisition mode. 

Sentinel 1 images can be acquired at 

different levels of processing: (i) Single Look 

Complex (SLC); and (ii) Ground Range 

Detected (GRD). Considering the 

interferometric application, we selected SLC 

images for the year 2018 since they have 

information related to amplitude and signal 

phase, recorded in complex numbers, and 

projected in slant-range. Table 1 shows the 

dates of the 28 Sentinel 1 IW/SLC images 

acquired. 

 

Table 1. Dates of Sentinel 1 images acquired and processed 

Dates – Sentinel 1 images (IW SLC) 

01/07/2018 04/01/2018 07/18/2018 10/10/2018 

01/19/2018 04/13/2018 07/30/2018 10/22/2018 

01/31/2018 04/25/2018 08/11/2018 11/03/2018 

02/12/2018 05/07/2018 08/23/2018 11/15/2018 

02/24/2018 05/19/2018 09/04/2018 11/27/2018 

03/08/2018 06/12/2018 09/16/2018 12/09/2018 

03/20/2018 06/24/2018 09/28/2018 12/21/2018 

Org.: Authors, 2020. 

 

The pre-processing (Figure 4A) reduces 

radiometric and geometric distortions. We use 

the SNAP program, developed by the European 

Space Agency (ESA), which has specific tools 

for processing the intensity and interferometric 

coherence from the Sentinel-1 image. We 

clipped the SAR images from the study area 

and corrected them, considering their 

complementary information to the satellite’s 

orbit and altitude. In the case of intensity 

values estimation, we calibrate the signal to 

perform the transformation of the backscatter 

values, initially in digital levels (ND) to sigma 

(σ) and later transformed in decibel levels (dB), 

which guarantees a better representation of the 

values in the available range of the image 

histogram. 

We perform a convolutional median filtering 

(5x5 window size) to reduce the speckle effect. 

This effect causes differentiation in the 

backscatter values that may not be associated 

with real landscape changes, causing a “salt 

and pepper” granulated pattern. Later, we 

transformed the SAR images, originally 

projected in slant-range, into a regular ground 

grid, a process known as multilooking. 

Finally, we orthorectified and projected the 

SAR images in UTM 23S, WGS 1984 datum, 

concerning the Shuttle Radar Topography 

Mission (SRTM) Digital Elevation Model (30-

meters resolution), which resulted in final SAR 

images with 10-meters resolution. These 

geometric corrections reduce the distortions 

associated with foreshortening, layover, and 

shadowing. 

The coherence calibration of the SAR signal, 

designed to maintain the amplitude and phase 

information, kept the values adjusted in 

complex numbers. As an InSAR system with 

Sentinel 1 images can only be structured in a 

monostatic approach, in which the simulation 

of the interferometric baseline is obtained by 

acquiring two scenes of different times over the 

same area, we group the images in pairs 

considering the ancillary orbit information 

through the back-geocoding process, in order to 

georeference the amplitude and phase and, 

thus, allow the computation of the 

interferometric coherence according to 

Equation 4. The 27 interferometric coherence 

images calculated for the year 2018 (Box 1). 
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Box 1. Adopted arrangement for the 2018 interferometric coherence estimation. 

Date Coh. Date Coh. Date Coh. Date Coh. 

01/07/2018 
1 

04/01/2018 
8 

07/18/2018 
15 

10/10/2018 
22 

01/19/2018 04/13/2018 07/30/2018 10/22/2018 

01/19/2018 
2 

04/13/2018 
9 

07/30/2018 
16 

10/22/2018 
23 

01/31/2018 04/25/2018 08/11/2018 11/03/2018 

01/31/2018 
3 

04/25/2018 
10 

08/11/2018 
17 

11/03/2018 
24 

02/12/2018 05/07/2018 08/23/2018 11/15/2018 

02/12/2018 
4 

05/07/2018 
11 

08/23/2018 
18 

11/15/2018 
25 

02/24/2018 05/19/2018 09/04/2018 11/27/2018 

02/24/2018 
5 

05/19/2018 
12 

09/04/2018 
19 

11/27/2018 
26 

03/08/2018 06/12/2018 09/16/2018 12/09/2018 

03/08/2018 
6 

06/12/2018 
13 

09/16/2018 
20 

12/09/2018 
27 

03/20/2018 06/24/2018 09/28/2018 12/21/2018 

03/20/2018 
7 

06/24/2018 
14 

09/28/2018 
21 

 

04/01/2018 07/18/2018 10/10/2018 

Org.: Authors, 2020 

In the interferometric coefficients, we 

applied the same filtering, multilooking, and 

terrain geometric correction. The 

interferometric coherence values in the slant-

range projection used the original signal phase 

information in complex numbers for each image 

pair to be compatible with the intensity 

metrics. The interferometric coherence images 

also have a 10-meter resolution. We process all 

SAR information in SIRGAS 2000, according to 

Resolution IBGE 01/2015 (BRASIL, 2015). 

After preprocessing the SAR information, 

we combine the 2018 intensity images into 

different matrix structures containing all the 

interstice analyzed information (time cubes) 

(Figure 4C). This matrix arrangement is 

specific for the spectro-temporal analysis 

within the Abilius program, which can 

quantitatively analyze a target considering its 

temporal variability. 

We have structured different time cubes by 

initially combining only the intensity metrics in 

both polarizations, to evaluate the polarization 

performances in the classification. Besides, in 

order to make the interferometric coherencies 

and intensities compatible in the same matrix 

structure, it was necessary to establish 27 

distinct scenes, each one with (i) coherence 

image and (ii) the average value of the 

intensities relative to the dates of the images 

that formed the respective interferometric pair 

(Figure 4B), which were finally grouped 

observing the temporal arrangements already 

mentioned (Box 1). 

It was possible to structure 3 different time 

cubes using only the intensity measures, and 

another 5 different time cubes considering the 

possible combinations between the 

interferometric coherence and intensities, in 

their different polarizations (Figure 4C). This 

methodological arrangement allowed the 

acquisition of 8 LULC classifications for the 

2018 time series. 

 

Training classes and samples definition (Stage 
2) 
 

The research used seven LULC classes: (i) 

water; (ii) grassland formation; (iii) savanna 

formation; (iv) forest formation; (v) flat areas, 

(vi) urban sprawl, and (vii) buildings (Figure 

4D). LULC maps commonly use the first four 

classes. The "flat area" class registers the 

locations with lower intensity values, such as 

roads, parking lots, and exposed soil. This class 

was crucial to avoid possible confusion with 

water since the backscatter signal's responses 

are very similar due to the dominant specular 

effect. 

In this research, the urban theme has two 

focuses: (i) the area identification containing 

the aggregate of urban objects (buildings and 

constructions) and green areas; and (ii) urban 

object identification. The urban areas have 

double or triple backscatter of the signal due to 

their interaction with objects with flat and 

orthogonal surfaces inherent to building 

facades, called the double-bounce effect, which 

facilitates the identification of such targets. For 

the first approach training, we defined the 

"urban sprawl" class considering different 

arrangements regarding the orientation and 
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concentration of urban objects and the 

surrounding green areas (Figure 2). This 

transition class between urban objects and the 

other LULC classes is because the term 

"urban" does not have a single meaning and 

makes it impossible to define different physical 

structures and surface properties. The second 

approach consisted of training samples related 

to the urban objects mapped through the 

cadastral air survey of the DF carried out in 

2016. 

We established 20 regions of interest for 

each thematic class, representing a sample 

cluster of approximately 6,400 pixels. This 

strategy aimed to maintain the stratiform 

distribution among the samples in each of the 

classification processes. The sampling process 

used: (i) photointerpretation of 2018 high-

resolution Planet images; (ii) vegetation maps 

of the DF elaborated by the local government in 

the context of the Ecological-Economic Zoning 

of the DF (BRASIL, 2018); and (iii) LULC map 

elaborated in 2019 by the local government. 

The exception was the "building" class, 

which we trained with the random selection of 

100 buildings, with more than 500 m2 each, 

originated from the urban cadastral air survey 

held in 2016. These quantities ensure the same 

sample cluster value as the other thematic 

training classes. We use the ENVI 4.3 program 

to perform the processing of this stage. 

 

Classification process stage (Stage 3 E) 
 

The Random Forest (RF) algorithm 

(BREIMAN, 2001) makes predictions from a set 

of decision trees created randomly with the 

relevant information. For each kth tree of the 

set to be composed by the algorithm, a random 

vector ʘk is generated, independent of past 

random vectors ʘ1,....,ʘk-1, but with the same 

distribution. Hence, a tree is structured using 

the training samples and ʘk, resulting in the 

definition of the classifier h(x, ʘk). Each kth 

tree's nodes are defined based on the nature 

data in a random pattern, always ensuring the 

best entropy between a node and its 

subsequent (BELGIU; DRAGUT, 2016; 

BREIMAN, 2001; WHITCOMB et al., 2009). 

Each random classifier votes, establishing the 

highest probability of occurrence. 

We chose this classifier because of the 

sample size since the most robust algorithm in 

this situation is associated with the set of 

decision trees (MAXWELL et al., 2018). Miguel 

and Sano (2019) and Lawrence and Moran 

(2015) found satisfactory results regarding RF's 

potential compared to other machine learning 

algorithms. 

The Spatial Information System Laboratory 

(LSIE) of the Universidade de Brasília (UnB) 

develops the free program Abilius that has 

tools for visualization, digital image processing, 

and machine learning classification. The 

Abilius software structures the images in 

temporal cubes, allowing an efficient and rapid 

quantitative analysis of the spectral-temporal 

dynamics. 

The RF algorithm implemented in Abilius 

comes from the Open Source Vision Library 

(OpenCV), using the parameterization 

according to Prinzie and Van den Poel (2008). 

We chose in 5 the maximum number of division 

of the decision trees and in 500, the maximum 

number of the set of trees (MAXWELL et al., 

2018). Several academic papers used this 

algorithm for the classification of agricultural 

commodities (BITENCOURT, 2020; COSTA, 

2020), land use/land cover (MARQUES et al., 

2019; SALGADO, 2019), flooded areas 

(FERREIRA, 2018), and burned areas 

(OLIVEIRA, 2019). 

 

Evaluation of classifications (Stage 3 F) 
 

The accuracy analysis used an independent 

truth dataset to calculate the following metrics 

widely used in remote sensing studies: (i) 

Kappa index, and (ii) F1 score (CAO et al., 

2020; SALGADO et al., 2019). The Kappa index 

and the F1 score come from the confusion 

matrix, counting true positives (TP), false 

positives (FP), true negatives (TN), and false 

negatives (FN). The calculation of the F1 score 

(Equation 5) considers precision (Equation 6) 

and recovery (Equation 7). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
Σ𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

Σ𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)+Σ𝐹𝑎𝑙𝑠𝑒 𝑝𝑖𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
 (5) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
Σ𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

Σ𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)+Σ𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
    (6) 

 

𝐹1 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                     (7) 

 

A high precision value and a low recall value 

indicate inadequately mapping for a given 

class, even if many of these are correct 

compared to the "truth". Meanwhile, high recall 

and low precision values indicate that the class 

was overestimated in the study area, 

containing many commission errors. For each 

of the seven classes, we have established 300 

random "truth" points independent of the 

training samples (BITENCOURT, 2020; 
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COSTA, 2020). For the definition of these 

random points, we used the same list of 

cartographic products presented in step 2.  

In the time-series analysis, we compare the 

classifications made with two dataset (Figure 

4F): (a) only the intensities in the VV and VH 

polarizations of 08/11/2018, and (b) 

interferometric coherences and the intensities, 

in both polarizations, referring to 08/11/2018 

and 08/23/2018. 

Consolidation of LULC map (Stage 3 E) 
 

The LULC map results from the classes' spatial 

grouping considering their best classifications. 

The final map's spatial clustering considers the 

building class from the VV and VH intensity as 

the better accuracy, with its result 

superimposed on the best performance 

classification achieved (Figure 5). 

 

Figure 5. Flowchart of LULC map consolidation 

 
Org.: Authors, 2020 

 

RESULTS AND DISCUSSION 

 

 

This section presents the results and 

discussions of the eight different temporal 

classifications. Figures 6 and 7 show 

respectively the Kappa coefficient and F1-score, 

considering (i) only the intensities (VV and VH) 

(brown colour), (ii) the conjugation with the 

interferometric coherence (blue colour), and (iii) 

image classifications of 08/11 and 08/23. The 

time-series data produces a considerable 

classification improvement, with an increase of 

Kappa from 0.42 to 0.56 and F1-score from 0.49 

to 0.59 using only VV and VH intensities. The 

classification in conjunction with 

interferometric coherence increased the Kappa 

from 0.6 to 0.75 and the F1-score from 0.65 to 

0.79. The temporal cube combining coherence 

and intensities in both polarizations achieved 

the best performance with 0.75 (Kappa) and 

0.79 (F1-score). Moreover, the results also 

indicate better performances of the temporal 

classifications than a single period. 

 

Figure 6. Performance of classifications based on the Kappa index 

 
Org.: Authors, 2020 
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Figure 7. Performance of classifications based on F1 score, precision and recall. 

 
Org.: Authors, 2020. 

 

The F1-score for each class shows different 

responses regarding interferometric coherence 

in the classification (Figure 8). Figure 9 

presents the precision and recall metrics for 

each class. Classification 8, which considers the 

VV and VH intensities and interferometric 

coherence, reaches the best F1, i.e., the best 

balance of precision and recall values (Figure 

9). 

 

Figure 8. Performance of the classifications by thematic class based on the F1 index - (a) Water; (b) 

Grassland formation; (c) Savanna formation; (d) Forest formation; (e) Urban sprawl; (f) Building and 

(g) Flat areas. 

 
Org.: Authors, 2020 
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Figure 9. Performance of the classifications by thematic class - precision and recall indexes - (a) 

Water; (b) Grassland formation; (c) Savanna formation; (d) Forest formation; (e) Urban sprawl; (f) 

Building and (g) Flat areas. 

 
Org.: Authors, 2020 

The F1-score reveals significant 

performance changes in the vegetation classes, 

specifically savanna and forest formation 

(Figure 8c and 8d). The results indicate an 

increase from 0.51 to 0.70 (savanna) and from 

0.47 to 0.93 (forest) when considering the 

interferometric coherence in the classification, 

in this case, assuming all possible polarization 

combinations. The savanna class showed little 

variation in the recall values and a significant 

improvement in the precision values (0.39 to 

0.63), which indicates a decrease in FP (Figure 

9c). In the forest class, the performance 

improvement becomes more noticeable, in 

which both precision and recall metrics 

increased from 0.46 to 0.90 and from 0.49 to 

0.96, respectively (Figure 9d). These results 

demonstrate a significant decrease in FN and 

FP, thus providing a more reliable model for 

identifying vegetative classes, especially those 

with less temporal variation in forest density. 

Figure 10 shows the improvement in the 

vegetation classification with the 

interferometric coherence time series. 

 

Urban objects versus Urban sprawl (Stage 3 E) 
 

The urban classes showed different results 

with the use of coherence in the classification. 

The urban sprawl class only became evident 

with coherence images. Figure 8e shows an 

increase of F1-score from 0.59 to 0.71 using 

intensities and consistencies in both 

polarizations in the classification and a better 

balance between precision and recall values 

(Figure 9e). 
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Figure 10. Performance of vegetation cover classes. 

 
Org.: Authors, 2020. 

 

The building class increases F1-score 

from 0.55 to 0.68 (Figure 8f). It is noticeable 

that the increases in precision (0.50 to 0.71) 

and recall (0.48 to 0.66) values (Figure 9f) are 

associated with the mapping of a more generic 

class in the study area, which does not 

necessarily indicate a better definition of urban 

objects. Figure 11 shows the TP values for the 

building class divided by the areas that were 

classified considering the results (i) using only 

the intensities (VV and VH) and (ii) the 

aggregate of interferometric coherencies and 

intensities in both polarizations. 

 

Figure 11. TP values divided by buildings class areas 

 
Org.: Authors, 2020 

The index indicates that the respective 

building class is higher in the time series using 

only the intensities than the whole data 

dimensionality (Figure 11), which appears to be 

adequate in the area with a predominant 

double bounce effect. Despite having better 

accuracy rates, the interferometric coherence 

tends to potentiate the result of the building 

class overestimating its area in the LULC 

classification. 

 

Compilation of the LULC map 
 

The final LULC map grouped the 

classifications with the best performance with 

the Kappa coefficient and F1 score. The 

exception was the building class, which 
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considered the classification using only the VV 

and VH intensities. Figure 12 presents two 

regions of the study area to exemplify the 

refinement carried out by the process of spatial 

clustering of the best thematic performances 

defined. 

The proposed method of LULC map 

compilation provided a most reliable 

registration of urban objects in the final 

classification result, regions characterized by a 

double bounce effect. Figure 13 shows the 

LULC map from the proposed methodology. 

 

Figure 12. Examples of refinement of the urban theme - regions of (a) Guará and (b) Plano Piloto. 

 
(a) 

 
(b) 

Org.: Authors, 2020 
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Figure 13. Final LULC map. 

 
Org.: Authors, 2020 

 

FINAL CONSIDERATIONS 

 

 

This study innovates by presenting a 

methodological approach for LULC mapping 

based on intensities and interferometric 

coherence from a Sentinel 1 time series. The 

accuracy metrics indicate an improvement of 

0.50 to 0.75 (Kappa) and 0.54 to 0.79 (F1-score) 

in the classifications with the interferometric 

coherence in time series, presenting a better 

balance between the accuracy and recall 

values. 

This improvement is more evident in the 

vegetation classes, mainly in those with higher 

vegetative density (Forest), whose indexes 

varied from 0.47 to 0.93 (F1), which indicates 

the importance of this SAR information as a 

complementary approach to the improvement 

of the classification performance. 

Furthermore, the results indicate that such 

insertion impairs classifiers' ability to identify 

urban objects because coherence produces the 

smoothing of SAR metric values, which is not 

favourable to the classification of geometric 

targets because they have a high frequency. 

Thus, we determine this class using only 

metrics of intensity in both polarizations. 

Likewise, the compilation of methodologies for 

the LULC mapping identifies with greater 

precision both natural classes and the 

geometric definition of urban objects. Other 

studies can be developed to improve the 

classification process using object-oriented 

classifiers, a fusion of optical and radar 

sensors, and Deep Learning based on time 

cubes that consider temporal variation. 
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