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This work aims to investigate the floors number influence on the instability parameter limit a1 of buildings braced by reinforced concrete walls and/
or cores. Initially, it is showed how the Beck and König discrete and continuous models are utilized in order to define when a second order analysis 
is needed. The treatment given to this subject by the Brazilian code for concrete structures design (NBR 6118) is also presented. It follows a de-
tailed analytical study that led to the derivation of equations for the limit a1 as functions of the floors number; a series of examples is presented to 
check their accuracy. Results are analyzed, showing the precision degree achieved and topics for continuity of research in this field are indicated. 

Keywords: instability, bracing structures, second order analysis. 

O presente trabalho tem por objetivo investigar a influência do número de pavimentos no limite a1 do parâmetro de instabilidade de edifícios 
contraventados por paredes e/ou núcleos de concreto armado. Inicialmente, é abordada a utilização dos modelos discreto e contínuo de Beck e 
König na definição da necessidade ou não de se realizar uma análise de segunda ordem; mostra-se também como esta questão é tratada pela 
norma de projeto de estruturas de concreto (NBR 6118). Na seqüência, apresenta-se um detalhado estudo analítico que levou ao estabeleci-
mento de fórmulas para o limite a1 em função do número de andares, seguido de uma série de exemplos para testar a validade das mesmas. Os 
resultados são analisados, mostrando-se o grau de precisão obtido e indicando-se tópicos para a continuidade da pesquisa nesta área. 

Palavras-chave: instabilidade, estruturas de contraventamento, análise segunda ordem.
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1.	 Introduction 

1.1	 Second order effects and instability parameter

When acting simultaneously on a building bracing structure with a 
certain flexibleness extent, gravity and wind loads may develop ad-
ditional effects to those usually obtained in a first order linear analy-
sis (in which the equilibrium is verified in the non deformed struc-
ture). They are the second order effects, in whose computation the 
material nonlinear behavior (physical nonlinearity) and the structure 
deflected shape (geometric nonlinearity) must be considered. 
The work of Beck and König [1] provided an important contribution 
for the development of tall buildings global stability analysis theory. 
A simplified model for the bracing system of a building with equally 
spaced floors, shown in figure 1, was adopted. At first, all bracing 
substructures are grouped in a single column, while all braced ele-
ments (bearing elements that don’t belong to the bracing system) 
are replaced by an assemblage of hinged bars, as shown in figure 
1-a (discrete model). W denotes the wind load applied on each 
floor, while P and V are the floor vertical loads, applied on the brac-
ing substructures and braced elements, respectively. The loads W, 
P and V are considered with their characteristic values.
It can be proved that, when the system distorts laterally, the loads 
V induce transmission of horizontal forces through the floor mem-
bers to the bracing system, increasing its bending moments. It 
can also be proved that this increase is given by the sum of forces 
V multiplied by the respective floors horizontal displacements. 
Therefore, in order to compute these bending moments includ-
ing second order effects, the vertical loads acting on the bracing 
system are given by its proper P loads added to the braced ele-
ments V loads. 
Thereafter, in order to make possible to analyze the whole build-
ing structure by means of a single differential equation, Beck and 

König [1] adopted an equivalent approximate continuous system, 
shown in figure 1-b, with a continuous and uniform distribution of 
floors, vertical loads (p = P/h and v = V/h) and wind loads (w = 
W/h). The derivation of this equation originates a constant α, as 
a function of the total vertical load, the height Htot and the bracing 
system horizontal stiffness EI. This constant is defined as the insta-
bility parameter, being expressed by: 

(1) EIHvpH tottot /)( +=a

Beck and König [1] considered this single differential equation suit-
able for analysis of building structures with three or more floors. 
Furthermore, they concluded that second order effects may be 
neglected, provided that they don’t represent an increase more 
than 10% on the first order effects. Studies done after the work of 
Beck and König [1], related by Vasconcelos [2] and Ellwanger [3], 
utilized this conclusion in order to establish a criterion defining if a 
second order analysis will be needed for a given bracing system. 
The Comité Euro-International du Béton recommendations (CEB 
[4]), an outstanding reference for this subject, preconized that the 
above mentioned criterion has to be applied comparing the global 
bending moment absolute values at the bracing system support 
M I (considering only first order effects) and M II (including second 
order effects), as stated below: 

(2) III MM 1.1£

Figure 1 – Bracing system simplified models

Discrete model Continuous modelA B
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(5) 2/1560085.085.0 ckCiCS fEE ´==

ECS, ECi (tangent elasticity modulus) and fck (concrete compressive 
characteristic strength) are given in MPa. Furthermore, the NBR 
6118 code determines different a1 values, depending on the brac-
ing structure type: “The limit value a1 = 0.6, prescribed for n > 4, 
is generally applicable to building usual structures. It may be ad-
opted for wall-columns assemblages and rigid frames associated 
to wall-columns. It may be increased until a1 = 0.7 in the case of 
bracing systems composed exclusively by wall-columns and must 
be reduced to a1 = 0.5 if there are only rigid frames.” 
In a second order analysis, the effects of both physical and geo-
metric nonlinearities must be considered. In its item 15.7.3, ABNT 
[5] allows to consider the physical nonlinearity in an approximated 
manner. This is done by means of a reduction of the structural 
members stiffness factors (EI)sec in function of ECi IC, or of ECS IC if 
equation (5) is used. Although the code restricts this procedure to 
four or more floors structures, in this work it will also be adopted for 
buildings with three or less floors. Therefore, this fact must be kept 
in mind when results of examples with few floors are analyzed. 
Thus, the columns reduced stiffness may be expressed by: 

(6) 
CCSCCi IEIEEI 941.08.0)( sec ==

1.3	 Reasons and targets of the research 

The NBR 6118 code represented an improvement in relation to the 
preceding one, on establishing procedures to verify the exemption 
of second order global effects consideration. Concerning to the in-
stability parameter as a function of the floors number, it determines 
variable limits for buildings with less than four floors. However, the 
prescription of fixed limits (0.5, 0.6 or 0.7, depending on the bracing 
structure type) for a greater number of floors is questionable. For 
example, Ellwanger [3] found differences of about 12 % between 
the limit coefficients a1 of a building braced exclusively by walls, 
with the number of floors varying from 5 until 30. Considering that 
the instability parameter computation requires a square root extrac-
tion, the difference between the corresponding horizontal stiffness 
values reaches 25 %. Consequently, on verifying the exemption of 
performing a second order analysis, the error on determining the 
required horizontal stiffness can become significant. 
This work aims to research a way of defining the instability parameter 
limit a1 for buildings braced by walls and/or cores, variable with the 
number of floors. At first, a computer aid method, based on the dis-
crete model of Beck and König [1], is developed in order to determine 
the a1 limits for buildings with any number of floors. On applying this 
method, a series of a1 values is generated. Thereafter, the continuous 
model of Beck e König [1] is utilized in order to search approximated 
formulas that will reproduce this series of a1 values. The differential 
equations are solved by Galerkin method. The wind load is consid-
ered in two ways: constant along the building height and varying ac-

When M I and M II are expressed in function of the system load-
ing and horizontal stiffness, the instability parameter α, given by 
(1), becomes limited to particular values. The next section pres-
ents the treatment given to this subject by the present Brazilian 
code for concrete structures design (ABNT [5]). 
Although not belonging to this work purpose, a mention de-
serves to be done to a computer aid method, based on the mo-
ment amplification factor gz. Presented in 1991 by Franco and 
Vasconcelos [6], it also applies the criterion of 10% increase in 
relation to first order effects, to define if a second order analysis 
is or not needed; however, in this case it is done for each combi-
nation of horizontal and vertical loads. Furthermore, under cer-
tain conditions, this method may itself constitute a second order 
analysis. These features caused this method to be rapidly dis-
seminated and largely employed in buildings structures design. 
Nowadays, a great variety of powerful structural analysis pro-
grams is available, allowing an accurate modeling of build-
ing structures. Nevertheless, due to its simplicity, the method 
based on the instability parameter is frequently used in the 
preliminary design stages, especially in estimating the bracing 
system stiffness. 

1.2	 ABNT NBR 6118 prescriptions

The NBR 6118 code adopted the fundamental idea presented 
in [1] and [4], on determining in its section 15 that second order 
global effects are negligible when lower than 10% of the respec-
tive first order effects (fixed nodes structure). In order to “verify 
the possibility of dispensing the consideration of second order 
global efforts, in other words, to define if the structure may be 
classified as a fixed nodes one, without the need of a rigorous 
analysis”, ABNT [5] presents two approximate procedures, re-
spectively based on the instability parameter and the gz factor. 
The first one just consists of the Beck and König [1] criterion 
application and determines that: “A symmetrical framed struc-
ture may be considered as a fixed nodes one, if its instability 
parameter α will be lesser than the value of a1, according to the 
expressions”:  

(3) )/( CSCktot IENH=a

(4) 46.031.02.0 11 ³'=Ù£'+= nnn aa

“n is the number of horizontal bars levels (floors) above the foun-
dation or a slightly displaceable subsoil level. Htot is the structure 
total height, measured from the foundation top or from a slightly 
displaceable subsoil level. Nk is the summation of all vertical loads 
acting on the structure (above the level considered for Htot compu-
tation), with their characteristic values.    ECS IC represents the sum-
mation of all columns stiffness values in the considered direction. 
IC is the moment of inertia considering the columns gross sections. 
ECS is the secant elasticity modulus, expressed by:” 
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C2i-1 and C2i are integration constants and the coefficient a is ex-
pressed by: 

(9) JEFa /2 =

Bending moments inducing tension on the bar left side are consid-
ered negative. The subindexes attached to M(x) and y(x) indicate 
the validity interval of these functions. Applying equation (8) for the 
system top (x = nh and i = 1), gives: 

(10) )tan(12 nahCC -=

Having a relation between C1 and C2 been obtained, it will now be shown 
how the integration constants concerning to a given bar interval can be 
expressed in function of the constants regarding to the preceding one. 
The function yi+1(x) is obtained, replacing i by i + 1 in equation (8). Then, 
expressing successively yi(x) and yi+1(x) for x = (n – i)h (transition between 
intervals i and i + 1) and modifying these expressions adequately, results: 

(11)
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The condition of equality between yi(x) and yi+1(x) for x = (n – i)
h causes the left sides of equations (11) and (12) to be multiple 
among themselves. Consequently, (11) and (12) may be grouped 
into a single equation, as stated below: 

(13)
222 ][ )(1cos BahiniC i =-++

 
12 ][ )(1 ahinisenC i +-++

cording the prescriptions of NBR 6123 – Forces Due to Wind on Build-
ings (ABNT [7]). The deduced formulas are tested in 11 examples of 
buildings braced by walls and cores; 22 tests are performed, with the 
number of floors varying from 3 until 100. 

2.	 Second order effects  
	 on the discrete model 

According to Beck and König [1] model, a bracing system composed 
by walls and/or cores may be modeled by a simple bar, behaving as a 
column. It has a high stiffness to shear, predominating flexural deflec-
tions. Figure 2 shows a cantilever bar of length Htot, modeling the brac-
ing system of a building with n floors of the same height h. It is subject 
to gravity loads F and wind loads (W/2 at top and W on the remaining 
floors). The loads are considered with their characteristic values. 
Taking the bar deflections into account (geometric nonlinearity) and 
representing the material longitudinal elasticity modulus, the con-
stant cross section moment of inertia and the functions of bending 
moments and horizontal displacements respectively by E, J, M(x) 
and y(x), it can be proved that the differential equation of motion 
and its respective solution for a generic bar interval i are given by: 

(7)
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Figure 2 – Bracing system with n floors
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where
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On the other hand, deriving equation (8) in relation to x gives: 

(15)
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Expressing equation (15) successively for intervals i and i + 1, leads to the 
rotation functions for these intervals. The condition of rotations continuity 
implies in equality between these functions for x = (n – i)h, resulting: 
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Modifying equations (13), (14), (16) and (17) adequately, C2i+1 and 
C2i+2 become expressed in function of C2i–1 and C2i, as follows:  

(18)
][ )(12 ahinisenB -+

 ][ )(1cos112 ahiniBC i +-+=+

(19)
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Having a relation between the integration constants concerning to 
two successive bar intervals been determined, an expression for the 
bending moment on the bar support will now be deduced. The condi-
tion of null rotation at support is imposed, canceling equation (15) for 
i = n (last interval) and x = 0. Thereafter, C2n-1 can be isolated, giving:

(20) aFnnWnC n 2)12(12 -=-

Deriving equation (15) in relation to x and applying it for i = n, results: 

(21)
])cos(2 axnC n

 [ )(12
222 axnsenCandxyd nn +-= -

The expression for the support bending moment M(0) is obtained, 
taking the first equality of equation (7) and making i = n and x = 
0. Then, d2yn/dx2 given by (21), with x = 0 and a2 given by (9), is 
introduced, resulting: 

(22)
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The deduction of the M(0) expression for buildings with a generic 
number n of floors starts with the application of equation (10), so that 
C2 results expressed in function of C1. Thus, on applying equations 
(18) and (19) for the transition between the first and second intervals 
(i = 1), there will result expressions for C3 and C4 having C1 as the 
only integration constant. The same will happen to the other con-
stants, on applying those equations for the remaining intervals. Fur-
thermore, due to the last parcel of the expression of B1 given by (17), 
the successive applications of (18) and (19) generate expressions 
for the integration constants having a term multiplied by W/aF that is 
independent of C1. Thus, this procedure generates expressions for 
C2n-1 and C2n (interval n) that may be put into the form: 

(23) FaWDCAC n /11112 +=-

(24) FaWDCAC n /2122 +=

The terms A1, A2, D1 and D2 arise from the successive applications 
of equations (18) and (19). Combining equations (20), (22), (23) 
and (24), leads to the following expression for the bending moment 
at support: 

(25)
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On the other hand, the same bending moment, including only first 
order effects, is given by:       
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In order to verify the exemption of second order effects consider-
ation, inequality (2) will be applied with the modules of M I and M II 
respectively given by the M(0) expressions of (26) and (25) (with 
changed signs, since these equations generate negative values 
for both M(0)). On the other hand, according to the item 11.7.1 of 
NBR6118 code, the loads W and F must be multiplied by 1.4 and 
the coefficient a by 4.1 (due to equation (9)), seeing that this 
criterion is applied for the ultimate state. Consequently: 

(27)
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Table 1 – Sequence of operations for the solution of inequality (28)

a) Input n (number of floors).  
b) Compute the right member of inequality (28). 

c) Input the value (trial) of ah4.1 . 

d) Assign initial values:      1 for A1;      )4.1tan( nah-  for A2;      0 for D1 and D2.  

e)   If n = 1, go directly to step (f). If n > 1, s uccessively update the values of A1, A2, D1 and  
      D2 for n – 1 times, executing the set of operations presented below for intervals 2 to n:  
 

      e.1)   ahini 4.1)(1 -=q  

            e.2)   )cos()1/( 12111 qq senAAiiB -+=  

            e.3)   [ ] )cos()1/( 12112 qq AsenAiiB ++=  

            e.4)   2/3
12111 )1(21)cos()1/( ++-+= iisenDDiiBW qq  

            e.5)   [ ] )cos()1/( 12112 qq DsenDiiBW ++=  

      e.6)   ahini 4.1)(12 -+=q  

      e.7)   22211 cos qq senBBA +=  

      e.8)   21222 cos qq senBBA -=  

      e.9)   22211 cos qq senBBD WW +=  

      e.10)   21222 cos qq senBBD WW -=  

f) Once A1, A2, D1 and D2 are determined, compute the left member of inequality (28).  
g) Display the values of inequality (28) right and left members, with the purpose of 

comparison. 
h) Inform decision about doing another trial; if it is affirmative, then go to (c), else 

terminate the procedure.   
Remarks concerning to the expressions of step (e) operations:  
a) They were deduced from equations (14), (17), (18) and (19), separating the parcels multiplied  

    by C1 from the ones multiplied by aFW 4.1 . 

b) i is the interval to be processed and the symbol “=”, instead of mathematical equality, means  
   “to assume the value of”.  
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It is implied that the terms A1, A2, D1 and D2 of equations (23) and 
(24) will have been obtained, applying equations (14), (17), (18) 
and (19) with a4.1  in place of a. Performing the required alge-
braic transformations, inequality (27) changes into: 

(28)
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For a small number of floors, it is feasible to derive expressions for 
A1, A2, D1 and D2 as functions of ah.41  ah and then to replace them 
into the left member of (28). Thereafter, inequality (28) can be solved 
by trials, obtaining the factor ah.41  ah. However, for a greater num-
ber of floors, it is necessary to apply equations (18) and (19) many 
times, leading to very long expressions for A1, A2 and consequently 
for the left member of (28). For buildings with more than four floors, 
this method of determination of ah.41  ah becomes impracticable. 
In face of this circumstance, an alternative method was developed in or-
der to determine the factor ah.41  ah  for buildings with a greater number 
of floors. Through this method, the solution is also obtained by means of 
trials. However, instead of deducing longer and longer expressions for 
A1, A2, D1 and D2, successive trials are done, assigning an initial value to

ah.41  ah  and determining numerical values for those variables. In each 
trial, the abovementioned formulary is applied in such a way to obtain 
numerical values for the right and left members of inequality (28). When 
these values result close enough to be considered identical, then the 
factor ah.41  ah  will have been determined. 
Due to the great quantity of calculations, the method is computer 
aid. With the purpose of illustration, table 1 shows the sequence of 

operations for determining ah.41  ah by means of trials. Represent-
ing by b the solution of inequality (28) obtained by this method and 
considering a as expressed by equation (9), it may be written: 

(29) bhJEFha ≤/4.14.1 =

It can be observed in figure 2 that nHh tot=  and nNF k= , with Nk 
as defined in subsection 1.2. On the other hand, since the wall or core 
behaves as a column, the physical nonlinearity may be considered, 
substituting EJ by (EI)sec given by (6). This changes inequality (29) into:

(30) 4.1≤941.0/ bnnIENH CCSktot

On comparing (30) with equations (3) and (4), it is concluded that 
the limit a1 of the instability parameter may be expressed by: 

(31) 2/3
1 82.04.1941.0 nbnnb ==a

Therefore, once the desired number of floors (n) is introduced into the 
sequence of operations of table 1, the value of b can be determined; 
then, the value of the limit coefficient a1 can be obtained, applying 
equation (31). This was done for a series of floors quantities and the 
results are displayed in the second and fifth columns of table 2. 

Table 2 – Values of a1 in function of the floors number (uniform wind load)

 1 0.425 0.426 25 0.754 0.754
 2 0.571 0.573 30 0.757 0.757
 3 0.631 0.631 35 0.759 0.759
 4 0.663 0.663 40 0.761 0.761
 5 0.683 0.683 50 0.763 0.763
 6 0.697 0.697 60 0.765 0.765
 7 0.707 0.707 70 0.766 0.766
  8 0.715 0.715 80 0.767 0.767
 9 0.721 0.721 100 0.768 0.768
 10 0.726 0.726 125 0.769 0.769
 12 0.734 0.733 165 0.770 0.770
 14 0.739 0.739 250 0.771 0.771
 16 0.743 0.743 500 0.772 0.772
 18 0.746 0.746 ≥ 1100 0.773 0.773
 20 0.749 0.749 – – –

 n a1 (1) a1 (2) n a1 (1) a1 (2)

n – number of floors; a1 (1) – discrete model; a1 (2) – continuous model
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3.	 The continuous model and the derivation  
	 of an approximated formula for a1

The values of a1, presented in table 2, may be considered as “ex-
act solutions” (in the context of the discrete model of figure 2) for 
the instability parameter limit of bracing systems composed ex-
clusively by walls and/or cores. Nevertheless, a question remains 
unsolved, since the method developed in the preceding section 
doesn’t provide an explicit formula for obtaining the limit coefficient 
a1. Thus, the aim of this section is to deduce approximated for-
mulas that give the value of a1 in function of the number of floors 
with an adequate accuracy. At first, the case of uniform wind load 
is considered; then, the case of wind load distributed according to 
NBR 6123 [7] prescriptions is treated. 
It can be verified that the continuous model, shown in figure 1-b, is 
inadequate for buildings with few floors. This is primarily because 
the simulation of a concentrated loads set by means of a distrib-
uted load only provides a good accuracy if the number of concen-
trated loads is large. In buildings with few floors, the model of figure 
1-b fails mainly by no capturing the effect of the top vertical load. 
In order to avoid this drawback, the continuous model of figure 3, 
with a vertical load P concentrated at the building top, is adopted.

3.1	 Uniformly distributed wind load

If the distortions effect is neglected in the model of figure 3-a, it can 
be proved that the linear solution, in terms of the rotations φ(x), for 
a uniform wind load of rate w, is given by: 

(32)
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Now, considering the distortions effect, the bending moments func-
tion will be expressed by: 

(33)[ ]ò -
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x
dxyyq xx )()(

 [ ]-----=  xyyPxwxM )()(2)()( 2

Representing by Y(x) the primitive function of the horizontal dis-
placements y(x), equation (33) changes into: 

(34)
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Equating –EJ d 2y/dx2 to M(x) given by (34), leads to the differential 
equation of motion. Deriving it in relation to x, remembering that dy/
dx = φ(x) and re-arranging, results: 
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In order to solve equation (35), Galerkin method will be adopted. It 
consists in obtaining an approximated solution of the form:

(36) å=
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where ϕi(x) (i = 1, 2, . . ., m) are previously chosen functions 

Figure 3 – Continuous model for the bracing system

Uniform wind load Wind load according to
NBR 6123 prescriptions

A B
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and the ai are coefficients to be determined. More detailed con-
siderations about Galerkin method can be seen in Kantorovitch 
and Krylov [8]. On applying the method for the actual case, the 
summation of equation (36) will be reduced to a single parcel 
(m = 1) and a function proportional to the linear solution, given 
by (32), will be adopted for ϕ1(x). Consequently, equation (36) 
changes into: 
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In order to obtain a1, the following equation must be solved: 
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The term multiplied by ϕ1(x) is the differential operator regarding to 
equation (35). Thus, introducing ϕ1(x) given by (37), performing the 
integration and isolating a1, gives: 

(39)
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Replacing (39) into (37), leads to the function φ(x). Comparing it 
with (32), it can be observed that the geometric nonlinearity arises 
through the terms that are subtracted from 6EJ in the denomina-
tor of a1. Integrating φ(x) twice, leads successively to the functions 
y(x) and Y(x). Substituting them into equation (34) and applying it 
for x = 0, leads to the following expression for the bending moment 
at support: 

(40)
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In order to verify the exemption of second order effects con-
sideration, inequality (2) will be applied, replacing M II by the 
modulus of M(0) given by (40), with the loads multiplied by 
1.4. Hence: 

(41)
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Performing successive algebraic transformations, equation (41) 
changes into: 

(42) 2≤/)15.38( 2 EJqP +

The physical nonlinearity may be considered, substituting EJ by 
(EI)sec given by (6). Then, extracting the square root of equation 
(42) both sides and re-arranging, gives: 

(43) 773.0≤/)54.2( CCS IEqP  +

It must be remembered that the aim of this section is to obtain a 
formula for a1 in function of the number of floors. In order to do it 
starting from equation (43), it is necessary to find a relation be-
tween qℓ and P in function of the number of floors, in such a way 
that the application of (43) provides a1 values as close to the ones 
presented in the second and fifth columns of table 2 as possible. 
On the other hand, representing Htot by ℓ, equation (3) combined 
with (4) may be expressed as follows: 

(44) 
1a£CCSk IEN

The factor ECS IC can be isolated in both equations (43) and 
(44). Then, equating the resulting expressions one another and  
considering that the total vertical load Nk is given by the sum of P 
and qℓ, it can be proved that: 

(45)
 

2
1

2

22
1

7730

7730542
=

a
a

-

-

.

..

P

q

The next step is to input the series of a1 values presented in table 2 
(discrete model) into equation (45), determining successive values 
for qℓ/P corresponding to successive floors quantities and listing 
them into table 3. Thereafter, an equation that provides values for 
qℓ/P in function of n with an adequate accuracy must be searched. 
A possible solution consists of the following straight line equation:  

(46) 52812011= .n.Pq -

Finally, considering that ℓ is the height Htot and combining equa-
tions (44), (45) and (46), results:

(47)
)()( 840+4407730 .n.n. -
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(50) )2()0( 2 +-= pwM T 

On the other hand, considering the distortions effect and fol-
lowing the same deductive sequence that led to equations 
(34) and (35), it can be proved that the bending moments 
function and the differential equation of motion are respec-
tively given by: 

(51)
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In order to solve equation (52), Galerkin method will be used, 
adopting a function ϕ1(x) proportional to the linear solution given 
by (49). In the derivation proceeding, due to the great extension 
of the expressions that are generated, the formulary will be par-
ticularized for p = 0.35, which corresponds to a meteorological 
parameter p  of 0.175, regarding to a terrain with category V 
roughness. This value of p results in the most far from uniform 
distribution loading pattern. Thus, following the same deductive 
sequence that led to equation (40), gives an expression for the 

In this way, an expression for a1 in function of the floors number 
was obtained. Equation (47) was applied for the same series of 
floors numbers of table 2 and the resulting values are presented 
in its third and sixth columns. A quasi perfect coincidence between 
the values of a1 regarding to the discrete and continuous models 
can be verified; the respective graphs, shown in figure 4 for build-
ings ranging from 1 to 30 floors, appear superposed.

3.2	 Wind load distributed according 
	 to NBR 6123 prescriptions

Figure 3-b presents the model of a bracing system subject to a 
wind load of rate w(x), variable along the height, reaching a value 
wT = w(ℓ) on the building top. According to NBR 6123 (ABNT [7]) 
prescriptions, the rate w(x) may be expressed as follows: 

(48) pxKxw )10/()( =

K is a constant that depends on many factors, as: surface of the 
building face perpendicular to the wind direction; relation between 
the building dimensions; basic wind speed and topographic, statis-
tical and gust factors, as defined by NBR 6123. The exponent p is 
the double of the meteorological parameter p , varying from 0.06 
until 0.175 and depending on the building dimensions and ground 
roughness. Thus, p can vary from 0.12 until 0.35. 
It can be proved that the rotations φ(x) and the support bending moment 
M(0), due to first order effects exclusively, are respectively given by:
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Table 3  – Values of qℓ/P in function
of the floors number

  Number  Number qℓ/P qℓ/P
 of floors  of floors

 1 -0.333 20 22.6
 2 0.849 25 29.2
 3 2.07 30 35.0
 4 3.28 35 40.4
 5 4.48 40 47.3
 6 5.69 50 57.2
 7 6.88 60 72.0
 8 8.12 70 82.5
 9 9.30 80 97.0
 10 10.5 100 116
 12 13.1 125 147
 14 15.3 165 196
 16 17.7 250 291
 18 19.9 500 593

Figure 4 – Graphs a1 x number of floors
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support bending moment including second order effects, as stat-
ed below: 

(53)
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In order to verify the exemption of second order effects consider-
ation, the moments M I and M II will be replaced by the modules of 
M(0) respectively given by (50) and (53), with the loads multiplied 
by 1.4. In this way, applying inequality (2), replacing EJ by (EI)sec 
given by (6) (physical nonlinearity)  and performing the required 
algebraic transformations, results: 

(54) 7606.0≤)556.2( CCS IEqP  +

Due to the similarity between equations (54) and (43), the same 
a1 variation pattern of uniform wind load will be assumed, with the 
coefficient 0.773 of (43) being changed to 0.7606. Consequently, 
an expression for a1 in function of the floors number, similar to 
equation (47), is obtained for wind load distributed according to 
NBR 6123 prescriptions, as follows: 

(55)
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Isolating IC in equation (55), gives: 
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Equation (56) is very useful in the preliminary stage of a bracing 
system design, especially when the aim is to obtain a fixed nodes 
structure, according to NBR 6118 definition. 

4.	 Examples

4.1	 Description of the tests

The plan of figure 5 shows the basic configuration of the transver-
sal bracing system of a building with an oblong octagonal shape on 
plane, being composed by walls 1 to 5. This system was employed 
in buildings having 3, 5, 10, 15, 20, 30 and 40 floors, constitut-
ing examples 1 to 7. In the same way, figure 6 shows the basic 
configuration of the transversal bracing system composed by walls 
1 to 7, which was employed in buildings with 50, 60, 80 and 100 
floors, constituting examples 8 to 11. In examples 10 and 11, chan-
nel-shaped cores, indicated by the broken lines of figure 6, were 
utilized in place of walls 1 and 7. 
In all the examples, it was adopted a story-height of 3 m, as well 
as a concrete with fck = 25 MPa, resulting in an elasticity modu-
lus ECS = 23800 MPa. A total vertical load of 10 kN/m2 per floor 
(characteristic value) was considered. A wind pressure of 1.5 kN/
m2 (characteristic value), constant along the height, was initially 
adopted, since it was an experience with a formulation based on a 
model with constant wind load.
Each of the 11 bracing systems was tested, aiming to deter-
mine the relation between vertical loads and horizontal stiffness 
that would result in a 10 % increase on the global moment at 
building support, concerning to first order analysis; in this way, 
the limit a1 for the instability parameter was determined. The 
procedure applied in each test consisted in assigning initial di-
mensions to the walls cross sections and performing a second 
order analysis, employing the P-Delta method with double pre-
cision processing. More detailed considerations about P-Delta 
method can be seen in Smith and Coull [9]. After, this second 
order analysis was successively repeated, adjusting the cross 
sections dimensions until achieve the desired 10 % increase 
on the support global moment. The physical nonlinearity was 

Figure 5 – Transversal bracing system: 
examples 1 to 7

Figure 6 – Transversal bracing system: 
examples 8 to 11
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considered by means of the individual bars stiffness reduction, 
expressed by equation (6). Due to the bracing double symme-
try in plane, the analyses were performed using a plane frame 
model, with the walls joined among themselves by hinges rep-
resenting the floor slabs. 
Subsequently, the 11 examples were re-analyzed, considering a 
along the height variable wind load. The NBR 6123 prescriptions 
were observed, considering the following parameters: basic wind 
speed of 45 m/s; topographic and statistical factors equal to 1.0; 
and ground roughness of category V, corresponding to big cities 

Table 4 – Results for uniform wind load

 1 3 0.631 0.632 0.1226 5 20 x 114
 2 5 0.683 0.684 0.4852 5 20 x 180
 3 10 0.726 0.726 3.441 5 20 x 346
 4 15 0.741 0.741 11.15 5 30 x 447
 5 20 0.749 0.749 25.88 5 30 x 592
 6 30 0.757 0.757 85.53 5 40 x 800
 7 40 0.761 0.761 200.7 5 48 x 1000
 8 50 0.763 0.763 1004 7 51 x 1500
 9 60 0.765 0.765 1727 5 60 x 1771
 – – – – – + 2 60 x 1500
 10 80 0.767 0.767 4073 5 80 x 2000
 – – – – – + 2 85 x 1500 (web) and 85 x 354 (edges)
 11 100 0.768 0.768 7924 5 120 x 2200
 – – – – – + 2 120 x 1500 (web) and 120 x 472 (edges)

4 Example n a1 (1) a1 (2) I  (m ) Walls Cross section dimensions (cm)C

n – floors number; a1 (1) – equation (47); a1 (2) – values obtained in the examples

centers. In order to estimate the initial dimensions of the walls 
cross sections, equation (56) was applied. 

4.2	 Results discussion

The fourth column of table 4 shows the values of a1 found in the 
11 examples, taking an uniform wind load into account. The follow-
ing columns contain the values of the total gross inertia IC and the 
corresponding number of walls and cross section dimensions that 
led to the just mentioned values of a1. It can be observed that it 

Table 5 – Results for wind load according to NBR 6123 prescriptions

 1 3 0.621 0.1271 0.625 0.1256 5 20 x 115
 2 5 0.672 0.5024 0.674 0.4989 5 20 x 182
 3 10 0.714 3.559 0.716 3.544 5 20 x 349
 4 15 0.729 11.52 0.730 11.48 5 30 x 451
 5 20 0.737 26.75 0.737 26.73 5 30 x 598
 6 30 0.745 88.40 0.745 88.36 5 40 x 809
 7 40 0.749 207.4 0.749 207.3 5 50 x 1000
 8 50 0.751 1038 0.751 1037 7 53 x 1500
 9 60 0.753 1785 0.753 1785 5 60 x 1800
 – – – – – – +2 60 x 1500
 10 80 0.755 4209 0.755 4203 5 84 x 2000
 – – – – – – +2 85 x 1500 (web) and 85 x 354 (edges)
 11 100 0.756 8195 0.757 8191 5 120 x 2200
 – – – – – – +2 25 x 1500 (web) and 125 x 500 (edges)

4 4 Example n a1 (3) I  (m ) a1 (4) I (m ) Walls Cross section dimensions (cm)C,1 C,2 

n – floors number; a1 (3) – eq. (55); I  – eq. (56); a1 (4) and I  obtained in the examples C,1 C,2
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was necessary to replace the plane walls 1 and 7 of examples 10 
and 11 by channel-shaped cores. Furthermore, the a1 values ob-
tained from equation (47) are included in the third column. A nearly 
complete coincidence between them and the values found in the 
examples can be noticed, covering three significant digits, except 
for examples 1 and 2 in which, nevertheless, the differences are 
lower than 0.2 %. 
Table 5 practically has the same arrangement of table 4, showing 
results for wind load distributed according to NBR 6123 prescrip-
tions. It has an additional column presenting the values initially as-
signed for the total gross inertia IC, resulting from application of 
equation (56). It can be observed that these values, as well as the 
a1 values predicted by equation (55) are in good agreement with 
those obtained in the examples. A coincidence covering three sig-
nificant digits of a1 is verified in examples 5 to 10, while differences 
lower than 0.7 % occur in the remaining ones. 
The values shown on table 5 fifth column denote that the limits  
a1 = 0.5 and a1 = 0.7, respectively prescribed by the NBR 6118 
code for buildings with 3 and with more than 10 floors, are conser-
vative. However, the contrary happens to buildings with a floors 
number between 4 and 7. Interpolations done with the a1 values 
regarding to examples 1 to 3 led to values lower than the limit 0.7, 
prescribed for those floors quantities. 

5.	 Conclusions 

The limit values a1 of the instability parameter obtained for wind 
load distributed according to NBR 6123 prescriptions, presented 
in table 5, vary from a minimum of 0.625 in example 1 until a 
maximum of 0.757 in example 11. The proportion between these 
extreme values is slightly higher than 1.2:1. Since their computa-
tion includes a square root extraction, the proportion between the 
radicands (vertical load/horizontal stiffness relations) associated to 
these extreme values is close to 1.5:1. The extent of this variability 
shows the importance of having a way of predicting a limit a1 ap-
propriated to the floors number of a given building to be designed, 
in place of the fixed values prescribed by the NBR 6118 code. For 
example, regarding to the fixed value 0.7, equation (55) gives val-
ues ranging from 0.65 (4 floors) until 0.76 (90 or more floors). 
      In this work, a method based on the Beck and König [1] discrete 
model (Figure 1-a), considering equally spaced floors and uniform 
wind load, was initially developed. The method consists in solving 
inequality (28) by means of trials and then to input its solution into 
equation (31), obtaining a1. Since the method is computer aid, a1 
can be obtained for any number of floors, as can be seen in table 
2. Thereafter, these results were employed in the following phase 
of this study, in which a variant of the continuous model of Beck 
and König [1] (Figure 3) was adopted, aiming to deduce approxi-
mated formulas for a1 in function of the floors number; in this way, 
equations (47) and (55) became determined. The results obtained 
in the examples revealed a good accuracy of these equations, re-
spectively for the cases of uniform wind load and wind load distrib-
uted according to NBR 6123 prescriptions for roughness category 
V terrain. 
It can be verified that the values of a1 found for these loading pat-
terns, mentioned on tables 4 and 5, are quite close among them-
selves, with differences lower than 1.7 %. This proves that the Beck 
and König [1] model, on considering a uniformly distributed wind 
load, incurs in an irrelevant error. The graph of figure 7 illustrates 

Figure 7 – Values of a1 obtained in the examples

the closeness of the a1 values found for the two loading patterns. 
Considering that the roughness of category V corresponds to the 
most far from uniform distribution loading pattern, other ground 
roughness categories were not tested, since it may be assumed 
that the resulting values would be intermediate between those ob-
tained for the two aforementioned cases. 
      The good accuracy attained by the method proposed in the 
present study recommends its adoption in the derivation of formu-
las for the limit a1 of rigid-frame, wall-frame and core-frame bracing 
systems. Cases of unequally spaced floors and horizontal stiffness 
varying along the building height can also be considered. It must 
be emphasized that all of this has to be done in such a manner to 
keep the formulation simplicity, just one of the greater advantages 
of the instability parameter utilization. 
      Finally, it must be accentuated the need of adopting a more 
realistic analysis model for the tests: modeling of the structure 
as a three-dimensional frame, considering the floors as rigid dia-
phragms and including the shear deflections effect; effectuation of 
the nonlinear analysis through an incremental-iterative method; 
and a more accurate consideration of the physical nonlinearity, for 
example, by means of moment-curvature relations. 
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