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Abstract
E———

The analysis of reinforced concrete structures until failure requires the consideration of geometric and material nonlinearities. However, nonlinear
analysis is much more complex and costly than linear analysis. In order to obtain a computationally efficient approach to nonlinear analysis of
reinforced concrete structures, this work presents the formulation of a nonlinear plane frame element. Geometric nonlinearity is considered using
the co-rotational approach and material nonlinearity is included using appropriate constitutive relations for concrete and steel. The integration of
stress resultants and tangent constitutive matrix is carried out by the automatic subdivision of the cross-section and the application of the Gauss
quadrature in each subdivision. The formulation and computational implementation are validated using experimental results available in the litera-
ture. Excellent results were obtained.

Keywords: concrete structures, nonlinear analysis, plane frames, finite element method.

Resumo
E——

A andlise de estruturas de concreto armado até a ruina requer a consideragéo das nao linearidades fisica e geométrica. Contudo, a analise néo
linear & mais complexa e possui custo computacional mais elevado que a andlise linear. Com objetivo de obter uma alternativa eficiente para a
andlise ndo linear de estruturas reticuladas de concreto armado, este trabalho apresenta a formulagdo de um elemento finito de pértico plano nao
linear. A ndo linearidade geométrica é tratada através do uso da formulagéo corrotacional e a ndo linearidade fisica é considerada através do uso de
relagdes constitutivas apropriadas para o concreto e o ago. A integragdo dos esforgos e da matriz constitutiva tangente é realizada pela subdiviséo
automatica da secéo transversal em faixas seguida pela uso da quadratura de Gauss em cada faixa. A formulagéo e implementagéo computacional
sdo validadas através da comparagao com resultados experimentais, tendo sido obtidos excelentes resultados..
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Material and geometric nonlinear analysis of reinforced concrete frames

1. Introduction

EE

The structures of reinforced concrete buildings are constituted main-
ly of beams and columns rigidly connected, forming plane frames.
The simulation of the behavior of these structures in a realistic way,
especially near failure, requires the consideration of material nonlin-
earity, due to the presence of effects such as concrete cracking and
reinforcement yielding, as well geometric nonlinearity, due to large
displacements and high compressive forces. The search for more
economical designs, the use of high strength materials and slender
structures has increased the importance of nonlinear analysis.
Concrete has a highly complex mechanical behavior. Thus, plane
and solid elements with two and three dimensional constitutive
models have been used in the computational modeling of lab tests.
These constitutive models allow representing the effects of stress
state on concrete behavior, leading to an excellent agreement of
the numerical and experimental load-displacement curves [11].
However, this approach is not feasible for the analysis of building
structures formed by a large number of members (columns and
beams) due to the high computational cost, besides the difficulty of
geometric modeling and mesh generation. On the other hand, the
design of building structures is generally carried out using linear
analysis and frame elements. The effect of nonlinearity is consid-
ered approximately using the secant modulus to represent the ma-
terial nonlinearity and the parameter 7- to estimate the second-
order effects (geometric nonlinearity) [1].

In order to perform the nonlinear analysis of reinforced concrete
reticulated structures simple and efficient way, this paper presents
the formulation of a plane frame finite element for geometrical and
material nonlinear analysis. The geometric nonlinearity is consid-

Figure 1 - Kinematics of the co-rotational
element (Adapted from Battini (3))
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ered by using the co-rotational formulation, allowing the analysis of
structures with large displacements and rotations.

The material nonlinearity is considered using nonlinear stress-
strain relationships for steel and concrete in compression present-
ed in standards NBR 6118:2007 [1] and Eurocode 2:2004 [7]. The
contribution of the concrete in tension (tension stiffening) is consid-
ered using the CEB model [10]. A new method for the integration
of stresses and the constitutive matrix over reinforced concrete
cross-sections is proposed in this paper. This method is based on
the automatic subdivision of the cross-section in accordance with
the ranges of the stress-strain curves and the use of Gaussian
quadrature for each segment, resulting in a simple, efficient and
accurate formulation. Moreover, this method is independent of the
stress-strain curve adopted.

The formulations and implementations are evaluated through com-
parison with experimental and numerical results available in the
literature. This work presents an assessment of the influence of
the finite element discretization and the number of points used for
cross-section integration.

2. Plane frame co-rotational finite element
HE

The equilibrium of a structure under external loading occurs when
the internal forces generated by the deformation equilibrates the
external forces applied. Therefore, the equilibrium must be written
in the deformed configuration of the structure. When displacements
are small, changes in geometry are negligible and the equilibrium
can be written in the undeformed configuration. On the other hand,
the geometric nonlinear analysis should be used when the dis-
placements and rotations are large and the equilibrium needs to
be written in the deformed configuration. The geometric nonlinear
analysis can be performed using the Lagrangian or co-rotational
formulations. The Lagrangian formulations [2] are more appro-
priate to continuous finite elements, once the use of the Green-
Lagrange strains allows filtering the rigid body displacements.
However, the application of Lagrangian formulations in frame ele-
ments with large displacements and rotations lead to very complex
expressions [13]. Thus, most of these elements are limited to the
problem of moderate rotations [12][16]. An alternative approach to
consideration of large displacements and rotations based on the
use of Reissner’s deformations was presented in [4]. However, this
formulation is very complex, involving interpolation of membrane
deformation and curvature along the element.

The co-rotational approach is based on the separation of rigid body
displacements from element deformations by using a coordinate
system that follows the element [3][6]. This approach was adopted
in this work because it allows considering large displacements and
rotations in a simple and computationally efficient way, while sim-
plifying the consideration of material nonlinearity, as discussed in
the following.

The Figure 1 shows a co-rotational plane frame element with rigid
body and deformation displacements. In this figure, the coordi-
nates of nodes 1 and 2 in the global system are given by (x;, y;)
and (X, Y2 ), respectively. Figure 2 shows the degrees of freedom
of the co-rotational element on the local system and the associ-
ated internal forces. This figure shows that there is no rigid body
displacements in local system, but only three deformation modes
for the plane frame element: one associated to the axial strain (')
and two associated to flexural deformations ( 6,,6, ).
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Figure 2 - Degrees of freedom and
internal forces of the local element
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2.1 Strains

Based on the parameters of Figure 1 and the deformation modes
of Figure 2, it is possible to define the displacements due to the
deformation of the element as:

a=L, L,
0,=0,-o (1)
6,=0,-a

where and LO are the initial and final lengths respectively, and

L
491 and élz are the global rotations of the nodes 1 and 2, respec-
tively. On the other hand, i , (91 and (92 are the axial displacement
and rotations in the local system. Finally, ¢ indicates the rigid body
rotation of element:

a=B-B, )

where /3 and ,30 are respectively the inclination angles of the
element in the global system on final and initial configurations, re-
spectively. The lengths of the elements may be calculated as:

L, = Ax* + Ay*

)

while
Ax=x, —x,
Ay:yz_yl (4)

Ax'=x'y=x' = (0, =) + (4, —u,)

A=y, =y =, =)t (v, —Vv)

An important step of the co-rotational formulation is the separation
of total rotations in a rigid body rotations and deformational rota-
tions. Starting from Equation (2), it is possible write:

seno. =sen(B —B,)=s5-¢, —c-s,

where the sines and cosines of the inclination angles of the ele-
ments are calculated as:

¢, =cosP, =Ax/L,

s, =senP, =Ay/L, (6)
c=cosP =Ax"/L,

s=senf =Ay'/L,

It should be noted that Equation (5) can evaluate the rigid body ro-
tation of the element provided that « is within the range [—7, 7],
which represents large rotations when compared to the rotations ex-
perienced by most concrete structures.

However, to determine the rigid body rotation, regardless its mag-
nitude, it is possible update the rigid rotation every load increased
by the expression:

o =0, +Ao (7)

which &, corresponds to the previous rigid body rotation and the
rotation increment A« is defined as:

Ao =B -B, ©

while ﬂa is the inclination angle of the previous increment. Compar-
ing these last two equations, the rotation increment can be obtained
from Equation (5), provided that /3 is replaced by ,Ba and o by Ac.
This approach works because even when the total rigid rotation is large,
since the rotation increment in each load step is generally small.

2.2 Local-global transformation

The analysis of the complete structure is carried out in the global
system. In the co-rotational formulation, the element internal force
vector and the stiffness matrix are computed in the local system
and transformed to global system. This transformation will be per-
formed using the Principle of Virtual Work (PVW). The vector of
displacements on the local system is given by:

u=[z 6 6, )

while the vector of displacements on the global system is given by:

(10)

u:[ul v 0, u, v, ez]T

)

cosa =cos(B —B,)=c-¢c, +5-5,
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Using Equation (1), it is possible write the virtual displacements on
the local system as:

8it 3L,
du=|80, |=| 660, -5B (1)
80, | |86, -8B

Using Equations (3) and (4):

(12

L7 =g -x )+ -n)

Thus:

2L 8L, =2Ax' Gu, —8u, )+2A1' Gv, —&v,) (13)

Considering Equation (6), the variation of the element length can
be written as:

8L =r"ou = r'=fF¢ -s 0 ¢ s 0] (l4)

The angle IB is given from Equation (6):

A_y'_Ay+v2—v1
L

n n

senf =

(19)

Making a variation of this expression and some algebraic
manipulations:

T
SB:Z—Su =2 =s —¢c 0 -5 ¢ 0]

n

(16)

Finally, the transformation between global and local displacements
is obtained by the substitution of Equations (14) and (16) in Equation
(11). The result of this operation can be written in matrix form as:

ou = Toéu

(17)

where T is the transformation matrix defined by:

= -s 0 ¢ s 0
T=|-s/L, c/L, 1 s/L, -c/L, 0| (18)
-s/L c/L, 0 s/L —c/L 1

According to Figure 2, the internal force vector on the local system
is given by:

=]

(19

aal
Il
SR

As the work is a scalar, the internal virtual work is the same in any
system. Thus:

SU=8u’g=8u’g (20

Substituting Equation (17) in the above expression, we obtain an
equation to transform the internal force vector of the element from
the local system to the global system:

g=T'g (21)

The determination of the internal force vector on the global system
considering the material nonlinearity will be discussed later.

The solution of the nonlinear equations of equilibrium is normal-
ly performed using the Newton-Raphson Method [2][6], which
requires the use of the tangent stiffness matrix K, . This matrix
relates the increment of internal forces with the displacement
increment:

dg=K,du (22)

Therefore, the determination of the stiffness matrix on the global
system can be performed by differentiation of Equation (21):

dg=T'dg+dT'g=K du+K du

(23)

which K, corresponds to the dependent portion of the material stiff-
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ness matrix and K ¢ 0 the geometric stiffness matrix or the initial
stress matrix. Therefore, the tangent stiffness matrix is given by:

K, =K, +K,

(24)

The tangent stiffness matrix of the local system Kt relates the in-
crement of displacements and forces in this system:

dg =K du (25)

The determination of the stiffness matrix on global system consid-
ering the material nonlinearity will be discussed later. Using Equa-
tions (17) and (23) we obtain the expression of the matrix K, on
the global system, which is symmetrical whenever that the local
stiffness matrix is symmetric:

K, =T'K,T (26)

Finally, the geometric stiffness matrix comes from the second part
of Equation (23) corresponding to the variation of the transforma-
tion matrix:

K du=dT'g=Ndt, + Mdt, + M,dt,

27)

where tk indicates the column k of the matrix T . The transfor-
mation matrix defined in Equation (18) can be written as a function
of vectors r and z defined in Equations (14) and (16), respec-
tively. Differentiating this expressions:

dr=zdB
dz=-rdB

Therefore, the geometric stiffness matrix on the global system is
given by

(28)

r (e
K =N*% +(M1+2]\12)GZT+er)

g Ln L

(29)

n

It should be noted that this matrix is always symmetrical.
2.3 Local element

It is important emphasize that transformations between the local

and global systems are independent of the type of element used
on the local system, provided that the degrees of freedom and in-
ternal forces of the element are represented in Figure 2. This al-
lows the use of different theories for the formulation of the local
element, while the internal force vector and the stiffness matrix on
the global system are obtained using Equations (18), (21), (24),
(26) and (29).

In this paper, the local element is based on the Classical Beam
Theory (Euler-Bernoulli). According to this theory, the cross sec-
tions of the beams remain plane and perpendicular to the longi-
tudinal axis when the beams deform, since the shear strain is ne-
glected. Using this hypothesis, it can be shown that the strain in the
direction of the bar axis (£,) can be written as:

e, =¢, )% (30

where €, is the strain in the centroid of the cross section (mem-
brane strain), K is the curvature of the bar, and y is the vertical
distance from a given point to the centroid of the cross-section.
Therefore, we can define the of generalized strain vector (€) as:

e=| (31)

In the analysis of framed structures is more convenient to work with
stress resultants (i.e. generalized stresses) than with the stresses
directly. The normal force N corresponds to the axial force in the bar:

N=]o.da (32)

where O is the normal stress in the axial direction and A is the
cross-section area. The bending moment M is the resultant of the
moments generated by stresses around the horizontal axis of the
cross-section:

M=] (o, )as )

In order to simplify the notation, the stress resultants can be
grouped in the vector of generalized stresses (6):

(34)

The formulation of nonlinear finite elements is usually developed
through the Principle of Virtual Work. In the case of the classical
theory of beams:

IBRACON Structures and Materials Journal 2014 +vol. 7 +n°5
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(39)

8U=| 8e.0.dV =] 8" ad

The formulation of this element includes the calculation of strains

(€), internal forces (g) and tangent stiffness matrix (Kt). The
generalized strains within the element are given by:

€ =u +lv2
 Sthrt (3)

K=v

> xx

where u is the axial displacement and v is the transversal displace-
ment. It is important that the expression of the curvature is linear

Using Equation (37) and integrating the resulting expressions, we arrive at:

u 1 - = = =
€, =Z %(2912 _9192+2922)

(40)

Due this method, the axial deformation is constant along the ele-
ment. Using Equation (1) it is verified that u = L, — L, therefore
the first term of the axial strain corresponds to the variation of the
distance between the element nodes, similarly to a truss element,
while the second term represents the transverse displacement ef-
fect due to the bending of the element.

Using Equations (36), (37) and (40), we can write the generalized
deformations:

because the rotations in the local system are always small. ¢=Bu (4])
On the other hand, the membrane strain is nonlinear, incorporat-
ing the effect of transversal displacements through the use of the
Green-Lagrange strain. Alternatively, it could be considered only
the linear portion of the membrane strain, since the transversal ~ Where
displacements on the local system are small. However, the use of
the Green-Lagrange strain on the local system makes the element 1
more accurate. B=B,+-B, (42)
Due to the order of the derivatives appearing in Equation (36), the 2
axial displacement u requires interpolation functions with continuity
C° and transverse displacement v requires functions with continu- ]
ity C! [5]. Therefore, the displacements inside the element are ~ While
interpolated from the local displacements using the expression:
/L 0 0
u=L,i B, = (43)
= = (37) O HZ XX H4 XX
v=H.0 +H,9,
and
where L, is a linear Lagrange polynomial while H, and Hy are
the Hermgefpolgnomials [5]. In the range of 0 <x <L, these func- 0 0 0
tions are defined as: - = — —
BL: 0 40,-60, 40.-6, (44)
7 =2 30 30
) =
L
2x2 3 The virtual strain can be obtained by the variation of Equation (41):
Hy=x-=—+ir (38)
L L
2 3 o
Ho=-X X de =Bdu (45)
L I
In order to avoid the membrane locking due to unbalance of the ~ Where
axial and transverse terms [6], we use the average membrane
deformation: .
B=B,+B, (46)

1 1
£y =7 L u,x+5v,§ dx (39)

Finally, using these equations, we can write the internal virtual
work as:
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T (e T o7 (IT
oU =du g—J;Se odx=0u J;B odx  (47)

Therefore, the internal force vector is given by:

| B'e6dx (48)

The tangent stiffness matrix is obtained by differentiating the above
equation with respect to nodal displacements:

UQI

K -%_K +K, (49)

1

QJQ)
=l

The stiffness matrix K@ is given by:

do og

K. J.BTasau

(50)

This matrix can be written as:

K,=[B'CBdx (51)

where C, is the tangent constitutive matrix that relates increments
of generalized stresses and strains:

EA ES
¢ == )

ES EI

Finally, the geometric stiffness matrix of the element in the local
system is given by:

O S L YL

where B,, and B, represents the first and second row of the ma-
trix B, respectively. The ﬁb matrix does not depend of the dis-
placements, so its derivative is zero. The second term is obtained
by differentiating the Equations (44) and (46):

0 0 0
T
A= _lo 430 —1/30 (56)
u
0 —-1/30 4/30

Since the matrix A is constant, the local geometric stiffness matrix
can be written as:

K, =Aj: Ndx (57)

3. Material nonlinearity

EE

In the present work, the steel reinforcement is considered as elas-
tic-perfectly plastic (Figure 3a), both in tension and compression.
This model has only two parameters (the elastic modulus E_ and
yield strength f and shows good agreement with experlmental
results.

Two stress-strain relations were adopted to represent the behavior
of compressed concrete: the parabola-rectangle curve [1] (Figure
3b) and the curve recommended by Eurocode 2: 2004 [7] for non-
linear analysis (Figure 3c). The equation that represents the para-
bolic portion of the parabola-rectangle diagram (PR) is

Differentiating the generalized strains (N and M ) in relation to
generalized deformations( €, and K') we arrive at:

EA=| E,dA
ES=-| E,ydA (53)

El=| E,ydA

which E, corresponds to the tangent modulus of the stress-strain curve:

(54)

2

— _ _ €,
.=/ 1-|1 2% (58)

where fc is the compressive strength and €. is the concrete
strain. This expression is valid for 0 < €, < 29,. The stress-strain
curve for the concrete in compression given by Eurocode 2:2004
[7] (EC2) is

km —m*

(59)

where ]im is the compressive strength, 77 = 85/861 , Where

IBRACON Structures and Materials Journal 2014 +vol. 7 +n°5
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€, is the strain at peak stress, k=1.05E,, €, /fcm and E, is
the secant modulus corresponding to 0.4f, stress, as indicated
in Figure 3c. Equation (59) is valid for 0 < [g.| < [g.,|, where
€..1=3.5%. It is important to note that this curve considers the
softening of concrete after the peak stress, while the parabola-
curved rectangle considers a constant stress between 2%, and
3.5% . For both curves it is considered the concrete is completely
crushed (o, =0) for strains greater than 3.5% .

The behavior of plain concrete under uniaxial tensile stresses can
be represented by a bilinear curve [1], where after the first crack
the concrete loses all resistance. However, in reinforced concrete,
tensile stresses between cracks can be transmitted from the steel
to the concrete around the steel bar by means of bond stresses
between reinforcement and adjacent concrete. This effect is known
as tension stiffening [17].

In this work, the tension stiffening is considered using the formula-

tion presented in [10]. This formulation is based on the CEB model,
developed from tests of reinforced concrete specimens subjected
to uniaxial tension. In the adopted model, the tensile stresses (s )
in the cracked concrete are calculated by the expression:

2
GC’I = _EESEC + %ESSC +-f;t2(1 +np) (60>

where f is the tensile strength of concrete, 77 = E /E, andpis
the effective reinforcement ratio (p = A,/ 4, ), where A__is the
effective concrete area (i.e. the area contributing to tension stiff-
ening). The CEB-FIP 1990 recommends using 4, =2.5b(h—d),
where b is the cross-section width, h is the height, and d is the
effective depth of reinforcement. The stress-strain relation of ten-

Figure 3 - Stress-strain curves
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sioned concrete (TS) is composed of a linear curve until cracking
(s, =];) followed by a softening portion, given by Equation (60),
until the yield of rebars (e ). This curve is illustrated in Figure 3d.

It is important to note thai8 the formulations presented in this paper
allow the adoption of different stress-strain curves to model the be-
havior of steel and concrete. Thus, the stress-strain relationships
described in this section and represented in Figure 3 were chosen
for computer implementation due to its wide use in literature and

good agreement with experimental results.
3.1 Cross-section integration

After the evaluation of the generalized cross-section strains (em e
x), the stresses can be computed using the steel and concrete
constitutive models. The generalized stresses (c) and tangent con-
stitutive matrix (C), defined by Equations (32), (33), (34), (52) and
(53), are obtained by integration of stresses and tangent modu-
lus over the cross-section. In the case of linear elastic material
these integrations are simple and can be carried out analytically.
Additionally, the constituent matrix is constant, allowing the internal
force vector and stiffness matrix defined by Equations (48), (51) e
(57), to be integrated analytically, resulting in simple expressions in
terms of generalized stresses (stress resultants) and the mechani-
cal properties of the cross section (EA e El).

On the other hand, for piecewise nonlinear stress-strain curves, as
those adopted in this work, the analytical integration is complex,
difficult to implement and prone to errors due to the need for ob-
taining and coding various expressions specific to each curve, as
carried out in [12]. An efficient implementation of this strategy for
stress-strain curves defined by piecewise polynomials up to third
degree was presented in [15].

Due to the complexity of analytical integration, usually the computa-
tion of stress resultants and constitutive tangent matrix is performed
by numerical integration using the Gauss or Lobatto quadrature
[6]. This computational approach is easy to implement, because
the same procedure is used for any stress-strain curve. Addition-
ally, these quadratures produce exact results for polynomial curves,
provided that the appropriate number of integration points is used,
and show rapid convergence to the exact integral when the stress-
strain curve is smooth (i.e. continuously differentiable). However,
the curves used to describe the behavior of concrete are usually
piecewise defined functions, not being continuously differentiable.
In some cases, such as occurs after rupture by tension or compres-
sion, these curves can even be discontinuous. In this case, it is nec-
essary to use a high number of integration points for obtaining a
suitable accuracy, increasing the computational cost.

Other integration technique widely used is the Fiber Method [14],
also known as Layer Method for plane problems. In this method, the
cross section is divided into a number of horizontal layers. In each
layer,C e E, are assumed constant with the values calculated at the
center of the layer. Thus, integration is carried out summing up the
contribution of each layer. This method is also simple and indepen-
dent of the stress-strain curve used, but requires a large number of
layers for accurate results, resulting in a high computational cost.

In [4] a mixed technique was proposed, where the cross section is
divided into a predefined number of thick layers of constant height,
as in the Layer Method, but within each layer the integrations are
performed using the Gauss quadrature. Unfortunately, in this meth-
od each layer may contain different portions of the stress-strain

Figure 4 - Example of cross-section
subdivision

N

curve, causing the integrands to be not smooth. Therefore, it is
necessary to use a large number of Gauss points in each layer to
obtain satisfactory results.

Considering the shortcomings of the existing methods, this work pro-
poses the ASGI (Automatic Subdivision with Gauss Integration) Meth-
od for integration of stress resultants and tangent constitutive matrix
over reinforced concrete cross-sections subjected to monotonic load-
ing and whose stress-strain curves are defined by piecewise func-
tions. This method is computationally efficient, easy to implement, and
numerically accurate. The ASGI Method is based on the subdivision
of the cross section on segments of variable size whose limits are de-
fined according to the limits of each interval of the stress-strain curve,
as illustrated in Figure 4. The algorithm used for automatic subdivision
of the cross-section is shown in Figure 5.

After cross section subdivision using the proposed algorithm, the
stress-strain curve within each segment is continuously differen-
tiable. Therefore, the stress resultants and constitutive tangent
matrix can be integrated with high precision on each segment us-
ing the Gauss quadrature. Tables containing the parametric coor-
dinates (7,) in the interval [-1, 1] and weights (,) of Gauss points
are presented in [2] and [5]. To use the Gauss quadrature, verti-
cal coordinates (y) within each segment are interpolated using the
parametric coordinate 7:

_yi+l+yi Yin — Vi
= (61)

y r :dy:%dr

where /91. =,,4~ ), represents the height of each layer. In the pro-
posed procedure, the bending moment is calculated by summing
up the contribution of each segment:

(62)

S < h.
MzzMi’ Miz_zwkykckbk?
i=1 k=1
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Figura 5 - Algoritmo de subdivisdo da se¢cdo

Given the strain limits (€;) of each interval of the stress-strain curve, the membrane strain
(€,) and curvature (K ) of the cross-section:

1) Evaluate the bottom (&) and top strains (€, ) using Equation (30) and the

2) Determine the strain intervals f

b

4) Set yy=y, and ¥, =),:
if (1> f) J=J, =2+

else j=f,+1-i

.ve' = (Em _E_:_J' )f K

coordinates of the bottom () and top (),) of cross-section;
and /, containing €, and €,

3) Evaluate the number of segments: n =|)f - fb|+1;

5) For /= 2 to n evaluate the limits of each segment:

, respectively;

where 7 is the number of segments, 7p is the number of Gauss
points in each segment, y, is the vertical coordinate of the Gauss
point, computed substituting 7, in Equation (61), S, is the stress at
the Gauss point and b/ﬁ is the corresponding cross section width
at the Gauss point. The axial force and tangent constitutive matrix
integrals are computed in the same way.

It is important to note that the ASGI Method based on the use of
Equation (62), generate exact results when the stress-strain curves
of all segments are polynomials, provided that the appropriate
number of Gauss points is used. Since the maximum degree (g) of
the polynomial exactly integrated by Gaussian quadrature is given
by g=2 np -1, only one Gauss point is required for segments with
constant ¢ and two points for a segment where o is parabolic. In
the case of non-polynomial curves, as Equation (59), the proposed
procedure is not exact, but it generate highly accurate results even
using only 3 or 4 Gauss points, as will be shown in the examples.

The contribution of steel reinforcement is calculated by consider-
ing a uniform stress distribution in each rebar, since the diameter
of these bars is small. Thus, the strain is evaluated at the center
of each bar using Equation (30) and the corresponding stress is
computed using the stress-strain relationship shown in Figure 3a.
Thus, the reinforcement contribution to the bending moment is cal-
culated from:

M, = = 80,y,4s (63

where 77 is the number of steel bars, Axl. is the area of each bar,
), is the coordinate of the center of each bar and Ao, =0, -0,
is the difference between the steel and concrete stresses, réspeé-
tively. An identical procedure is applied to the other integrals.

In the case of materially nonlinear analysis, the variation of the
stress resultants and the tangent matrix along the length of the ele-

ment is not explicitly known, which prevents the integrals defined

in Equations (48), (51) and (57), to be computed analytically. Thus,
the internal force vector and the element stiffness matrix in the
local system are calculated using the Gaussian quadrature with 2
integration points with along the length of the element.

4. Results and discussion

EE

The formulations described previously were evaluated by compari-
son of obtained results with numerical and experimental results
available in the literature. Among the structures analyzed, two
were chosen to be presented in this paper, in order to illustrate
the behavior of reinforced concrete structures where both nonlin-
earities (material and geometric) are important and to study the be-
havior of the finite element and the integration method presented
in this work. It is important to note that when the parameters of
the stress-strain curves described in Section 3 were not deter-
mined experimentally, they were estimated by the expressions:

= -35%  E_ (GPa)=22[f, /10]",

fom = o 3fk2/3 and f, = f, +81[7]

— 0 7f 0.31
d(GPa)—Zl.S[f /10]”3

4.1 Column with eccentric loading

This column was subjected to an eccentric load until failure. Geom-
etry, material properties, and loading [4] are shown in Figure 6. The
compressive strength is f. =38.3 MPa. The following properties
were used in structural analyses with the EC2 constitutive model:
jiw = 38.3 MPa [8], E = 33.6 GPa [8] and €. = - 2.3%o [4]. The
tensile strength of concrete is /,=2.9315MPa and E, =33.639
GPa. Finally, the steel properties aref 465 MPa [8] and E
200 GPa [4].

The EC2 model with tension stiffening (TS) and the ASGI Method with
np =4 was considered initially. The Displacement Control Method was
used for nonlinear analysis with increments of -1mm for the horizontal
displacement of the top of the column. In order to study the effect of
discretization, the column was modeled using meshes with 1, 2 and 4
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Figure 6 - Column with eccentric load:
geometry, material and loading (4)
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elements, obtaining the maximum loads of 457.52 kN, 460.59 kN and
460.09 kN, respectively. These results are in excellent agreement with
the maximum load of 454 kN obtained experimentally [8], showing
that the proposed formulation does not require very fine meshes to
adequately represent the material and geometric nonlinear behavior
of the structure. It is important to note that the maximum load obtained
in this work was closer to the experimental load than the maximum
load (445 kN) obtained in [4] using the EC2 model without the tension
stiffening effect. It was also found that the Newton-Raphson Method
presented quadratic convergence, with the number of iterations rang-
ing between 3 and 4 throughout the analysis, even using a very tight
tolerance used for convergence (10%%).

Next, the influence of the integration method, number of layers
(nf) and Gauss points (7p) was assessed using a fixed number
of elements (4) and constitutive model (EC2 with TS). The results
obtained are shown in Table 1. These results show that the use of
20 layers generate satisfactory results. However, the ASGI Method
is more accurate and efficient than the Layer Method, generating
better results using just 2 Gauss points per segment than the Layer
Method with 20 layers. Additionally, accurate results with six sig-
nificant figures, which require the use of 600 layers, are obtained
using only 3 Gauss points per segment. Note that [4] used 5 lay-

Table 1 - Layer method x ASGI method

nf P,.. (kN) np P,.. (kN)
10 457.276 2 459.673
20 459,599 3 460.092
50 459.991 4 460.092
100 460.069 5 460.092
600 460.092 -

ers of fixed height and 10 Gauss points in each layer, showing the
great advantage of using variable segments evaluated according
to the proposed method.

Finally, the column was analyzed using 4 elements and cross-
section integration with 7p = 4. Both EC2 and PR models with
and without tension stiffening (TS) were used in the analyses. The
load-displacement curves are shown in Figure 7. According to the
results, the chosen constitutive models can adequately represent
the structural behavior of the column. However, the EC2-TS model
was the closest to the experimental results presented in [8]. The
PR-TS leads to an upper bound of the load-displacement curve,
while the EC2 model without TS leads to more flexible results (low-
er bound).

4.2 Plane frame

This concrete frame was tested in [9]. Geometry, cross-sections
and material properties are presented in Figure 8. The other ma-
terial parameters used in the nonlinear analysis were estimated
as described in Section 4. For the PR model, the compressive
strength is /= 22.1 MPa, while for EC2 model: / = 22.1 MPa,
E[ = 27.909 GPa and €, = -1,828%. [4]. The tension stiffening
parameters aref =1.760 MPa and £, = 28.005 GPa. The yield
strength is f = 388,9 MPa for columns and f =403,4 MPa for
beams. The Young’s modulus is E, =202 GPa.

Initially, the plane frame was analyzed using the EC2 model with
tension stiffening (EC2-TS) and cross-section integration by the
ASGI Method with 7p = 4. The Displacement Control Method was
used for nonlinear analysis with increments of -1mm for the hori-
zontal displacement of top-right node. In order to study the effect
of discretization, the frame was modeled using meshes with 1, 2, 4
and 8 elements per member, obtaining maximum loads of 152.868
kN, 143.897kN, 141.555 kN and 140.806kN, respectively. These
results are in excellent agreement with the maximum load of 141
kN obtained experimentally [9], showing that 4 elements per mem-
ber is sufficient to adequately represent the materially and geo-
metrically nonlinear behavior of this frame. It is interesting to note
that the maximum load obtained in this work is closer to the ex-

Figure 7 - Load-displacement curves
of the column with eccentric load
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Figure 8 - Concrete frame: geometry,
material and loading (4)
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perimental value than the maximum load (136.4 kN) obtained in [4]
using the EC2 without tension stiffening. Once again, the Newton-
Raphson Method presented quadratic convergence, requiring 3 to
4 iterations to convergence throughout the analysis, even using a
tight convergence tolerance (10).

In this example, the cross-section integration with the Layer Method
with 72£'= 10 or the ASGI Method with 72p = 2 generate accurate re-
sults with 6 significant figures. However, the ASGI Method is more
efficient due to the smaller number of points used in the integration.
Finally, the frame was analyzed using 8 finite element per bar and
cross-section integration by the ASGI Method with 7p = 3. The non-
linear analyses were carried out using the EC2 and PR models,
with and without tension stiffening (TS). The load-displacement
curves are shown in Figure 9. These results shown that all models
can adequately represent the structural behavior of this frame. The
EC2 model without TS was the one closest to the experimental re-
sults [9], but the EC2 with TS was the best with respect to the maxi-
mum load. For this structure, the EC2 with TS generate an upper
bound for the load-displacement curve, while the PR model without
TS leads to a lower bound. It can be noted that the initial stiffness
of the models with tension stiffening (TS) is overestimated, indicat-
ing that the elasticity modulus of concrete in tension (E[) is lower
than the value estimated using the expressions given in [7].

5. Conclusion

EE

This work presented the formulation of a finite element for material
and geometric nonlinear analysis of plane frames, including a new
method for integration of stress resultants and tangent constitutive
matrix over concrete cross-sections. The formulations and their
computational implementations have been validated by compari-
son with experimental and numerical results available in the litera-
ture. All proposed models showed consistent results, representing
adequately the behavior observed in the laboratory. However, it
was found that the Eurocode 2:2004 [7] model leads to better re-

sults than the parabola-rectangle model. The contribution of ten-
sion stiffening effect proved important for evaluating the ultimate
load of the studied structures. However, the consideration of this
effect requires a substantial number of parameters whose experi-
mental determination is normally not performed. This leads to the
use of expressions based on correlations that do not always lead
to adequate results.

The integration method based on automatic subdivision of the
cross section according to the sub-domains of stress-strain curves
and application of Gaussian quadrature for each segment is sim-
ple, efficient and highly accurate for nonlinear analysis of concrete
structures subjected to monotonic loading. Finally, the examples
showed that the proposed element leads to good results using
only 2 to 4 elements per member. Thus, this element is an effi-
cient alternative for nonlinear analysis of reinforced concrete plane
frames, regarding the analysis of structures with a large number
of members.
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