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Abstract  

Resumo

The analysis of reinforced concrete structures until failure requires the consideration of geometric and material nonlinearities. However, nonlinear 
analysis is much more complex and costly than linear analysis. In order to obtain a computationally efficient approach to nonlinear analysis of 
reinforced concrete structures, this work presents the formulation of a nonlinear plane frame element. Geometric nonlinearity is considered using 
the co-rotational approach and material nonlinearity is included using appropriate constitutive relations for concrete and steel. The integration of 
stress resultants and tangent constitutive matrix is carried out by the automatic subdivision of the cross-section and the application of the Gauss 
quadrature in each subdivision. The formulation and computational implementation are validated using experimental results available in the litera-
ture. Excellent results were obtained.

Keywords: concrete structures, nonlinear analysis, plane frames, finite element method.

A análise de estruturas de concreto armado até à ruína requer a consideração das não linearidades física e geométrica. Contudo, a análise não 
linear é mais complexa e possui custo computacional mais elevado que a análise linear. Com objetivo de obter uma alternativa eficiente para a 
análise não linear de estruturas reticuladas de concreto armado, este trabalho apresenta a formulação de um elemento finito de pórtico plano não 
linear. A não linearidade geométrica é tratada através do uso da formulação corrotacional e a não linearidade física é considerada através do uso de 
relações constitutivas apropriadas para o concreto e o aço. A integração dos esforços e da matriz constitutiva tangente é realizada pela subdivisão 
automática da seção transversal em faixas seguida pela uso da quadratura de Gauss em cada faixa. A formulação e implementação computacional 
são validadas através da comparação com resultados experimentais, tendo sido obtidos excelentes resultados.. 
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1.	I ntroduction

The structures of reinforced concrete buildings are constituted main-
ly of beams and columns rigidly connected, forming plane frames. 
The simulation of the behavior of these structures in a realistic way, 
especially near failure, requires the consideration of material nonlin-
earity, due to the presence of effects such as concrete cracking and 
reinforcement yielding, as well geometric nonlinearity, due to large 
displacements and high compressive forces. The search for more 
economical designs, the use of high strength materials and slender 
structures has increased the importance of nonlinear analysis.
Concrete has a highly complex mechanical behavior. Thus, plane 
and solid elements with two and three dimensional constitutive 
models have been used in the computational modeling of lab tests. 
These constitutive models allow representing the effects of stress 
state on concrete behavior, leading to an excellent agreement of 
the numerical and experimental load-displacement curves [11].
However, this approach is not feasible for the analysis of building 
structures formed by a large number of members (columns and 
beams) due to the high computational cost, besides the difficulty of 
geometric modeling and mesh generation. On the other hand, the 
design of building structures is generally carried out using linear 
analysis and frame elements. The effect of nonlinearity is consid-
ered approximately using the secant modulus to represent the ma-
terial nonlinearity and the parameter zγ  to estimate the second-
order effects (geometric nonlinearity) [1].
In order to perform the nonlinear analysis of reinforced concrete 
reticulated structures simple and efficient way, this paper presents 
the formulation of a plane frame finite element for geometrical and 
material nonlinear analysis. The geometric nonlinearity is consid-

ered by using the co-rotational formulation, allowing the analysis of 
structures with large displacements and rotations.
The material nonlinearity is considered using nonlinear stress-
strain relationships for steel and concrete in compression present-
ed in standards NBR 6118:2007 [1] and Eurocode 2:2004 [7]. The 
contribution of the concrete in tension (tension stiffening) is consid-
ered using the CEB model [10]. A new method for the integration 
of stresses and the constitutive matrix over reinforced concrete 
cross-sections is proposed in this paper. This method is based on 
the automatic subdivision of the cross-section in accordance with 
the ranges of the stress-strain curves and the use of Gaussian 
quadrature for each segment, resulting in a simple, efficient and 
accurate formulation. Moreover, this method is independent of the 
stress-strain curve adopted.
The formulations and implementations are evaluated through com-
parison with experimental and numerical results available in the 
literature. This work presents an assessment of the influence of 
the finite element discretization and the number of points used for 
cross-section integration.

2.	 Plane frame co-rotational finite element

The equilibrium of a structure under external loading occurs when 
the internal forces generated by the deformation equilibrates the 
external forces applied. Therefore, the equilibrium must be written 
in the deformed configuration of the structure. When displacements 
are small, changes in geometry are negligible and the equilibrium 
can be written in the undeformed configuration. On the other hand, 
the geometric nonlinear analysis should be used when the dis-
placements and rotations are large and the equilibrium needs to 
be written in the deformed configuration. The geometric nonlinear 
analysis can be performed using the Lagrangian or co-rotational 
formulations. The Lagrangian formulations [2] are more appro-
priate to continuous finite elements, once the use of the Green-
Lagrange strains allows filtering the rigid body displacements. 
However, the application of Lagrangian formulations in frame ele-
ments with large displacements and rotations lead to very complex 
expressions [13]. Thus, most of these elements are limited to the 
problem of moderate rotations [12][16]. An alternative approach to 
consideration of large displacements and rotations based on the 
use of Reissner’s deformations was presented in [4]. However, this 
formulation is very complex, involving interpolation of membrane 
deformation and curvature along the element.
The co-rotational approach is based on the separation of rigid body 
displacements from element deformations by using a coordinate 
system that follows the element [3][6]. This approach was adopted 
in this work because it allows considering large displacements and 
rotations in a simple and computationally efficient way, while sim-
plifying the consideration of material nonlinearity, as discussed in 
the following.
The Figure 1 shows a co-rotational plane frame element with rigid 
body and deformation displacements. In this figure, the coordi-
nates of nodes 1 and 2 in the global system are given by ( 1x , 1y ) 
and ( 2x , 2y ), respectively. Figure 2 shows the degrees of freedom 
of the co-rotational element on the local system and the associ-
ated internal forces. This figure shows that there is no rigid body 
displacements in local system, but only three deformation modes 
for the plane frame element: one associated to the axial strain ( u )  
and two associated to flexural deformations ( 21 ,θθ ).

Figure 1 – Kinematics of the co-rotational 
element (Adapted from Battini [3])
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2.1	 Strains

Based on the parameters of Figure 1 and the deformation modes 
of Figure 2, it is possible to define the displacements due to the 
deformation of the element as:

(1)
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where nL  and 0L  are the initial and final lengths respectively, and 
1θ  and 2θ  are the global rotations of the nodes 1 and 2, respec-

tively. On the other hand, u , 1θ  and 2θ  are the axial displacement 
and rotations in the local system. Finally, α  indicates the rigid body 
rotation of element:

(2) 
0bba -=

where β  and 0β  are respectively the inclination angles of the 
element in the global system on final and initial configurations, re-
spectively. The lengths of the elements may be calculated as:
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An important step of the co-rotational formulation is the separation 
of total rotations in a rigid body rotations and deformational rota-
tions. Starting from Equation (2), it is possible write:

(5)
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where the sines and cosines of the inclination angles of the ele-
ments are calculated as:

(6)
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It should be noted that Equation (5) can evaluate the rigid body ro-
tation of the element provided that α  is within the range [ π− ,π ], 
which represents large rotations when compared to the rotations ex-
perienced by most concrete structures.
However, to determine the rigid body rotation, regardless its mag-
nitude, it is possible update the rigid rotation every load increased 
by the expression:

(7) aaa D+= a

which aα  corresponds to the previous rigid body rotation and the 
rotation increment α∆  is defined as:

(8) 
abba -=D

while aβ  is the inclination angle of the previous increment. Compar-
ing these last two equations, the rotation increment can be obtained 
from Equation (5), provided that β  is replaced by aβ  and α  by α∆ . 
This approach works because even when the total rigid rotation is large, 
since the rotation increment in each load step is generally small.

2.2	 Local-global transformation

The analysis of the complete structure is carried out in the global 
system. In the co-rotational formulation, the element internal force 
vector and the stiffness matrix are computed in the local system 
and transformed to global system. This transformation will be per-
formed using the Principle of Virtual Work (PVW). The vector of 
displacements on the local system is given by:

(9) [ ]Tu 21 qq=u

while the vector of displacements on the global system is given by:

(10) [ ]Tvuvu 222111 qq=u

Figure 2 – Degrees of freedom and 
internal forces of the local element
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Using Equation (1), it is possible write the virtual displacements on 
the local system as:

(11)
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Using Equations (3) and (4):
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Thus:

(13) ( ) ( )1212 '2'22 vvyuuxLL nn ddddd -D+-D=

Considering Equation (6), the variation of the element length can 
be written as:

(14) [ ]00 scscL TT
n --=Þ= rur dd

The angle β  is given from Equation (6):
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Making a variation of this expression and some algebraic  
manipulations:

(16)
 

[ ]00 cscs
L

T

n

T

--=Þ= zu
z ddb

Finally, the transformation between global and local displacements 
is obtained by the substitution of Equations (14) and (16) in Equation 
(11). The result of this operation can be written in matrix form as:

(17) uTu dd =

where T  is the transformation matrix defined by:

(18)
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According to Figure 2, the internal force vector on the local system 
is given by:

(19)
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As the work is a scalar, the internal virtual work is the same in any 
system. Thus:

(20) gugu TTU ddd ==

Substituting Equation (17) in the above expression, we obtain an 
equation to transform the internal force vector of the element from 
the local system to the global system:

(21) gTg T=

The determination of the internal force vector on the global system 
considering the material nonlinearity will be discussed later. 
The solution of the nonlinear equations of equilibrium is normal-
ly performed using the Newton-Raphson Method [2][6], which 
requires the use of the tangent stiffness matrix tK . This matrix 
relates the increment of internal forces with the displacement 
increment:

(22) uKg dd t=

Therefore, the determination of the stiffness matrix on the global 
system can be performed by differentiation of Equation (21):

(23) uKuKgTgTg ddddd ge
TT +=+=

which eK  corresponds to the dependent portion of the material stiff-
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ness matrix and gK  to the geometric stiffness matrix or the initial 
stress matrix. Therefore, the tangent stiffness matrix is given by:

(24) 
get KKK +=

The tangent stiffness matrix of the local system tK  relates the in-
crement of displacements and forces in this system:

(25) uKg dd t=

The determination of the stiffness matrix on global system consid-
ering the material nonlinearity will be discussed later. Using Equa-
tions (17) and (23) we obtain the expression of the matrix eK  on 
the global system, which is symmetrical whenever that the local 
stiffness matrix is symmetric:

(26) TKTK t
T

e =

Finally, the geometric stiffness matrix comes from the second part 
of Equation (23) corresponding to the variation of the transforma-
tion matrix:

(27) 
32211 tttgTuK dMdMdNdd T

g ++==

where kt  indicates the column k  of the matrix TT . The transfor-
mation matrix defined in Equation (18) can be written as a function 
of vectors r  and z  defined in Equations (14) and (16), respec-
tively. Differentiating this expressions:

(28)
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Therefore, the geometric stiffness matrix on the global system is 
given by

(29)
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It should be noted that this matrix is always symmetrical.

2.3	 Local element

It is important emphasize that transformations between the local 

and global systems are independent of the type of element used 
on the local system, provided that the degrees of freedom and in-
ternal forces of the element are represented in Figure 2. This al-
lows the use of different theories for the formulation of the local 
element, while the internal force vector and the stiffness matrix on 
the global system are obtained using Equations (18), (21), (24), 
(26) and (29).
In this paper, the local element is based on the Classical Beam 
Theory (Euler-Bernoulli). According to this theory, the cross sec-
tions of the beams remain plane and perpendicular to the longi-
tudinal axis when the beams deform, since the shear strain is ne-
glected. Using this hypothesis, it can be shown that the strain in the 
direction of the bar axis ( xe ) can be written as:

(30) kee ymx -=

where me  is the strain in the centroid of the cross section (mem-
brane strain), κ  is the curvature of the bar, and y  is the vertical 
distance from a given point to the centroid of the cross-section. 
Therefore, we can define the of generalized strain vector (e) as:

(31)
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In the analysis of framed structures is more convenient to work with 
stress resultants (i.e. generalized stresses) than with the stresses 
directly. The normal force N corresponds to the axial force in the bar:

(32) ò= A
xdAN s

where xs  is the normal stress in the axial direction and A is the 
cross-section area. The bending moment M is the resultant of the 
moments generated by stresses around the horizontal axis of the 
cross-section:

(33) ( )ò -=
A

x dAyM s

In order to simplify the notation, the stress resultants can be 
grouped in the vector of generalized stresses (s):

(34)
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The formulation of nonlinear finite elements is usually developed 
through the Principle of Virtual Work. In the case of the classical 
theory of beams:
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(35) dxdVU
L

T

V
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The formulation of this element includes the calculation of strains  
(e), internal forces ( g ) and tangent stiffness matrix ( tK ). The  
generalized strains within the element are given by:

(36)
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where u is the axial displacement and v is the transversal displace-
ment. It is important that the expression of the curvature is linear 
because the rotations in the local system are always small.
On the other hand, the membrane strain is nonlinear, incorporat-
ing the effect of transversal displacements through the use of the 
Green-Lagrange strain. Alternatively, it could be considered only 
the linear portion of the membrane strain, since the transversal 
displacements on the local system are small. However, the use of 
the Green-Lagrange strain on the local system makes the element 
more accurate.
Due to the order of the derivatives appearing in Equation (36), the 
axial displacement u requires interpolation functions with continuity 

0C  and transverse displacement v requires functions with continu-
ity 1C  [5]. Therefore, the displacements inside the element are 
interpolated from the local displacements using the expression:

(37)
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where 2L  is a linear Lagrange polynomial while 2H  and 4H  are 
the Hermite polynomials [5]. In the range of Lx ≤≤0 , these func-
tions are defined as:

(38)
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In order to avoid the membrane locking due to unbalance of the 
axial and transverse terms [6], we use the average membrane  
deformation:

(39)
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Using Equation (37) and integrating the resulting expressions, we arrive at:
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Due this method, the axial deformation is constant along the ele-
ment. Using Equation (1) it is verified that LLu n −= , therefore 
the first term of the axial strain corresponds to the variation of the 
distance between the element nodes, similarly to a truss element, 
while the second term represents the transverse displacement ef-
fect due to the bending of the element.
Using Equations (36), (37) and (40), we can write the generalized 
deformations:

(41) uBε=

where
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The virtual strain can be obtained by the variation of Equation (41):

(45) uBdde =

where

(46) 
LBBB += 0

Finally, using these equations, we can write the internal virtual 
work as:
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(47) 
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Therefore, the internal force vector is given by:

(48) 
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The tangent stiffness matrix is obtained by differentiating the above 
equation with respect to nodal displacements:

(49) 
get KK

u

g
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The stiffness matrix eK  is given by:
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This matrix can be written as:

(51) 
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where tC  is the tangent constitutive matrix that relates increments 
of generalized stresses and strains:

(52)
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Differentiating the generalized strains ( N  and M ) in relation to 
generalized deformations( me and κ ) we arrive at:

(53)
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which tE  corresponds to the tangent modulus of the stress-strain curve:

(54)
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Finally, the geometric stiffness matrix of the element in the local 
system is given by:

(55)
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where mB  and bB  represents the first and second row of the ma-
trix B , respectively. The bB  matrix does not depend of the dis-
placements, so its derivative is zero. The second term is obtained 
by differentiating the Equations (44) and (46):

(56)
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Since the matrix A  is constant, the local geometric stiffness matrix 
can be written as:

(57) 
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3.	 Material nonlinearity

In the present work, the steel reinforcement is considered as elas-
tic-perfectly plastic (Figure 3a), both in tension and compression. 
This model has only two parameters (the elastic modulus sE  and 
yield strength yf ) and shows good agreement with experimental 
results. 
Two stress-strain relations were adopted to represent the behavior 
of compressed concrete: the parabola-rectangle curve [1] (Figure 
3b) and the curve recommended by Eurocode 2: 2004 [7] for non-
linear analysis (Figure 3c). The equation that represents the para-
bolic portion of the parabola-rectangle diagram (PR) is

(58)
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where cf  is the compressive strength and ce  is the concrete 
strain. This expression is valid for 0 ≤ ce  ≤ 2 0

00 . The stress-strain 
curve for the concrete in compression given by Eurocode 2:2004 
[7] (EC2) is

(59)
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where fcm is the compressive strength, 1cc eeη = , where 
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ec1 is the strain at peak stress,  
cmccm fEk 105.1 e=  and  

cmE  is 
the secant modulus corresponding to  

cmf4.0  stress, as indicated 
in Figure 3c. Equation (59) is valid for  

10 cuc ee << , where 
 

00
0

1 5.3=cue . It is important to note that this curve considers the 
softening of concrete after the peak stress, while the parabola-
curved rectangle considers a constant stress between 2 0

00  and 
00

05.3 . For both curves it is considered the concrete is completely 
crushed ( 0=cs ) for strains greater than 00

05.3 . 
The behavior of plain concrete under uniaxial tensile stresses can 
be represented by a bilinear curve [1], where after the first crack 
the concrete loses all resistance. However, in reinforced concrete, 
tensile stresses between cracks can be transmitted from the steel 
to the concrete around the steel bar by means of bond stresses 
between reinforcement and adjacent concrete. This effect is known 
as tension stiffening [17].
In this work, the tension stiffening is considered using the formula-

tion presented in [10]. This formulation is based on the CEB model, 
developed from tests of reinforced concrete specimens subjected 
to uniaxial tension. In the adopted model, the tensile stresses (sct) 
in the cracked concrete are calculated by the expression:

(60)
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where fct is the tensile strength of concrete, cs EE /=η  and ρ is 
the effective reinforcement ratio (  

efcs AA ,/=r ), where Ac,ef is the 
effective concrete area (i.e. the area contributing to tension stiff-
ening). The CEB-FIP 1990 recommends using  ( )dhbA efc -= 5.2, , 
where b is the cross-section width, h is the height, and d is the 
effective depth of reinforcement. The stress-strain relation of ten-

Figure 3 – Stress-strain curves
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sioned concrete (TS) is composed of a linear curve until cracking 
(sct = fct) followed by a softening portion, given by Equation (60), 
until the yield of rebars (ey). This curve is illustrated in Figure 3d. 
It is important to note that the formulations presented in this paper 
allow the adoption of different stress-strain curves to model the be-
havior of steel and concrete. Thus, the stress-strain relationships 
described in this section and represented in Figure 3 were chosen 
for computer implementation due to its wide use in literature and 
good agreement with experimental results.

3.1	 Cross-section integration

After the evaluation of the generalized cross-section strains (em e 
κ), the stresses can be computed using the steel and concrete 
constitutive models. The generalized stresses (s) and tangent con-
stitutive matrix (Ct), defined by Equations (32), (33), (34), (52) and 
(53), are obtained by integration of stresses and tangent modu-
lus over the cross-section. In the case of linear elastic material 
these integrations are simple and can be carried out analytically. 
Additionally, the constituent matrix is constant, allowing the internal 
force vector and stiffness matrix defined by Equations (48), (51) e 
(57), to be integrated analytically, resulting in simple expressions in 
terms of generalized stresses (stress resultants) and the mechani-
cal properties of the cross section (EA e EI).
On the other hand, for piecewise nonlinear stress-strain curves, as 
those adopted in this work, the analytical integration is complex, 
difficult to implement and prone to errors due to the need for ob-
taining and coding various expressions specific to each curve, as 
carried out in [12]. An efficient implementation of this strategy for 
stress-strain curves defined by piecewise polynomials up to third 
degree was presented in [15].
Due to the complexity of analytical integration, usually the computa-
tion of stress resultants and constitutive tangent matrix is performed 
by numerical integration using the Gauss or Lobatto quadrature 
[6]. This computational approach is easy to implement, because 
the same procedure is used for any stress-strain curve. Addition-
ally, these quadratures produce exact results for polynomial curves, 
provided that the appropriate number of integration points is used, 
and show rapid convergence to the exact integral when the stress-
strain curve is smooth (i.e. continuously differentiable). However, 
the curves used to describe the behavior of concrete are usually 
piecewise defined functions, not being continuously differentiable. 
In some cases, such as occurs after rupture by tension or compres-
sion, these curves can even be discontinuous. In this case, it is nec-
essary to use a high number of integration points for obtaining a 
suitable accuracy, increasing the computational cost. 
Other integration technique widely used is the Fiber Method [14], 
also known as Layer Method for plane problems. In this method, the 
cross section is divided into a number of horizontal layers. In each 
layer, σ e Et are assumed constant with the values calculated at the 
center of the layer. Thus, integration is carried out summing up the 
contribution of each layer. This method is also simple and indepen-
dent of the stress-strain curve used, but requires a large number of 
layers for accurate results, resulting in a high computational cost. 
In [4] a mixed technique was proposed, where the cross section is 
divided into a predefined number of thick layers of constant height, 
as in the Layer Method, but within each layer the integrations are 
performed using the Gauss quadrature. Unfortunately, in this meth-
od each layer may contain different portions of the stress-strain 

curve, causing the integrands to be not smooth. Therefore, it is 
necessary to use a large number of Gauss points in each layer to 
obtain satisfactory results.
Considering the shortcomings of the existing methods, this work pro-
poses the ASGI (Automatic Subdivision with Gauss Integration) Meth-
od for integration of stress resultants and tangent constitutive matrix 
over reinforced concrete cross-sections subjected to monotonic load-
ing and whose stress-strain curves are defined by piecewise func-
tions. This method is computationally efficient, easy to implement, and 
numerically accurate. The ASGI Method is based on the subdivision 
of the cross section on segments of variable size whose limits are de-
fined according to the limits of each interval of the stress-strain curve, 
as illustrated in Figure 4. The algorithm used for automatic subdivision 
of the cross-section is shown in Figure 5. 
After cross section subdivision using the proposed algorithm, the 
stress-strain curve within each segment is continuously differen-
tiable. Therefore, the stress resultants and constitutive tangent 
matrix can be integrated with high precision on each segment us-
ing the Gauss quadrature. Tables containing the parametric coor-
dinates (rk) in the interval [-1, 1] and weights (wk) of Gauss points 
are presented in [2] and [5]. To use the Gauss quadrature, verti-
cal coordinates (y) within each segment are interpolated using the 
parametric coordinate r:

(61)
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where hi = yi +1- yi represents the height of each layer. In the pro-
posed procedure, the bending moment is calculated by summing 
up the contribution of each segment:

(62) 

2
,

11

i
np

k
kkkki

n

i
i

h
bywMMM åå

==

-== s

Figure 4 – Example of cross-section 
subdivision
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where n is the number of segments, np is the number of Gauss 
points in each segment, yk is the vertical coordinate of the Gauss 
point, computed substituting rk in Equation (61), sk is the stress at 
the Gauss point and bk is the corresponding cross section width 
at the Gauss point. The axial force and tangent constitutive matrix 
integrals are computed in the same way. 
It is important to note that the ASGI Method based on the use of 
Equation (62), generate exact results when the stress-strain curves 
of all segments are polynomials, provided that the appropriate 
number of Gauss points is used. Since the maximum degree (g) of 
the polynomial exactly integrated by Gaussian quadrature is given 
by g = 2 np - 1, only one Gauss point is required for segments with 
constant σ and two points for a segment where σ is parabolic. In 
the case of non-polynomial curves, as Equation (59), the proposed 
procedure is not exact, but it generate highly accurate results even 
using only 3 or 4 Gauss points, as will be shown in the examples.
The contribution of steel reinforcement is calculated by consider-
ing a uniform stress distribution in each rebar, since the diameter 
of these bars is small. Thus, the strain is evaluated at the center 
of each bar using Equation (30) and the corresponding stress is 
computed using the stress-strain relationship shown in Figure 3a.  
Thus, the reinforcement contribution to the bending moment is cal-
culated from:

(63)
 

å
=
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where m is the number of steel bars, Asi is the area of each bar, 
yi is the coordinate of the center of each bar and 

ii csi sss −=∆   
is the difference between the steel and concrete stresses, respec-
tively. An identical procedure is applied to the other integrals.
In the case of materially nonlinear analysis, the variation of the 
stress resultants and the tangent matrix along the length of the ele-
ment is not explicitly known, which prevents the integrals defined 

in Equations (48), (51) and (57), to be computed analytically. Thus, 
the internal force vector and the element stiffness matrix in the 
local system are calculated using the Gaussian quadrature with 2 
integration points with along the length of the element. 

4.	 Results and discussion 

The formulations described previously were evaluated by compari-
son of obtained results with numerical and experimental results 
available in the literature. Among the structures analyzed, two 
were chosen to be presented in this paper, in order to illustrate 
the behavior of reinforced concrete structures where both nonlin-
earities (material and geometric) are important and to study the be-
havior of the finite element and the integration method presented 
in this work. It is important to note that when the parameters of 
the stress-strain curves described in Section 3 were not deter-
mined experimentally, they were estimated by the expressions: 

 31.0

1 7.0 cmc f=e , 1cue  = -3.5‰  ,  [ ] 3.0
10/ 22(GPa) cmcm fE = , 

 [ ] 3/1
10/ 5.21(GPa) cmci fE = ,  3/2

3.0 ckctm ff =  and  8+= ckcm ff  [7].

4.1	 Column with eccentric loading

This column was subjected to an eccentric load until failure. Geom-
etry, material properties, and loading [4] are shown in Figure 6. The 
compressive strength is cf  = 38.3 MPa. The following properties 
were used in structural analyses with the EC2 constitutive model: 
fcm = 38.3 MPa [8], Ecm = 33.6 GPa [8] and 1ce  = - 2.3‰ [4]. The 
tensile strength of concrete is  fct = 2.9315 MPa and cE  = 33.639 
GPa. Finally, the steel properties are fy = 465 MPa [8] and sE  = 
200 GPa [4]. 
The EC2 model with tension stiffening (TS) and the ASGI Method with 
np = 4 was considered initially. The Displacement Control Method was 
used for nonlinear analysis with increments of -1mm for the horizontal 
displacement of the top of the column. In order to study the effect of 
discretization, the column was modeled using meshes with 1, 2 and 4 

Figura 5 – Algoritmo de subdivisão da seção
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elements, obtaining the maximum loads of 457.52 kN, 460.59 kN and 
460.09 kN, respectively. These results are in excellent agreement with 
the maximum load of 454 kN obtained experimentally [8], showing 
that the proposed formulation does not require very fine meshes to 
adequately represent the material and geometric nonlinear behavior 
of the structure. It is important to note that the maximum load obtained 
in this work was closer to the experimental load than the maximum 
load (445 kN) obtained in [4] using the EC2 model without the tension 
stiffening effect. It was also found that the Newton-Raphson Method 
presented quadratic convergence, with the number of iterations rang-
ing between 3 and 4 throughout the analysis, even using a very tight 
tolerance used for convergence (10-8).
Next, the influence of the integration method, number of layers 
(nf) and Gauss points (np) was assessed using a fixed number 
of elements (4) and constitutive model (EC2 with TS). The results 
obtained are shown in Table 1. These results show that the use of 
20 layers generate satisfactory results. However, the ASGI Method 
is more accurate and efficient than the Layer Method, generating 
better results using just 2 Gauss points per segment than the Layer 
Method with 20 layers. Additionally, accurate results with six sig-
nificant figures, which require the use of 600 layers, are obtained  
using only 3 Gauss points per segment. Note that [4] used 5 lay-

ers of fixed height and 10 Gauss points in each layer, showing the 
great advantage of using variable segments evaluated according 
to the proposed method.
Finally, the column was analyzed using 4 elements and cross-
section integration with np = 4. Both EC2 and PR models with 
and without tension stiffening (TS) were used in the analyses. The 
load-displacement curves are shown in Figure 7. According to the 
results, the chosen constitutive models can adequately represent 
the structural behavior of the column. However, the EC2-TS model 
was the closest to the experimental results presented in [8]. The 
PR-TS leads to an upper bound of the load-displacement curve, 
while the EC2 model without TS leads to more flexible results (low-
er bound).

4.2	 Plane frame

This concrete frame was tested in [9]. Geometry, cross-sections 
and material properties are presented in Figure 8. The other ma-
terial parameters used in the nonlinear analysis were estimated 
as described in Section 4. For the PR model, the compressive 
strength is fc = 22.1 MPa, while for EC2 model: fcm  = 22.1 MPa, 
Ecm = 27.909 GPa and 1ce  = -1,828‰ [4]. The tension stiffening 
parameters are fct = 1.760 MPa and cE  = 28.005 GPa. The yield 
strength is yf  = 388,9 MPa for columns and yf  = 403,4 MPa for 
beams. The Young’s modulus is sE  = 202 GPa. 
Initially, the plane frame was analyzed using the EC2 model with 
tension stiffening (EC2-TS) and cross-section integration by the 
ASGI Method with np = 4. The Displacement Control Method was 
used for nonlinear analysis with increments of -1mm for the hori-
zontal displacement of top-right node. In order to study the effect 
of discretization, the frame was modeled using meshes with 1, 2, 4 
and 8 elements per member, obtaining maximum loads of 152.868 
kN, 143.897kN, 141.555 kN and 140.806kN, respectively. These 
results are in excellent agreement with the maximum load of 141 
kN obtained experimentally [9], showing that 4 elements per mem-
ber is sufficient to adequately represent the materially and geo-
metrically nonlinear behavior of this frame. It is interesting to note 
that the maximum load obtained in this work is closer to the ex-

Figure 6 – Column with eccentric load: 
geometry, material and loading [4]

Table 1 – Layer method x ASGI method

nf P  (kN) max P  (kN) maxnp    

10
20
50
100
600

457.276
459.599
459.991
460.069
460.092

459.673
460.092
460.092
460.092

–

2
3
4
5
–

    

Figure 7 – Load-displacement curves 
of the column with eccentric load
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perimental value than the maximum load (136.4 kN) obtained in [4] 
using the EC2 without tension stiffening. Once again, the Newton-
Raphson Method presented quadratic convergence, requiring 3 to 
4 iterations to convergence throughout the analysis, even using a 
tight convergence tolerance (10-6). 
In this example, the cross-section integration with the Layer Method 
with nf = 10 or the ASGI Method with np = 2 generate accurate re-
sults with 6 significant figures. However, the ASGI Method is more 
efficient due to the smaller number of points used in the integration. 
Finally, the frame was analyzed using 8 finite element per bar and 
cross-section integration by the ASGI Method with np = 3. The non-
linear analyses were carried out using the EC2 and PR models, 
with and without tension stiffening (TS). The load-displacement 
curves are shown in Figure 9. These results shown that all models 
can adequately represent the structural behavior of this frame. The 
EC2 model without TS was the one closest to the experimental re-
sults [9], but the EC2 with TS was the best with respect to the maxi-
mum load. For this structure, the EC2 with TS generate an upper 
bound for the load-displacement curve, while the PR model without 
TS leads to a lower bound. It can be noted that the initial stiffness 
of the models with tension stiffening (TS) is overestimated, indicat-
ing that the elasticity modulus of concrete in tension (Ec) is lower 
than the value estimated using the expressions given in [7].

5.	 Conclusion

This work presented the formulation of a finite element for material 
and geometric nonlinear analysis of plane frames, including a new 
method for integration of stress resultants and tangent constitutive 
matrix over concrete cross-sections. The formulations and their 
computational implementations have been validated by compari-
son with experimental and numerical results available in the litera-
ture. All proposed models showed consistent results, representing 
adequately the behavior observed in the laboratory. However, it 
was found that the Eurocode 2:2004 [7] model leads to better re-

Figure 8 – Concrete frame: geometry, 
material and loading [4]

Figure 9 – Load-displacement c
urves of the concrete frame

sults than the parabola-rectangle model. The contribution of ten-
sion stiffening effect proved important for evaluating the ultimate 
load of the studied structures. However, the consideration of this 
effect requires a substantial number of parameters whose experi-
mental determination is normally not performed. This leads to the 
use of expressions based on correlations that do not always lead 
to adequate results.
The integration method based on automatic subdivision of the 
cross section according to the sub-domains of stress-strain curves 
and application of Gaussian quadrature for each segment is sim-
ple, efficient and highly accurate for nonlinear analysis of concrete 
structures subjected to monotonic loading. Finally, the examples 
showed that the proposed element leads to good results using 
only 2 to 4 elements per member. Thus, this element is an effi-
cient alternative for nonlinear analysis of reinforced concrete plane 
frames, regarding the analysis of structures with a large number 
of members.
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