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Abstract  

Resumo

In the search for sustainable construction, timber construction is gaining in popularity around the world. Sustainably harvested wood stores carbon 
dioxide, while reforestation absorbs yet more CO2. One technique involves the combination of a concrete slab and a timber beam, where the two 
materials are assembled by the use of flexible connectors. Composite structures provide reduced costs, environmental benefits, a better acoustic 
performance, when compared to timber structures, and maintain structural safety. Composite structures combine materials with different mechani-
cal properties. Their mechanical performance depends on the efficiency of the connection, which is designed to transmit shear longitudinal forces 
between the two materials and to prevent vertical detachment. This study contributes with the implementation of a finite element formulation for 
stress and displacement determination of composite concrete-timber beams. The deduced stiffness matrix and load vector are presented along 
to numerical examples. Numerical examples are compared to the analytical equations available in Eurocode 5 and to experimental data found in 
the literature.

Keywords: composite structures, finite element method and sustainable structures.

A madeira tem se destacado na produção de edificações sustentáveis, principalmente pela possibilidade de emprego de madeiras provenientes 
de florestas plantadas. A combinação de vigas de madeira com um tabuleiro de concreto armado ligados entre si por conexões flexíveis é uma 
alternativa que traz aumento de rigidez à estrutura, ameniza problemas de durabilidade, quando exposta às intempéries, e melhora seu desem-
penho acústico, se comparada à uma estrutura em madeira. As estruturas mistas são constituídas pela associação de materiais com diferentes 
propriedades mecânicas e seu desempenho mecânico depende da eficiência da ligação entre eles. Os conectores flexíveis são responsáveis 
pela transmissão de forças de cisalhamento entre os dois materiais e por evitar o desprendimento vertical. Esta pesquisa desenvolveu e imple-
mentou uma formulação de elementos finitos para cálculo dos esforços internos da estrutura mista de concreto e madeira. A matriz de rigidez e o 
vetor de carga deduzidos são apresentados juntamente com exemplos numéricos e seus resultados são comparados com as equações analíticas 
do Eurocode 5 e resultados experimentais da literatura.

Palavras-chave: estruturas mistas, elementos finitos e estruturas sustentáveis.
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1.	 Introduction

Composite structures combining materials with different mechani-
cal properties offer an alternative to the civil construction industry. 
The technique provides reduced costs, environmental benefits and 
a better acoustic performance when compared to timber struc-
tures, while maintaining structural safety. 
Concrete-timber composite systems may be applied to the construc-
tion of bridges, improving the bridge stiffness, resulting in smaller 
displacements and increasing natural frequencies of vibration.
The deck floor is composed of a concrete slab connected to timber 
beams aiming for the two materials to work together. The level of 
stress transfer between the concrete slab and the timber beam 
defines the mechanical behavior of the composite structure. It may 
be considered as a monolithic structure, when there is no slip in the 
region of contact, or it may behave as a non-monolithic structure 
when relative longitudinal displacement is observed. 
The concrete slab protects the timber beams against direct weath-
ering, surface abrasion and fire, improves the vibration perfor-
mance and its maximum load when compared to timber bridges. 
The maximum load may increase by a factor of the order of two 
and the stiffness by three or four times according to CECCOTTI [1].
The relative lightness of composite materials and the possibility of 
using glued laminated timber (GLULAM) are factors that contribute 
to its prefabricated production.

1.1	 Connection systems for concrete-timber
	 composite structures 

TARANTINO and DEZI [2] describes the necessity of studying the 
connection systems, which are responsible for transmitting the lon-
gitudinal shear forces in the interface of the two combined materi-
als along the length of the beam.
Analyzing the connection of timber components, RACHER [3] 
highlights the major importance of the connection system, since 
its behavior directly affects the distribution of forces in the compo-
nents and, as a consequence, in the structure deformations. 
According to SORIANO [4] the connection system may be char-
acterized as rigid or semi-rigid (flexible), Figure [1]. An example of 
rigid connection is the use of epoxy structural adhesive through-
out the entire contact surface between the two materials, GIR-
HAMMAR and GOPU [5]. The rigid connection consists of the full 

integration of the cross section and the structure behaves as a 
monolithic structure. Studies developed in Brazil, by directly gluing 
timber beams to structural elements of reinforced concrete, were 
presented by NICOLAS [6]. SORIANO [4] also tested T-shaped 
timber-concrete beams, where the timber web was glued to the 
concrete slab.
In the semi-rigid connection system, the attachment between the 
two materials may be done using steel pins, nails, screws, bolts 
or metal profiles. The semi-rigid connection performs a partial in-
teraction of the cross section, with a relative displacement (slip) 
between the two materials.

1.2	 Models for the analysis of composite beams 

The main mathematical models for describing the mechanical 
behavior of composite structures proposed in the literature are 
based on the equilibrium equations and on energy principles. Un-
like concrete-steel composite structures, there is insufficient stan-
dard specification for concrete-timber structures. For concrete-
steel structures, it can be cited the BS 5400 [7] or the Brazilian 
NBR8800/02 [8]. However, there is no Brazilian standard regarding 
the design of concrete-timber structures. An international standard 
that can be cited is the EUROCODE 5 [9].

1.2.1 The EUROCODE 5 model for the analysis 
of composite beams

Both the EUROCODE 5 [9] and the DIN 1052 [10] consider the 
flexibility of the connection system, and the relative displacement 
between the materials, by adopting an effective bending stiffness 
parameter  ( )

ef
EI  which is calculated according to Equation [1]. 

Equation [1] is a function of the shape of the cross section, the 
Young’s modulus of the materials, the spacing of connectors and 
its slip modulus.

(1)

In Equation [1] cE , wE , cI , wI , cA   and wA  are Young’s modulus, 
the moment of inertia and the cross section areas of the concrete 

A B

Figure 1 – Vertical displacement of a composite beam

Rigid connection Semi-rigid connection
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and timber elements respectively;  cy  is the partial factor of the 
slab, calculated according to Equation [2];  1,0wy =  is the par-
tial factor of the web; ca  and wa  are the distances indicated in  
Figure [2] calculated by Equations [3] and [4]; l  is the length of 
the beam, s  is the spacing of connectors and K  is the connector  
slip modulus.

(2)

(3)

(4)

1.2.2 A variational formulation for concrete-timber 
composite beams

In the present work, the formulation presented in FORTI [11] and 
MASCIA et al. [12] was adopted. The formulation is based on the 
principle of virtual works. Therefore, it can be easily implemented in 
a computer solver using both the Finite Element Method (ODEN et 
al. [13]) and the Direct Stiffness Method (GERE and WEAVER [14]).
Two consolidated theories for the analysis of beams are the Eul-
er-Bernoulli’s beam theory and the Timoshenko’s beam theory 
(SLHESSARENKO [15]). In this work, the Euler-Bernoulli’s beam 
theory in two dimensions was adopted. 

1.2.2.1 Principle of virtual work

The principle of virtual work is adopted to formulate the problem. The 
composite beam is considered as two independent beams connected 
(one made of concrete and the other of wood). The strain energy of 
the composite structure is given as the sum of the strain energy of the 
two beams and the strain energy of the connectors. Thus, the internal 

virtual work of the structure is the sum of the three individual internal 
virtual work, i.e., C W S

int int int extTV TV TV TV+ + = , where indices C, W e S 
refer to concrete, wood, and connectors, respectively.
It is assumed the vertical displacement ( ( )v x ) of the two beams 
are equal and therefore, their derivatives are equal too. Under 
Euler-Bernoulli’s beam theory assumptions, the derivative of the 
vertical displacement is equal to the rotation of the cross section, 
and both beams have the same rotation ( )'C W v xθ θ= = . The 
shear force (force per unit of length) of the connectors is given as  
Ts = KDu, where K  is the slip modulus of the connectors and Du 
is the relative displacement between the lower fiber of the concrete 
beam and the upper fiber of the timber beam. Figure [3] illustrates 
this relative displacement.
The relative displacement (Du)is calculated as:                        

(5)

Since the rotation of both beams are equal, then:

(6)

Figure 2 – Cross section of a T-shaped 
composite beam and normal 

stresses on bending. Source: adapted 
from the EUROCODE 5 [9]

A BCross section Normal stress

Figure 3 – Kinematics of a composite beam
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Defining r  the distance between the gravity center of the beams, 
it comes that:

(7)

The internal virtual work of the connector is then given as:

(8)

Adding the internal virtual work of the connector to those of concrete 
and timber beams, the composite beam formulation is stated as:

(9)

where the unknowns are the horizontal displacement of the fiber in  
the gravity center of the elements ( )cu x  and ( )wu x  and the verti-
cal displacement ( )v x ;  Cuδ , Wuδ  and vδ  are their respective 
virtual dsiplacements.
In FORTI [11], the variational formulation (Equation [9]) is solved 
using the Rayleigh-Ritz method. However, the Finite Element 
Method permits the application of this formulation to different types 
of load and geometries of beams in a more general fashion and 
simplicity of use. Moreover, this approach is more suited to be in-
serted in other software of structural analysis already available. 

2.	 The finite element method

The Finite Element Method consists in adopting functions to ap-
proximate the displacements ( )cu x , ( )wu x  and ( )v x  and also 
the virtual displacements ( )cu xδ , ( )wu xδ  and ( )v xδ . Adopting 
approximating base functions, permits the calculation of an ap-
proximate solution to the variational problem of Equation [9]. In this 
work, two families of functions are employed: the piecewise linear 
functions and the cubic Hermite polynomials. 
The piecewise linear base functions are defined as being linear 
functions that take value of 1 in one of the nodes of the mesh and 
zero in all the other nodes. Also known as hat functions, one ex-
ample of two base functions is presented in Figure [4].
It can be noted the function has values different from zero in a 

Figure 4 – A set of piecewise linear base functions

Figure 5 – Linear shape functions of an element
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region formed by 3 nodes and has zero value in the rest of the 
domain. If each element of the mesh is formed by 2 nodes, then 
the function has local support to 2 neighbor elements and each 
element contributes with 2 functions, which are called shape 
functions of the element (Figure [5]). The local support property 
of the functions is employed in the construction of the element 
stiffness matrix.
The combination of the elements shape functions builds the ap-
proximate base functions. The defined linear functions has de-
rivatives with piecewise constant values. Thus, the derivative of 
the function is discontinuous between elements. It means the first 
derivative of the piecewise linear function is integrable over the do-
main, but its second derivative would not be defined in the nodes 
of the mesh.  
The cubic Hermite functions also have local support to the element 
and its neighbors. The properties of the Hermite functions involve 
the value of the function and its derivatives. The shape functions of 
one element are plotted in Figure [6].  
The first function has the property of having value equal to 1 in 
the initial node of the element and zero in the final node. Addi-
tionally, its first derivative has zero value in both initial and final 
node. The second function has zero value in both nodes and its 
first derivative has value equal to 1 in the initial node and zero in 
the final node. The third function has value equal to 1 in the final 
node and the fourth function has value 1 for the first derivative in 
the final node, with zero value for the remaining values of function 
and first derivatives in the nodes. These functions are particularly 
important because they construct, in association to the neighbor 
elements, functions having the first derivative continuous over the 
whole domain. Thus, these functions are integrable up to their sec-
ond derivatives.
The finite element formulation is obtained substituting the displace-
ment functions by the approximating functions, i.e., 

 

1

n

w j jj
u a j

=
@ å ,  

1

n

w j jj
u b j

=
@ å , and 

 

1

m

j jj
v g f

=
@ å . In the same manner, the vir-

tual displacements are approximated by the same functions. Thus, 
the virtual displacement cuδ  is adopted as equal to each function 

iϕ  and so on. Then, the finite element formulation is given as:

(10)

The variational formulation requires the calculation of integral that 
involves the first derivatives of the horizontal displacements cu  
and wu . Thus, one can observe the piecewise linear functions (hat 
functions) satisfy the necessary requirements to approximate the 
horizontal displacements, since its first derivatives are integrable 
over the whole domain. Therefore, we adopted  jϕ  as being hat 
functions, with the index j  indicating the node of the mesh where 
the function has value equal to 1. The vertical displacement, how-
ever, requires the second derivative to be integrable in order to sat-
isfy the variational formulation.  Thus, the cubic Hermite functions 
are candidates to jφ , since their second derivatives are integrable 

Figure 6 – Cubic Hermite shape functions of an element
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over the domain. In this work, the Hermite functions are adopted 
as shape functions to approximate the vertical displacement ( )v x . 
It is interesting to observe that in the Euler-Bernoulli’s formulation, 
the rotation of the cross section is equal to the fi rst derivative of the 
vertical displacement, i.e., ( ) ( )'x v xθ = . Then, one may note that 
the fi rst and third Hermite functions plotted in Figure [6] refer to the 
vertical displacement, while the second and fourth are related to 
the section rotation because they have fi rst derivatives with values 
equal to 1 in the nodes.
Since the approximating functions have local support to the 2 
neighboring elements connected to a node, the integrals over the 
domain ( )0, L  are indeed calculated only over the elements of 
support of the function. The formulation can be written, in matrix 
form, as:

(11)

where the matrix K is composed by the sum of the matrices of each 
element. The solution vector u  is given as:

(12)

which is the union set of the horizontal and vertical displacements 
and rotation of each node of the mesh { }, , , 'c wu u v v . The matrix of 
each element is described in the sequel. 

2.1 Element stiff ness matrix

The stiff ness matrix is presented in parts, one for each term of the 
internal virtual work: concrete, wood and connector. 
The stiff ness matrix associated to the concrete element is given by 
the expression:

(13)

which gives, for each element of the mesh of length eL :

(14)

or

The stiff ness matrix associated to the timber element is given as:

It is interesting to observe that the stiff ness matrices of the con-
crete and timber elements are, in fact, the same matrices one 
would obtain from the Direct Stiff ness Method. Adding the two 
matrices, we would have the stiff ness matrix in the case the ele-
ments were disassembled, where the bending stiff ness would be 
added while the horizontal displacements would remain indepen-
dent.  The interaction between the two materials, with a conse-
quent increase in the bending stiff ness of the composite beam, 
is represented by the connector stiff ness matrix. The connector 
matrix is calculated from the equation of internal virtual work of 
the connector:

(15)

which, being integrated over the domain of one element of length 
eL , results in:

Finally, the element stiff ness matrix of a concrete-timber composite 
beam is given as k c w sk k k= + + .
The load vector is obtained from the external virtual work, which in 
this study is given as:

(16)

where q  is a distributed vertical force and iP  are vertical forces 
applied to nodes. It is to be noted that only vertical loads were 
considered in Equation 16, although its extension to other types of 
loads is trivial. The load vector for a q  constant valued along the 
element is given by:
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(17)

The nodal concentrated forces iP  are added to the algebraic prob-
lem by adding their values in their respective positions of the global 
load vector.

2.2	 Computational solver

The solver is implemented on C++ language, using some classes 
from the finite element library PZ (DEVLOO [16]). In order to facilitate 
the use of the program, a graphical interface was implemented to in-
put data and visualize results. Figure [7] shows the main screen of the 
program with the data to be input. The result graphics are the vertical 
displacement of the composite beam, bending moment and normal 
forces of each of the two beams and the connector shear force.
The implementation was verified comparing its results to the re-
sults presented in FORTI [11]. FORTI [11] presents some numeri-
cal results of the variational formulation and an analytical solution 
of the differential equation from STEVANOVIC [17]. The results are 
also compared to the experimental data of laboratory tests (SO-
RIANO [4]), with good agreement of results.

3.	 Results and discussions

The developed program is applied to the problem of a concrete-
timber beam presented in FORTI [11] for verifying the finite ele-

ment solver implemented. The results are also compared to those 
obtained from the routines of the EUROCODE 5 [9]. 
The input data is described in Table [1] and in Figures [8] and [9]. 
The connection between the two materials was made with 41 hex 
bolts of ½”, with spacing of 7.5 cm. The slip modulus was obtained 
from shear laboratory tests. SORIANO [4] performed 5 tests and 
the average slip modulus under service load obtained was equal to 

serK 15464 N / mm= . The ultimate modulus was uK 10309 N / mm=
In the experimental test of SORIANO [4], there were two loads to 
be considered (Figure [8]): one uniformly distributed load, corre-
spondent to the self-weight of the beam q = 0.36 N/mm, and a con-
centrated force kP  applied vertically in the middle of the beam. The 
vertical displacement was measured from the moment the concen-
trated force was applied, i.e., the measured displacement does not 
include the vertical displacement caused by the self-weight of the 

Figure 7 – Main screen of the program: input data and results

Table 1 – Properties of the components 
of the composite beam

Concrete Timber

Cross section area (mm2) 12,000 7,500

Moment of inertia  (mm4) 1,6 x 106 14.063 x 106

E* (N/mm2) 19,300 14,700

*Longitudinal Young’s modulus obtained from a compressive test parallel to the 
fiber direction.
Connector slip modulus under service loading: 
K1c (ser) = 15.464 N/mm;
Connector spacing (s) = 7.5 cm.
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beam. Therefore, in the numerical analysis, only the concentrated 
force is simulated. This procedure is mathematically valid due to 
the linearity of the formulation adopted.
Table [2] complements the input data with the values of the force 

kP , which varied from 0 to 30 kN, and brings the comparison of the 

results obtained in this work to those obtained from the literature. 
Table [2] brings the following results:
1.	 SORIANO [4]: the displacements from the two experimental 

tests (Exp. 1, Exp. 2, and the average values of the tests). It is 
worth noting that the structure collapsed in Exp. 1 and Exp. 2 

Figure 8 – Geometry of the tested composite beams (dimensions in cm). (SORIANO [4])

Figure 9 – Boundary conditions of the tested beams

Table 2 – Results of vertical displacements at L/2 of the composite beam

Load
 (kN)

Experimental
(mm)

Numerical 
(mm)

Analytical
 (mm)

Pk Exp.1 Exp.2 Average FORTI [11] Difference1 FEM Difference2 Eurocode 5 Difference3

0 0 0 0 0 0 % 0 0 % 0 0 %

5 4.13 4.43 4.28 3.96 7.5 % 3.96 7.5 % 3.91 8.6 %

10 8.34 8.72 8.53 7.92 7.2 % 7.92 7.2 % 7.81 8.4 %

15 12.26 13.01 12.64 11.88 6.0 % 11.88 6.0 % 11.72 7.2 %

20 16.76 17.76 1.26 15.84 8.2 % 15.85 8.2 % 15.62 9.5 %

25 22.94 23.68 23.31 19.80 15.1 % 19.80 15.1 % 19.53 16.2 %

30 30.61 29.08 29.85 23.76 20.4 % 23.76 20.4 % 23.44 21.5 %

1Difference  = 2Difference  = 
 [ ] 11  

 

FORTI experimental average

experimentalaverage

-   

 

FEM experimental average

experimentalaverage

-

3Difference  =   5  

 

Eurocode experimental average

experimentalaverage

-
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when kP  was equal to 37.811 kN  and 36.694 kN , respectively;  
2.	 FORTI [11]: the results obtained from the variational formula-

tion solved using the Rayleigh-Ritz method; 
3.	 The results obtained in this work using the implemented finite 

element solver (FEM);
4.	 Calculating using the routines of the EUROCODE 5 [9], which 

defines an effective bending stiffness parameter (Equation 1). 
For this case the effective stiffness ( ) 2720,0542 .

ef
EI kN m=    

and the vertical displacement is calculated as ( )
3

 

48 
k

ef

P L

EI
.

Table [2] also brings the comparison of the displacements calcu-
lated by the different methodologies and the experimental results. 
Figure [10] illustrates the comparison of results shown in Table 
[2]. It can be observed that the displacement curve from the ex-
perimental tests indicates a non-linear behavior beyond the point 

where the force is 20 kP kN= .
Analyzing the data of Table [2], one can observe that:
n	 The finite element solution (FEM) of this work is equal to the 

solution of FORTI [11]. This conclusion was expected, since 
both works solve the same variational formulation. The agree-
ment of results, in fact, verify the C++ code implemented, at 
least for this example.

n	 The numerical results are very similar to the experimental 
results, conclusion already observed in FORTI [11]. The 
values differ from less than 10% in the early stages of load-
ing. With the increase of the load KP , it can be observed 
the influence of the non-linear behavior of the materials 
and the consequent deviation of the results with a maxi-
mum difference of about 20% when 30 kP kN= , near the 
point of collapse of the tested beams. This result evidenc-
es the quality of the variational formulation in representing  
the physical phenomenon while the structure is in the  
elastic domain.

n	 The results from the routines of the EUROCODE 5 [9] are in 
great agreement with the numerical solutions, with differences 
inferior to 1.5%. This is an evident quality of the analytical for-
mulation, much simpler to be used.

The other results of the implemented program are presented in 
Figures [11], [12], [13], and [14] for the simulation with 15 kP kN= .  
Figure [11] shows the vertical displacement of the composite 
beam. Figure [12] brings the curves of the bending moment for the 
concrete beam ( )cM , the timber beam ( wM ) and the total bending 
moment ( )totalM .  Figure [13] shows the graphics of normal forces. 
In the absence of interaction between the two beams, the sum of 
the bending moment of the concrete beam to the moment of the 
timber beam would be equal to the total bending moment. Thus, it 
is interesting to observe that the interaction between the beams re-
duce the bending moment acting on each of the beams. However, 
there is the appearance of normal forces, which cancel each other. 
The normal force in the concrete beam is of compression and in 
the timber beam is of tension.
Figure [14] presents the shear force of the connectors.

Figure 10 – Graph of vertical displacement 
versus the applied force Pk

Figure 11 – Graph of vertical displacement along the length of the beam 
for the applied force of P  = 15 kNk

.
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Figure 12 – Graph of bending moment of each of the beams (concrete
and timber) and the total moment for the applied force of  P  = 15 kNk

Figure 13 – Graph of normal forces on the concrete 
and timber beams for the applied force of P  = 15 kNk

Figure 14 – Graph of the connection shear force along the length of the beam for P  = 15 kNk
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4.	 Conclusions

The technological development of the process of design and  
construction of timber structures has improved the knowledge of 
the behavior of this material and its subsequent use in composite 
structures. The employment of composite concrete-timber struc-
tures promotes the best use of the features of each material.
This work contributes with an analysis of concrete-timber compos-
ite beams. Two approaches for calculating the stress state of the 
beam are compared. One is based on a finite element formulation 
and the other is based on the analytical procedure of the standard 
EUROCODE 5.
The variational formulation, based on the principle of virtual work, 
accounts to the strain energy of the three main components of a 
composite beam: the reinforced concrete slab, the timber web and 
the connectors (or fasteners). The formulation is consistent and 
satisfies the equilibrium equations.  It is coherent with laboratory 
test results.
The procedure of the EUROCODE 5 is based on an effective bend-
ing stiffness, which is function of the components of the composite 
beam, specially the slip modulus of connectors.
The implementation of a finite element formulation enables the use 
of the formulation in structural analysis programs. A software with 
user interface was developed and it is available to the community. 
Some examples were performed to compare the simulation results 
to the results obtained from the procedure of the EUROCODE 5. 
It is observed great concordance of the results, which differ from 
less than 1.5%.
This development promotes, through the development of the com-
putational program, a wider propagation of the procedures of de-
sign and the understanding of the mechanical behavior of com-
posite beams, which may catalyze the use of this type of structure.
The finite element formulation presented may be applied to other 
types of composite structures, for instance, a structure with a steel 
profile web associated to a concrete slab.
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