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Abstract: Most current structural design codes are based on the concept of limit states, that is, when a 
structure fails to meet one of its purposes, it is said that it has reached its limit state. In the design of reinforced 
concrete structures, the Ultimate Limit State (ULS) and the Serviceability Limit State (SLS) must be checked. 
Therefore, this paper presents an optimization scheme for reinforced concrete plane frames, in which the 
objective is to minimize the cost of structures for three cases of constraints: the first is related to ULS and 
SLS; the second refers only to the ULS; and the third is related only to the SLS. Computational routines for 
checking limit states of beams and columns are implemented in MATLAB, following the requirements of the 
Brazilian code. Structural analyses are performed by using the MASTAN2 software, taking into account 
geometric nonlinearities and a simplified physical nonlinearity method. The objective function considers the 
cost of concrete, reinforcement and formwork, and the optimization problems are solved by genetic 
algorithms. Two numerical examples of frames are presented. Regarding the optimal characteristics related to 
each type of limit state, it is noted that the beams and columns tend to have larger and more reinforced cross 
sections in the case of the ULS. Even so, optimal structures related to the ULS often do not satisfy SLS and 
vice versa, which indicates that the optimal characteristics related to each limit state may be different. In 
addition, it is observed that the SLS is less restrictive than ULS. 

Keywords: optimization, reinforced concrete, limit states, genetic algorithms. 

Resumo: A maioria das normas de projetos estruturais atuais se baseia no conceito de estados limites, ou seja, 
quando uma estrutura não atende a um de seus propósitos, diz-se que a mesma atingiu seu estado limite. No 
projeto de estruturas de concreto armado, deve-se verificar o Estado Limite Último (ELU) e o Estado Limite 
de Serviço (ELS). Portanto, este trabalho apresenta um esquema de otimização de pórticos planos de concreto 
armado, no qual o objetivo é minimizar o custo de estruturas para três casos de restrições: o primeiro está 
relacionado ao ELU e ao ELS; o segundo refere-se apenas ao ELU; e o terceiro está relacionado apenas ao 
ELS. São elaboradas rotinas de verificação dos estados limites de vigas e de pilares, em ambiente MATLAB, 
de acordo com normas brasileiras. As análises estruturais são realizadas com o uso do software MASTAN2, 
levando em consideração as não-linearidades geométricas e um método simplificado de não-linearidade física. 
A função objetivo considera o custo do concreto, da armadura e da forma, e são utilizados algoritmos genéticos 
para a otimização. São avaliados dois exemplos numéricos de pórticos. Quanto às características ótimas 
relacionadas a cada tipo de estado limite, nota-se que as vigas e os pilares tendem a apresentar seções 
transversais maiores e mais armadas no caso do ELU. Mesmo assim, muitas vezes a estrutura ótima 
relacionada ao ELU não satisfaz o ELS e vice-versa, o que indica que as características ótimas relacionadas a 
cada estado limite podem ser diferentes. Além disso, observa-se que o ELS é menos restritivo do que o ELU. 
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1 INTRODUCTION 
Due to the development of new technologies and the increase of market competitiveness, the search for more 

efficient and lower-cost designs has increased. At the same time, reinforced concrete has become a dominant structural 
material in engineering construction in many countries [1]. In this scenario, the importance of studies related to the 
design concept of reinforced concrete structures is valid. 

To ensure the safety of a structure, the engineer must choose a design option which meets the requirements related 
to its purpose. However, due to the large number of variables usually involved in the design of reinforced concrete 
structures, there are several different configurations that can meet the required conditions, with different costs and 
performances. Many times, the choice of a configuration is not simple, which makes it difficult to obtain an optimal 
design using traditional methods. Thus, optimization techniques have been widely employed with this purpose [2]–[4]. 

As a result, several studies in the field of optimization of reinforced concrete structures have been developed in the 
last decades, with the objective of obtaining designs with optimal parameters, generally related to the minimum cost of 
the structures [5]–[15]. Many of these studies use genetic algorithms (GA) in the optimization [16]–[25]. In order to 
obtain optimal structures which can be used in practice, the requirements specified by standard designs may be applied 
as constraints within the optimization formulation. 

The requirements presented by most current design codes, including the Brazilian code for design of concrete 
structures [26], are based on the concept of limit states. A limit state may be defined as the limit situation from which 
a structural element no longer meets one of its design goals, or in other words, when a structure fails to satisfy any of 
the purposes of its construction. Current Brazilian codes establish that the following limit states must be 
considered [26], [27]: Ultimate Limit State (ULS), related to the collapse, or to any other form of structural failure, 
which determines the interruption of the use of the structure; Serviceability Limit State (SLS), characterized by 
situations that, due to their occurrence, repetition or duration, generate structural effects that do not meet the conditions 
specified for the normal use of the structure, or indicate impairment of its durability. 

Optimization of reinforced concrete structures considering standard design constraints have been already studied in 
some papers from the literature [9], [13], [15], [19], [20]. In the context of the Brazilian design standard, some studies 
have also been developed, for example, Bordignon and Kripka [28], Medeiros and Kripka [29], [30], Kripka et al. [31] 
and Correia et al. [32]. However, there is a lack in studies that discuss the characteristics of the optimal structures found 
and their relationships with the design constraints. 

Following a research which was started by Juliani and Gomes [33], [34], the present paper proposes to analyze the 
optimal configuration of reinforced concrete plane frames, through the minimization of its costs, considering three cases 
of constraints: the first is related to ULS and SLS; the second refers only to the ULS; and the third is related only to the 
SLS. The design variables considered are the cross-section dimensions and the amount of longitudinal and transverse 
reinforcement of the structural elements. Also, for a proper representation of the real behavior of the structure, geometric 
nonlinearities and a simplified physical nonlinearity method are considered in the structural analysis. Although the 
Brazilian standard requires that designs satisfy both types of limit states simultaneously, the present paper considers 
them separately in some cases, in order to investigate and quantify the effects of each type on the optimal configuration. 
Thus, the main goal of the research is to improve the knowledge in structural design, indicating possible directions that 
lead to structures with minimal costs. 

This paper focuses on plane frames because there are many conventional structures that can be reduced to such 
models, as some kinds of buildings and industrial sheds. Furthermore, the analysis of plane frames requires 
consideration of the global structural behavior and the interaction between the two different types of structural elements 
involved: beams and columns. However, this model does not take into account torsional forces, for example, restricting 
the analysis to axial and shear forces and bending moments, in the plane. Although limited, plane frames allow a 
significant reduction in the computational effort of the optimization process, when compared to spatial models. This is 
important because the optimization process requires many structural analysis evaluations. 

The paper is organized as follows: section 2 introduces the formulation and implementation of the problem that is 
addressed in this paper; the optimization method used herein is described in section 3; section 4 presents two numerical 
examples and some conclusions drawn from the results are presented in section 5. 

2 OPTIMIZATION FORMULATION AND IMPLEMENTATION 
The optimization problem is usually defined by some design variables, one or more objective functions and some 

constraints, as described in the following. 
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2.1 Design variables 
The cross-sections of beams and columns are assumed to be rectangular. The design variables to be determined in 

the optimization process are adopted as discrete and illustrated in Figure 1, where: b  and h  are the cross section width 
and height, respectively, and the height is parallel to the plane of the frame; sn  is the number of longitudinal 
reinforcement bars, whose diameter is represented by sφ ; swn  is the number of transverse reinforcement bars, whose 
diameter is represented by swφ . 

 
Figure 1. Typical section of a beam and a column. 

In order to vary the amount of reinforcement along the beam, the structural element is discretized in a predefined 
number of segments. Then, for each segment, values of top

sn , bottom
sn  and swn  are determined, based on the maximum 

values of bending moment and shear force on the segment. The bars extend over the entire length of the segment and 
the anchoring of longitudinal bars is not considered. For simplification, the values of top

sn  and bottom
sn  are obtained 

considering the respective bars as tension reinforcement. The values of the other variables are the same over the entire 
length of the beam. 

Since this paper deals with plane frames, the cross sections of the columns are longitudinally reinforced only on 
two faces, in a symmetrical way, assuming that the direction of the acting bending moment may change. Each column 
is discretized with one segment, so that the structural element has the same cross section throughout its length, and 
anchorage of the reinforcement is disregarded. 

2.2 Objective function 
The objective function employed corresponds to the cost of the structure, based on the cost of concrete volume, 

longitudinal and transverse reinforcement mass and formwork area, as described by Equation 1, where: x  is the vector 
of design variables; cV  is the concrete volume; sM  and swM  are the mass of the longitudinal and transverse 
reinforcement, respectively; fA  is the formwork area; cC , sC , swC  and fC  represent, respectively, the unit cost of 
concrete, longitudinal and transverse reinforcement, and formwork; eln  is the number of structural elements of the 
frame (beams and columns). The formwork areas are given by Equation 2, where l  is the length of the structural 
element. 

( ) ( )el
i i i i

n
c c s s sw sw f fi 1f V C M C M C A C== + + +∑x  (1) 

( )
( )

beam
f

column
f

A 2h b l

A h b 2l

 = +


= +
 (2) 

2.3 Constraints 
The optimization constraints considered herein are based on the requirements of NBR 6118 [26], represented by the 

vector g , and divided into constraints of the ultimate and serviceability limit states, as shown in Figure 2. In addition 
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to the constraints related to the limit states, in all situations, constructive constraints are also considered; for example: 
maximum and minimum limits of dimensions of cross-sections, reinforcement rates and space between reinforcement 
bars; ductility conditions for beams; and others. All these constraints are implemented in MATLAB (MathWorks [35]), 
to be included in the optimization. It should be noted that constraints related to the lateral instability of the beams are 
not considered. The consideration of this effect can be important, especially in cases of slender beams and with 
insufficient lateral locking; however, this topic will not be addressed herein for simplification purposes, remaining a 
topic for future investigations. 

 
Figure 2. Constraint scheme of the problem. 

Verification of the constraints requires determination of internal forces and deflections of the structure, which can 
be achieved by structural analysis. For this purpose, MASTAN2 software [36] is employed. In all cases, geometric 
nonlinearities are considered using the software formulation [37], whereas physical nonlinearities are considered in a 
simplified manner, based on stiffness reductions, as indicated by NBR 6118 [26]: the stiffnesses of the beams and 
columns are considered equal to 40 %  and 80 %  of the total stiffness of the concrete section, respectively. For more 
details about nonlinearities the readers are referred to Bathe [38] and Belytschko et al. [39]. As the present paper deals 
with plane frames, beams are considered subjected to the simple bending and columns to uniaxial bending. 

2.3.1 Ultimate limit state constraints 
Considering the behavior of the analyzed structure, the beams must withstand the design bending moment ( SdM ) 

and the design shear force ( SdV ). 
The section of the beam is safe with respect to the bending moment if it satisfies the constraint given by Equation 3, 

where RdM  is the design bending strength. 

( )1 Sd Rdg M M 0= − ≤x  (3) 

RdM  is calculated from Equation 4, obtained from the equilibrium of moments in the cross section, where sA  is the 
cross-sectional area of longitudinal tension reinforcement, ydf  is the design yield strength of longitudinal steel 
reinforcement, d  is the effective depth, λ  is a parameter depending on the characteristic compressive strength of 
concrete ( ckf ) and z  defines the position of the neutral axis. 

Rd s yd
zM A f d

2
λ = − 

 
 (4) 

The value of z  is obtained from the equilibrium of forces in the cross section, according to Equation 5, where cα  
is a parameter of reduction of the compressive strength of concrete and cdf  is the design compressive strength of 
concrete. 

s yd

c cd

A f
z

f bλα
=  (5) 
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The strength of the section with respect to the shear force is guaranteed if the constraints given by Equations 6 and 7 are 
checked, where Rd 2V  and Rd 3V  are, respectively, the design shear strength of concrete compressive diagonals and the design 
shear strength of tension diagonals (supplied by concrete, cV , and transverse reinforcement, swV ). Model II of the code 

(NBR 6118 [26]) is used to obtain shear strengths. 

( )2 Sd Rd 2g V V 0= − ≤x  (6) 

( )3 Sd Rd 3g V V 0= − ≤x  (7) 

Equation 8 defines the value of Rd 2V , where v2α  is a parameter which depends on the ckf , α  is the angle of inclination 
of the transverse reinforcement, adopted as 90º, and θ  is the angle of inclination of compressive diagonals, adopted as 
30º. 

( ). cot cot 2
Rd 2 v2 cdV 0 54 f bd sinα α θ θ= +  (8) 

Rd 3V  is obtained from Equation 9, where swA  is the cross-sectional area of transverse reinforcement bar, s  is the 
spacing between the transverse reinforcements, ywdf  is the design tension in the transverse reinforcement and ctdf  is 
the design tensile strength of concrete. 

( ). cot cot sin ;

. if . ;
if , interpolating linearly to intermediate values.

Rd 3 sw

sw
sw ywd

ctd Sd ctd

R 2

c

Sd d
c

V V V
AV 0 9df
s

0 6 f bd  V 0 6 f bd
V

0  V V

α θ α

= +

⇒ = +

≤
⇒ =  =

 (9) 

The columns must have sufficient structural capacity to withstand combined effects of axial load and bending 
moment, that is, RdM  must be greater than SdM  at the same time as RdN  (design axial strength) must be greater than 

SdN  (design axial force). To guarantee this requirement, a load-moment interaction diagram RdM  x RdN  is constructed 
for each column, which is a curve that delimits the actions that can act in the section safely. If the combination of SdM  
and SdN  is in the safe region of the diagram, the capacity of the designed column is adequate. Figure 3 shows an 
example of a diagram constructed for a column. 

 
Figure 3. Load-moment interaction diagram. 
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During the optimization process, after the construction of the diagram, the developed algorithm searches for the RdM  
associated with the SdN , and if that moment value is greater than SdM , the section is considered safe (Equation 10). 

( )4 Sd Rdg M M 0= − ≤x   (10) 

The design solicitations ( SdM , SdV  and SdN ) in the ULS are obtained from the normal ultimate combination of 
applied loads, according to NBR 6118 [26]. 

2.3.2 Serviceability limit state constraints 
In the serviceability limit state of excessive deformations, the vertical deflection va  of the beams are restricted by 

the vertical deflection limit lim
va  allowed by the code, as shown in Equation 11, where the limit is given by l

250
. va  is 

obtained by the direct stiffness method, using the quasi-permanent load combination [26], and adding a deflection 
portion related to the creep of the concrete. 

( ) lim
5 v vg a a 0= − ≤x  (11) 

The frame is also checked for horizontal displacements. The horizontal displacement between two consecutive story 

ha  must comply with the horizontal displacement limit lim
ha  defined by the code, where the limit is given by l

850
. 

Equation 12 represents this constraint. 

( ) lim
6 h hg a a 0= − ≤x  (12) 

The constraint given by Equation 13 determines that the horizontal displacement at the top of the frame t
ha  must 

meet the limit established by the code limt
ha , adopted equal to totall

1700
, where totall  is the height of the frame. 

( ) limtt
7 h hg a a 0= − ≤x  (13) 

The horizontal displacements are obtained by the direct stiffness method, using the frequent load combination [26]. 

3 GENETIC ALGORITHMS 
Genetic algorithms are zero-order stochastic optimization methods, developed by Holland [40] in the 1970s. They 

are based on the theory of evolution of species, declared by Charles Darwin in the XIX century [41]. The algorithm can 
be applied to solve problems that are not well suited for standard optimization algorithms, including problems in which 
the objective function is discontinuous, nondifferentiable or highly nonlinear. These algorithms use some terms in 
analogy to natural genetics: the individual is a solution, which may or may not be viable; the population is the set of 
solutions; the chromosome is the coding that represents the individual; the gene is the coding that represents the 
variable. 

In general, the genetic algorithm method creates a random initial population and then performs the following steps: 
initially, the algorithm evaluates the fitness of each individual of the current population; then selects some of these 
individuals based on the value of their fitness, naming them as parents; later, children are produced from changes in the 
characteristics of a single parent (mutation) or by combining characteristics of a parent pair (crossover); after that, 
individuals with the best fitness of the current population are chosen as “elite members” (elitism); finally, the current 
population is replaced by the individuals generated during the mutation, the crossover and the elitism phases, forming 
the new generation of the population. The steps are repeated until some stop criteria are satisfied. Figure 4 presents a 
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flowchart of the GA. For more details about optimization and genetic algorithm see Arora [3] and Sivanandam and 
Deepa [42]. 

In this paper, a genetic algorithm routine available in MATLAB, is used (MathWorks [43]). In this routine, the 
constraints of the optimization problem are considered by penalizing the fitness of an individual when it does not meet 
the constraints. The fitness of the i-th individual of the population can be described by Equation 14. 

( )( )
( )( ) ( )

( )( )
, if is feasible;

| |, otherwise

i i
i

i
worst jj 1

f   
Fitness 

f g .µ
=




= 
 +
 ∑

x x
x

x
 (14) 

In this way, if the individual is feasible, the fitness function is the objective function. If the individual is infeasible, 
the fitness function is the value of the objective function of the worst feasible solution currently available in the 
population ( worstf ), plus a sum of constraint violations, where g  are the constraints violated and µ  is the number of 
these constraints [44]. 

The genetic algorithm was chosen because it is an established method and widely used in similar studies. Other 
optimization methods could be used, which could achieve the optimal results more or less efficiently than the genetic 
algorithm. The focus of this work, however, was on optimization results. 

 
Figure 4. Basic scheme of a genetic algorithm. 

4 NUMERICAL EXAMPLES 
This section presents two numerical examples: a one-bay two-story frame and a two-bay six-story frame. Table 1 

shows some of the input data used, common to both examples. The unit costs adopted were obtained from SINAPI [45], 
the Brazilian system of costs survey and indexes of construction, and include the costs of materials and labor. 



M. A. Juliani and W. J. S. Gomes 

Rev. IBRACON Estrut. Mater., vol. 14, no. 2, e14204, 2021 8/16 

Table 1. Input data of examples I and II. 

Data Value Unit 
ykf  Characteristic yield strength of longitudinal and transverse steel reinforcement 500 MPa 
sE  Modulus of elasticity of longitudinal and transverse steel reinforcement 210000 MPa 
sρ  Unit mass of steel of the longitudinal and transverse reinforcement 7850 kg/m3 

ckf  Characteristic compressive strength of concrete 25 MPa 
ciE  Modulus of initial elasticity of concrete 28000 MPa 
cρ  Unit mass of reinforced concrete 2500 kg/m3 

c  Cover to reinforcement 2.5 cm 
cC  Unit cost of concrete for beams - C25 336.02 R$/m3 

Unit cost of concrete for columns - C25 340.94 R$/m3 

sC  Unit cost of longitudinal reinforcement - 10φ  5.84 R$/kg 
Unit cost of longitudinal reinforcement - .12 5φ  5.21 R$/kg 

swC  Unit cost of transverse reinforcement - .6 3φ  7.44 R$/kg 
fC  Unit cost of formwork for beams 57.32 R$/m2 

Unit cost of formwork for columns 47.06 R$/m2 

The cases of constraints applied in each example are: Case I (ULS + SLS); Case II (ULS); Case III (SLS). In relation 
to the optimization algorithm, the initial population of case I includes a feasible pre-defined design ( )1x . Cases II and 
III use the optimal result of case I as the design ( )1x  included in the initial population. Preliminary tests indicated a high 
probability of convergence to local minima. For this reason, each case is run 10 times, considering different initial 
populations, related to different seeds of the pseudo-random generator. The best result obtained is taken as the final of 
the optimization process. Based on adjustments performed in these preliminary testes, in order to achieve satisfactory 
results in both examples, the following parameters are adopted in the optimization algorithm: population size equal to 
50 individuals; limit of generations equal to 10000; stall generation of 500 generations. The computational times 
presented refer to an Intel Core i7-5820K processor. 

4.1 Example I: one-bay two-story frame 
The example consists of a reinforced concrete plane frame, whose geometry was presented by Adamu and Karihaloo [46]. 

Figure 5 shows the structure and Table 2 the characteristic loads applied in addition to the weight of the structure. 

 
Figure 5. Plane frame - Example I. 
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Table 2. Characteristic loads - Example I. 

Characteristic loads Permanent loads Variables loads 
1H  - 11.9 kN 
,1 1Q  21.4 kN 14.3 kN 
,1 1q  25.7 kN/m 17.1 kN/m 
2H  - 6.0 kN 
,1 2Q  12.9 kN 8.6 kN 
,1 2q  17.1 kN/m 11.4 kN/m 

Regarding the variables, the beams B1 and B2 are discretized in four segments of equal length, so that each beam has 17 
variables: b , h , bottom

sφ , top
sφ , swφ , 

1

bottom
sn , 

1

top
sn , 

1swn , 
2

bottom
sn , 

2

top
sn , 

2swn , 
3

bottom
sn , 

3

top
sn , 

3swn , 
4

bottom
sn , 

4

top
sn  and 

4swn , in which 

the numerical sub-index indicates the segment of the beam. Also, some columns are assumed to be equal, C1=C2 and C3=C4, 
except for the amounts of reinforcement. In this way, each pair of columns (C1+C2 and C3+C4) has 8 variables; for example, 
for the pair of columns C1 and C2 the design variables are: b , h , sφ , swφ , 1C

sn , 1C
swn , 2C

sn  e 2C
swn . Thus, the problem has 50 

variables in total. For the variables related to the beams, the following possible values are adopted: b =  [12, 26] cm and h =  [30, 
60] cm, in increments of 2; bottom

sn =  [2, 10], top
sn =  [2, 10] and swn =  [6, 13], in increments of 1. For the variables related to 

the columns, the following possible values are adopted: b =  [19, 31] cm, h =  [19, 51] cm and swn =  [20, 36], in increments of 
2; sn =  [2, 8] in increments of 1. Diameter of 10 mm is adopted for the longitudinal reinforcement and 6.3 mm for the 
transverse reinforcement. 

Figures 6 and 7 show the result obtained for case I. The total cost of the structure is R$ 2853.50, with 46.24% 
corresponding to the formwork, 35.88% related to the reinforcement and 17.88% related to the concrete. 1827 
generations and 91400 evaluations of the objective function were required by the optimization procedure, with a 
computational time of 8.09 hours. For case II, the optimal sections found are the same as those obtained in case I, with 
a total of 501 generations and 25100 evaluations of the objective function and a computational time of 3.75 hours. 
Finally, the optimal sections for case III are illustrated in Figure 8. The total cost of the structure in this case is 
R$ 2080.21, where 53.88%, 26.62% and 19.50% correspond to the cost of formwork, reinforcement and concrete, 
respectively. 44800 evaluations of the objective function over 895 generations were required in this case, which 
corresponds to a computational time of about 4.2 hours. 

 

Figure 6. Detailing the optimal sections (dimensions in cm) - Example I: case I. 
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Figure 7. Optimal structure (dimensions in cm) - Example I: case I. 

 

Figure 8. Detailing the optimal sections (dimensions in cm) - Example I: case III. 

4.2 Example II: two-bay six-story frame 

The second example consists of a structure previously studied by some authors [47], [20], [9], [12], from which the 
geometry was defined. The frame is illustrated in Figure 9 and the characteristic loads are described in Table 3. The 
weight of the structure is also considered. 
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Figure 9. Plane frame - Example II. 

Table 3. Characteristic loads - Example II. 

Characteristic loads Permanent loads Variables loads 
H  - 11.9 kN 
q  12.9 kN/m 8.6 kN/m 

Four different types of beams (B1, B2, B3 and B4) are adopted and discretized into four segments each. Therefore, 
each beam has 17 variables, as in Example I. Also, three different types of columns (C1, C2 and C3) are adopted. Thus, 
each column has 6 variables: b , h , sφ , swφ , sn  and swn . Therefore, the problem has 86 variables in total. For the variables 
of the beams, the following possible values are adopted: b =  [12, 30] cm and h =  [30, 60] cm, in increments of 2; bottom

sn =  
[2, 10], top

sn =  [2, 10] and swn =  [5, 15], in increments of 1. While, for the columns: b =  [19, 39] cm, h =  [19, 55] cm and 

swn =  [28, 40], in increments of 2; sn =  [2, 9] in increments of 1. Diameter of 12.5 mm is adopted for the longitudinal 
reinforcement and 6.3 mm for the transverse reinforcement. 

The optimal structure for case I is presented in Figures 10 and 11. The total cost of the frame is R$ 16801.08, where 
50.49%, 28.35% and 21.16% correspond to formwork, reinforcement, and concrete, respectively. Taking the cost of 
the design x(1) as a reference, the convergence history of the relative cost over the generations is illustrated in Figure 12, 
where it is possible to observe that the optimization leads to a design configuration which is approximately 26% less 
expensive than the initial design. In this situation, 2646 generations and 132350 evaluations of the objective function 
were required, so that the computational time was about 45 hours. Figure 13 shows the result for case II, which 
corresponds to a total cost of R$ 16433.20, where 50.89% corresponds to the formwork, 28.70% is relative to the 
reinforcement and 20.41% is related to the concrete. 53900 evaluations of the objective function and 1077 generations 
were required, leading to a computational time of 17.85 hours. In the third case, illustrated in Figure 14, the 
computational time was 19.41 hours, with 1155 generations and 57800 evaluations of the objective function. The total 
cost of the structure is R$ 15776.73, with 52.60% corresponding to the formwork, 25.97% relative to the reinforcement 
and 21.44% related to the concrete. 
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Figure 10. Detailing the optimal sections (dimensions in cm) - Example II: case I. 

 
Figure 11. Optimal structure (dimensions in cm) - Example II: case I. 
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Figure 12. Convergence history - Example II: case I. 

 
Figure 13. Detailing the optimal sections (dimensions in cm) - Example II: case II. 

 
Figure 14. Detailing the optimal sections (dimensions in cm) - Example II: case III. 
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4.3 Discussion of results 
In example I, when both limit states are considered as optimization constraints, the result is the same as when only 

the constraints of the ULS are taken into account; different from what occurred when considering only the SLS 
constraints, which leads to an optimal structure with a lower cost (27.10% less expensive). Therefore, the optimal 
structure for the ULS also checks the SLS constraints, but the optimal structure for the SLS does not meet all the 
constraints of the ULS. This situation is directly related to the design practice, in which the structure is usually designed 
for the ultimate conditions and then the service checks are performed. Unlike example I, cases I, II and III of example II 
led to different optimal sections, that is, the optimal structure for the ULS does not satisfy all the constraints of the SLS, 
in the same way that the optimal structure for the SLS does not satisfy all the constraints of the ULS. However, the 
optimal sections for case I are like the optimal sections for case II. In this example, when disregarding the SLS 
constraints (case II), the reduction in the total cost of the structure in relation to case I was of 2%, and when disregarding 
the ULS constraints (case III), this reduction was of 4%. 

Among the specific constraints of both limit states, in example I, the constraint related to the design bending strength 
of C2 was identified as a limiting constraint for cases I and II. For case III, the limiting constraint was related to the 
horizontal displacement at the top of the frame. By limiting constraint, it is understood that the constraint that was 
closer to being violated, since when using discrete variables in problems like the one proposed, there will be hardly any 
active constraints. For example II, the limiting constraint for cases I and III was the horizontal displacement at the top 
of the frame. For case II, the limiting constraint was related to the design bending strength of the top face of beam B1 
of the first story. 

In both examples, the optimal columns related to ULS presented widths and amounts of longitudinal reinforcement equal to 
or greater than those related to SLS. On the other hand, the heights of the cross sections of the optimal columns according to the 
SLS tended to be equal to or larger than those of the ULS. It should be noted that, in case I of example I, the widths of the columns 
were greater than the heights due to the consideration that the columns have only one longitudinal reinforcement layer. Since the 
constraint of the transverse reinforcement for the columns concerns the minimum amount defined in the code, it was expected 
that all cases would have the same amount of such reinforcement, which happened for most situations. The optimal beams for 
the ULS have heights equal to or greater than the optimal beams for the SLS, just as they are equally or more reinforced in both 
directions. Also, there was a preponderance of minimum widths in all the elements optimum for SLS, except for one beam in 
each example. 

In all cases of both examples, the formwork accounted for the most significant part of the optimal total cost, followed 
by the reinforcement. 

5 CONCLUSIONS 
This paper presented the optimization of reinforced concrete frames applying three different cases of constraints: 

related to the ULS and SLS constraints simultaneously; only those related to the ULS; and only those related to the 
SLS. All constraints were based on the requirements presented by the Brazilian design code, NBR 6118 [26]. 

The results obtained for two different examples indicated a tendency of the optimal characteristics of the structures, 
depending on the constraints applied. Thus, by evaluating the set of structures, it can be said that the cross sections tend 
to be larger and more reinforced in the case of the ULS. This is because the combinations of loads for the ULS lead to 
larger loads than those of the SLS. 

The optimization processes of case III presented a greater reduction of cost in relation to the optimum of case I than the 
optimization processes of case II. It is also observed that the optimal structure considering all constraints is more like the 
optimal structure for the ULS than for the SLS, which indicates that SLS is generally less restrictive than ULS. Even so, 
optimal structure related to the ULS often does not satisfy SLS and vice versa. In addition, it is observed that, in the first 
example, the limiting constraint of the optimization of case I is related to section resistance (ULS). For example II, which is 
a higher structure, the limiting constraint in case I refers to the horizontal displacement at the top of the frame (SLS). 

It is noteworthy that large differences between the costs of the optimal structures for cases I, II and III, may indicate 
that the structural design as a whole needs adjustments and/or modifications. Thus, making other changes to the design 
can be a more efficient alternative. These changes may include, for example, the adoption of different cross sections 
(T or hollow) and modifications in the topology (positions of the columns and different lengths of the structural 
elements). 

Regarding to costs, there was a predominance of the formwork in the costs of the structures. It is noteworthy that 
the use of concrete with larger ckf  could result in smaller cross-sections, and consequently decrease the contribution of 
the formwork to the cost of the structure. 
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