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Abstract: The compressive strength of concrete is an essential property to ensure the safety of a concrete 
structure. However, estimating this value is usually a laborious and uncertain process since the mix design is 
based on empirical methods and its confirmation in the laboratory demands time and resources. In this context, 
this work aims to evaluate Machine Learning (ML) models to predict the compressive strength of concrete 
from its constituents. For this purpose, a dataset from the literature was used as input to four ML models: 
Extreme Gradient Boosting (XGBoost), Support Vector Regression (SVR), Artificial Neural Networks 
(ANN) and Gaussian Process Regression (GPR). The accuracy of the models was evaluated through 10-fold 
cross-validation, and quantified by R2, Mean Absolute Error (MAE), and Root-Mean-Square Error (RMSE) 
metrics. Subsequently, a new dataset was put together with mixtures from the literature and used to validate 
the previous models. In the model creation step, all algorithms obtained similar and positive results, with 
MAE between 1.96-2.26 MPa and R2 varying from 0.79 to 0.83. However, in the validation step, the accuracy 
of the models dropped sharply, with MAE growing to 3.04-4.04 MPa and R2 decreasing to 0.37-0.59. ANN 
and GPR showed the best results, while SVR had the worst predictions. This work showed that ML tools are 
promising techniques to predict the compressive strength of concrete. However, care must be taken with the 
input data to guarantee that models are not overfitted to a given region, set of materials, or type of concrete. 

Keywords: machine learning, concrete mix design, generalization ability, compressive strength, concrete 
database. 

Resumo: A resistência à compressão do concreto é uma propriedade essencial para garantir a segurança de 
uma estrutura. No entanto, estimar este valor é atualmente um processo trabalhoso e impreciso, uma vez que 
o a dosagem é baseada em métodos empíricos e sua confirmação em laboratório demanda tempo e recursos. 
Nesse contexto, este trabalho tem como objetivo avaliar modelos de Aprendizado de Máquina (ML) para 
predizer a resistência à compressão do concreto a partir de seus componentes. Para tanto, um banco de dados 
da literatura foi utilizado como entrada para quatro modelos de ML: Extreme Gradient Boosting (XGBoost), 
Regressão de Vetor de Suporte (SVR), Redes Neurais Artificiais (ANN) e Processo Gaussiano de Regressão 
(GPR). A precisão dos modelos foi avaliada por meio de validação cruzada (10-fold) e medida com as métricas 
de R2, Erro Médio Absoluto (MAE) e a Raiz do Erro Quadrático Médio (RMSE). Posteriormente, um novo 
banco de dados foi montado com traços da literatura e utilizado para validar os modelos anteriores. Na etapa 
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de criação do modelo, todos os algoritmos obtiveram resultados semelhantes e satisfatórios, com MAE entre 
1,96-2,26 MPa e R2 variando de 0,79 a 0,83. No entanto, na etapa de validação, a precisão dos modelos caiu 
drasticamente, com o MAE crescendo para 3,04-4,04 MPa e o R2 diminuindo para 0,37-0,59. As ANN e o 
GPR mostraram os melhores resultados, enquanto a SVR teve as piores previsões. Este trabalho mostrou que 
as ferramentas de ML são técnicas promissoras para prever a resistência à compressão do concreto, porém, 
deve-se ter cuidado com os dados de entrada para garantir que os modelos não sejam sobreajustados 
(overfitted) a uma determinada região, conjunto de materiais ou tipo de concreto. 

Palavras-chave: aprendizado de máquina, dosagem de concreto, habilidade de generalização, resistência a 
compressão, banco de dados de concreto. 
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1 INTRODUCTION 
The compressive strength of concrete is one of its most important properties. This feature directly impacts the 

structural design and is related to the cost, safety, and stability of a concrete structure. This strength is usually expressed 
in MPa, and is traditionally obtained from the rupture of cylindrical or cubic specimens in a hydraulic press, a procedure 
standardized worldwide [1], [2]. Due to the evolution of cement hydration over time, engineers stipulate that this target 
strength is reached after 28 days of cure in most conventional projects. 

As structural projects demand a given compressive strength, the engineers responsible for the construction sites 
need to establish an optimized proportion among the constituents of the concrete to guarantee the safety of the building. 
This is done using mix design methods, such as the ones developed by the American Concrete Institute (ACI), the 
Brazilian Association of Portland Cement (ABCP) and the Brazilian Technological Research Institute (IPT). These 
methods seek to achieve an average target value (above the minimum) so that the minimum value is met with a safety 
margin [3]. This average value is obtained statistically, as it is possible for a concrete specimen to obtain a lower 
strength than specified, given the heterogeneous nature of its components and mixing procedure [1]. Therefore, in 
practice, the economically viable target strength is defined as the value to be exceeded by a certain proportion of all 
results (usually 95% when a single test is considered, or 99% when an average of 3 or 4 tests is taken) [1]. 

These well-established methods are nowadays still performed through charts and empirical formulae [1], [4]. 
Additionally, they are only valid for conventional concrete. For other types of concrete, such as high-strength, self-
compacting, lightweight, and recycled concretes, the scenario is even more uncertain, with scarce and divergent mix 
design techniques [5], [6]. 

Like strength evaluation, other concrete-related areas deal with empirical processes and time-consuming tests. To 
improve these processes, or at least reduce the need for experimental tests, several studies of Machine Learning (ML) 
techniques applied to civil engineering problems have been published in recent years. ML techniques consist of 
computational models capable of autonomously acquire knowledge. These models make decisions and can predict new 
results based on patterns acquired from previous data. As examples, we can cite Yaseen et al. [7], who applied ML 
techniques to measure the shear strength of reinforced concrete beams and concluded that these algorithms can be useful 
tools for professionals. Pettres and de Lacerda [8] obtained positive results in the recognition of defect patterns in 
concrete with the use of Artificial Neural Networks (ANN). ML-based algorithms are also being successfully used in 
the field of Structural Health Monitoring, especially in applications involving damage detection in large-scale concrete 
structures, such as bridges, dams, and buildings [9]–[10]. 

Some authors have also tried to predict the compressive strength of concrete using ML techniques. For example, 
Hoang et al. [11] applied the Gaussian Process Regression (GPR) to predict concrete strength using a dataset of 246 mixtures, 
defined according to the Vietnamese standard. The authors achieved an R2 (coefficient of determination) of 0.90, concluding 
that these models are a promising alternative to assist engineers in construction sites. In turn, Dao et al. [12] tested the accuracy 
of ANN and GPR to the dataset assembled by Yeh [13], currently one of the most used worldwide, using a Monte Carlo 
simulation. The dataset was simply split into 70% of the observations for training and 30% for testing. The authors obtained 
an R2 of 0.89 with the GPR and indicated that these algorithms may contribute to the mix design process. Likewise, Mustapha 
and Mohamed [14], also using Yeh’s [13] dataset without cross-validation, obtained an R2 of 0.93 by applying the Support 
Vector Regression (SVR). Finally, Cui et al. [15] used a decision tree model for this same purpose, obtained an R2 above 
0.80, and concluded that these models are suitable to assist in the mix design of concretes. 

Thus, ML techniques are promising tools to predict the compressive strength of concrete. However, no article was 
found comparing the Extreme Gradient Boosting Decision Tree (XGBoost), GPR, SVR, and ANN to this purpose within 
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the same dataset and boundary conditions. Furthermore, to the author’s best knowledge, no article validated the models 
trained from the traditional Yeh dataset [13] with a different dataset to test the generalization ability of the models. 

In this sense, the present work compares the accuracy of these four ML techniques in predicting the compressive 
strength of conventional concrete specimens and evaluates the resulting models in terms of their generalizing 
capabilities to a different dataset. The authors seek, therefore, to find the most suitable technique to use in future 
predictions and to reflect on the limitations of applying these models to concretes in diverse contexts. 

2 METHODOLOGY 

2.1 Methodology Overview 
Figure 1 shows an overview of the present work. Initially, four supervised ML models were developed to relate the 

input features (concrete components and proportions) to the target variable (compressive strength). These models were 
built using a classic dataset available in the literature, gathered by Yeh [13]. We subsequently evaluated the quality of 
the prediction through cross-validation and three statistical metrics: coefficient of determination (R2), the mean absolute 
error (MAE) and the root mean square error (RMSE). The significance of each input variable (concrete component) in 
the prediction of the final compressive strength was also investigated. In a second stage, for the validation of these 
models, the authors assembled a second dataset from 11 articles in the literature, with 22 new observations (in the 
Appendix). This dataset was then used as test values for the previously created models. The accuracy of this prediction 
was again assessed using the 3 metrics described above. 

 
Figure 1. Methodology Overview 

2.2 Machine Learning Techniques 
As there is no single general model perfectly adaptable to all engineering problems, four supervised models were chosen 

to be applied to the present study: XGBoost, SVR, ANN and GPR. They were selected based on a preliminary literature 
analysis, in which we gathered the techniques that had different learning-based backgrounds. Among them, XGBoost, SVR, 
ANN and GPR were the ones with the most promising performance to deal with similar complex problems. 

The authors opted to manually adjust the hyperparameters of the techniques without focusing on specific 
optimization methods for each one, so that there would be no distinction in the creation processes of these models. The 
experiments were carried out on a computer with an Intel Core i5-10210U processor and 8GB of RAM. The algorithms 
were implemented in Python (version 3.8.6) using the Pandas library to analyze and manipulate datasets, and the scikit-
learn, TensorFlow and XGBoost libraries to apply the ML models. 

The following sections will provide a summarized description of these methods. For more detailed explanations, 
the reader may consult the references given at the end of each part. 
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2.2.1 Extreme Gradient Boosting (XGBoost) 

XGBoost has been increasingly used in several research fields because it presents suitable predictions and a short 
execution time to solve classification and regression problems [16]. This algorithm is based on the classical decision 
tree technique. 

The structure of a decision tree can be described as follows: the tree starts with a major node called “root” that splits 
into several other nodes. Each of these nodes carries a condition to separate the dataset into subsets that have similar 
characteristics [17]. Generally, using only one decision tree leads to poor predictions; therefore, ensemble techniques 
are usually adopted to improve the performance of these models [18]. Ensemble methods consist of combining several 
trees to achieve more reliable results. 

An example of ensemble is the boosting technique, which uses “n” weak trees sequentially to create a more robust 
predictor at the end of training [19]. The focus of the boosting method is to reduce bias and variance with each new 
model created, based on the difficulties faced by the previous model [20]. XGBoost uses gradient boosting, an extension 
of the previous method, in which a descending gradient is applied to improve the trees, according to the error of the 
previous models. 

The XGBoost can be briefly described as follows: for a given dataset 𝐷𝐷 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}(|𝐷𝐷| = 𝑛𝑛, 𝑥𝑥𝑖𝑖  ∈  ℝ 𝑚𝑚,𝑦𝑦𝑖𝑖  ∈  ℝ ), 
with 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 variables (inputs and outputs, respectively), m features, and n observations, the model uses K additive 
functions to predict outputs: 

𝑦𝑦�𝑖𝑖 =  ∅(𝑋𝑋𝑖𝑖) =  ∑ 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖) 𝐾𝐾
𝑘𝑘=1 ,𝑓𝑓𝑘𝑘  ∈ 𝐹𝐹  (1) 

with 𝑦𝑦�𝑖𝑖 being the model output and 𝐹𝐹 the space of the regression tree, defined as: 

𝐹𝐹 = �𝑓𝑓(𝑥𝑥) =  𝑤𝑤𝑞𝑞(𝑥𝑥)�(𝑞𝑞 ∶  ℝ 𝑚𝑚 → 𝑇𝑇,𝑤𝑤 ∈  ℝ 𝑇𝑇)  (2) 

The structure of each tree is represented by 𝑞𝑞, while the number of leaves and their weights are represented by 𝑇𝑇 and 
𝑤𝑤, respectively. Also, the term 𝑓𝑓𝑘𝑘 represents an independent tree structure 𝑞𝑞 with 𝑤𝑤 leaf weights. 
In the regression tree optimization process, the following objective function must be minimized: 

𝐿𝐿(∅) =  ∑ 𝑙𝑙(𝑦𝑦�𝑖𝑖 ,𝑦𝑦𝑖𝑖) +  ∑ Ω(𝑓𝑓𝑘𝑘)𝑘𝑘𝑖𝑖   (3) 

There is also a convex loss function 𝑙𝑙 that measures the difference between 𝑦𝑦�𝑖𝑖 and 𝑦𝑦𝑖𝑖 which are, respectively, the 
prediction given by the model and the real value. The term Ω penalizes the complexity of the regression trees and is 
given by: 

Ω(𝑓𝑓𝑘𝑘) =  𝛾𝛾𝑇𝑇 +  1
2

 ë‖𝑤𝑤‖2  (4) 

However, models that use gradient boosting are trained in an additive way. In these cases, the following objective 
function is minimized: 

𝐿𝐿(∅) =  ∑ 𝑙𝑙�𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)� +  Ω(𝑓𝑓𝑡𝑡)𝑖𝑖   (5) 

𝑓𝑓𝑡𝑡 is added in the objective function, with 𝑡𝑡 being the number of iterations [16]. 
Regarding the implementation of the algorithm, this model does not need many adjustments. Hence, the authors 

carried out some preliminary tests to define its optimal hyperparameters. For a more detailed explanation about this 
method, the authors recommend the references Chen & Guestrin [16] and Suen et al [20]. 
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2.2.2 Support Vector Regression (SVR) 
Support Vector Machine (SVM) is a supervised learning model that creates a hyperplane capable of separating data 

into distinct classes [21]. There are infinite hyperplanes able to perform this task. However, this algorithm seeks to find 
the one that yields the greatest distance between the classes. To this purpose, the SVM finds the points located on the 
margins (the support vectors) and maximizes the margin [22]. In other words, the algorithm initially defines a 
hyperplane that separates the data to later determine the points of each class that are closest to this separator. Finally, it 
seeks the hyperplane that leads to the greatest distance between the two classes, called the “optimum” hyperplane [23]. 

In addition to linear problems, these algorithms can be used to solve non-linear problems, by using kernels. Applying 
the kernel to the model increases the number of dimensions of the input space, thus transforming the initially non-
separable data into data that is separable by the algorithm [23]. 

Given that the prediction of concrete strength is a regression problem, the authors used the Support Vector 
Regression (SVR) variant in this work. It has the same principle as SVM but focuses on solving regression problems. 

The SVR can be briefly described as follows: for a dataset {(𝑋𝑋1,𝑦𝑦1), … , (𝑋𝑋𝑙𝑙 ,𝑦𝑦𝑙𝑙)  ⊂ 𝑋𝑋 ×  ℝ}, where 𝑋𝑋i represents 
the space of the input variables, the purpose of the regression is to find a function 𝑓𝑓(𝑥𝑥) that has at most one deviation 
ε from the real values 𝑦𝑦𝑖𝑖. For the linear function: 

𝑓𝑓(𝑥𝑥) = < 𝑤𝑤, 𝑥𝑥 >  + 𝑏𝑏 𝑤𝑤𝑤𝑤𝑡𝑡ℎ 𝑤𝑤 ∈ 𝑋𝑋, 𝑏𝑏 ∈  ℝ  (6) 

the SVR will transform this problem into a constrained optimization problem: 

min 1
2
‖𝑤𝑤‖2  (7) 

subject to the following restrictions: 

�
 

 𝑦𝑦𝑖𝑖  − < 𝑤𝑤,𝑋𝑋𝑖𝑖 >  − 𝑏𝑏 ≤  å
< 𝑤𝑤,𝑋𝑋𝑖𝑖 >  + 𝑏𝑏 − 𝑦𝑦𝑖𝑖  ≤  å

  (8) 

The error of the model's predictions is dealt with within the constraints. The SVR model adopts an ε-insensitive loss 
function, which penalizes predictions that are farther than ε from the desired output [24]. 

To perform the hyperparameter tuning for the SVR model, the authors varied the kernel coefficient (a.k.a. gamma) 
and the ‘C’ regularization parameter randomly from 10-2 to 103. The best results were achieved with gamma and C as 
0.6 and 33, respectively. For a more detailed explanation about this method, the authors recommend the references 
Smola and Schölkopf [24] and Noble [23]. 

2.2.3 Artificial Neural Networks (ANN) 
Artificial Neural Networks (ANN) were developed based on studies of the human brain [25]. These algorithms have 

been widely applied to solve problems in various fields around the world, due to their robustness to deal with complex 
tasks [26]–[27]. ANNs consist of several processing elements, called neurons, connected to each other. Figure 2 
represents the single neuron model, also known as perceptron. 

 
Figure 2. Representation of one perceptron 
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The neuron will receive the input values 𝑋𝑋𝑖𝑖; these entries are multiplied by the synaptic weights 𝑤𝑤𝑖𝑖. Each neuron 
also has a bias 𝑏𝑏. This bias has no input data associated with it, allowing the neuron to change the output independently 
of the input values. Neuron 𝑘𝑘 performs the weighted sum of the received signals. Finally, this sum passes through the 
activation function 𝑓𝑓 to produce the output 𝑦𝑦𝑘𝑘: 

𝑦𝑦𝑘𝑘 =  𝑓𝑓 (∑ 𝑤𝑤𝑖𝑖  𝑋𝑋𝑖𝑖  +  𝑏𝑏𝑛𝑛
𝑖𝑖=1 )  (9) 

One of the architectures most used by ANN models is the Multilayer Perceptron (MLP). In MLPs, neurons are divided 
into the input layer, hidden layers, and output layers, as shown in Figure 3 [28]. 

 
Figure 3. Representation of an MLP with a hidden layer 

For an MLP like the one depicted in Figure 3, the mechanism of only one neuron is used for each of the layers: 

𝑦𝑦𝑗𝑗 =  𝑓𝑓 �∑ 𝑤𝑤𝑖𝑖𝑗𝑗
(𝑙𝑙−1 ) 𝑋𝑋𝑖𝑖(𝑙𝑙−1 )  + 𝑏𝑏(𝑙𝑙−1 )𝑛𝑛

𝑖𝑖=1 �, para 𝑗𝑗 = 1, … , 𝑘𝑘𝑙𝑙  (10) 

Therefore, 𝑦𝑦𝑗𝑗 will provide the output of each neuron in its respective layer 𝑙𝑙 [22]. For a more detailed explanation about 
this method, the authors recommend the references Garcia [25] and Barreto [28]. 

To define the number of hidden layers and the number of neurons per ANN layer for the present work, the authors 
conducted a sensitivity analysis. The model was trained several times with Yeh’s dataset [13], varying the number of 
layers from 1 to 7, and the number of neurons from 4 to 512, per layer. From the analysis of the evaluation metrics 
(section 2.3.5), the final model with 5 hidden layers and 256 neurons was implemented. 

2.2.4 Gaussian Process Regression (GPR) 
The Gaussian Process Regression (GPR) is a non-parametric regression technique that uses the probability 

distribution to predict the outcome. Through the provided training data, this technique uses the Bayes’ rule to update 
the probabilities of each function representing the model [29]. The main advantage of the GPR is that it provides an 
approximation of the uncertainty of each forecast [29]. 

The GPR can be defined as follows: 

𝑓𝑓(𝑥𝑥) ~ 𝐺𝐺𝐺𝐺 �𝑚𝑚(𝑥𝑥),𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗��  (11) 

where 𝑚𝑚(𝑥𝑥) is an average function and 𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� a covariance (or kernel) function of the 𝐺𝐺𝐺𝐺 Gaussian distribution [30] 
for samples 𝑥𝑥𝑖𝑖 e 𝑥𝑥𝑗𝑗. Choosing the kernel function is one of the most important steps in implementing this model. As in 
the SVR models, these functions are responsible for smoothing the function being modelled, which will affect the 
quality of the prediction [30]. 

This work adopted the Radial Basis Function kernel (RBF). RBF is a stationary kernel function that uses the squared 
Euclidean distance between two vectors, as follows [31]: 
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𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = exp �− 𝑑𝑑�𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗�
2

2𝑙𝑙2
�  (12) 

with 𝑑𝑑�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� being the Euclidean distance and 𝑙𝑙 the kernel function length scale [30]. Based on previous validations, 
considering several different simulations, this function proved to be the most suitable for the present study. 

As in the previous models, a hyperparameter optimization for the GPR was also performed. To this purpose, the 
parameter “alpha” of the model was randomly varied from 10-3 to 102. This hyperparameter is the value added to the 
diagonal of the kernel matrix during the process. The value 0.2 was set. For a more detailed explanation about this 
method, the authors recommend the references Rasmussen [29] and Williams and Rasmussen [30]. 

2.3 Data analysis 

Choosing the right technique, as well as defining a proper dataset, are essential steps in the framework of machine 
learning. For instance, using a tool that performs well on several problems, but training it with unrepresentative data, 
will result in poor predictions [32], [33]. 

2.3.1 Training dataset 

In the present work, the dataset of concrete compositions was gathered from data available in the literature. 
For the first part of the construction of the models, the authors used the “Concrete Compressive Strength Data 
Set” from the studies carried out by Yeh [13]. This dataset has eight input features: Cement, Blast Furnace 
Slag, Fly Ash, Water, Superplasticizer, Coarse Aggregate, Fine Aggregate, and Age. The set also has the output 
feature Compressive Strength of Concrete, ranging from 2 to 82 MPa. The complete dataset has 1030 distinct 
observations (entries). The dataset comprises mixtures from 17 different sources, most of them originated from 
research carried out between 1987 and 1997, in Taiwan. These mixtures comprised specimens of different 
shapes and sizes. Thus, the original author performed a standardization, through correlation indices from the 
literature, so that all the compressive strength results corresponded to 15-cm cylindrical specimens. In addition, 
the author specified that the coarse aggregate of all the mixtures had dimensions below 20mm and that the 
superplasticizers were originated from several manufacturers [13]. 

Pre-processing steps include data preparation prior to making predictions. In general, this part consists in solving 
scaling problems, analyzing the outliers, and missing values that directly impact the performance of the models [32]. 
In the present work, the feature responsible for informing the concrete curing time (age) was not used. Due to the design 
convention of 28 days to achieve the target concrete strength for conventional purposes, only instances that had this 
age were used. All data referring to other curing times were removed from the set to avoid biases. This step reduced 
the number of observations from 1030 to 419. 

A second adjustment included filtering the values of the output variable. This work aims to evaluate normal-
strength concretes, whose values vary between 15-50 MPa [34]. As the outliers are largely responsible for 
hindering the modelling of the phenomenon, the authors decided to remove all data above 50 and below 15 
MPa, seeking to obtain a more robust model for the defined resistance range. Thus, in total, 329 observations 
(32% of the initial dataset) were adopted for the creation of the models. Table 1 shows the characteristics of 
the final dataset used. 

Table 1. Overview of Yeh’s dataset (1998) after pre-processing. 

Parameter Unit Min Max Mean Std. Dev. 
Portland cement kg/m3 102.00 516.00 242.66 87.72 

Blast furnace slag kg/m3 0.00 359.40 89.68 89.50 
Fly ash kg/m3 0.00 200.10 64.73 65.82 
Water kg/m3 121.80 247.00 186.72 17.69 

Superplasticizer kg/m3 0.00 22.10 6.18 5.03 
Coarse aggregate kg/m3 801.00 1145.00 958.13 80.68 
Fine aggregate kg/m3 594.00 945.00 763.81 70.91 

Compressive strength MPa 15.09 49.90 32.36 8.52 



R. C. F. Paixão, R. E. K. Penido, A. C. Cury, and J. C. Mendes  

Rev. IBRACON Estrut. Mater., vol. 15, no. 5, e15503, 2022 8/17 

2.3.2 Validation dataset 

To test the generalization ability of the implemented models, the authors assembled a new dataset with 
concrete mixtures available in the literature. Mixtures were taken from 11 articles (listed in the Appendix), 
which originated from 8 different countries, including Brazil. For the validation set to be compatible with the 
model, the compressive strength was standardized to correspond to 150×300mm cylindrical specimens (the 
same ones used in Yeh's dataset), using the correlations from Yi et al. [35]. In addition, the same data filtering 
was performed to consider only strengths between 15 and 50MPa. Thus, the final validation set had 22 
observations, described in Table 2. The complete dataset can be provided by request to the corresponding 
author. 

Table 2. Overview of the authors’ validation dataset after pre-processing 

Parameter Unit Min Max Mean Std. Dev. 
Portland cement kg/m3 220.0 568.8 379.8 90.4 

Blast furnace slag kg/m3 0.0 410.5 81.0 112.7 
Fly ash kg/m3 0.0 25.0 4.5 9.9 
Water kg/m3 138.0 250.3 204.9 28.8 

Superplasticizer kg/m3 0.0 11.3 2.0 3.2 
Coarse aggregate kg/m3 656.3 1029.0 879.2 126.9 
Fine aggregate kg/m3 477.7 1029.3 802.4 155.7 

Compressive strength MPa 19.6 40.3 33.5 6.0 

2.3.3 Data Rescaling 

When working with ML, another important factor is the scale of the data. Some models do not perform well 
with inputs that have different scales, which can lead the model to prioritize a given input simply because it 
has a bigger scale [36]. Regarding the present work, Table 1 shows that the data referring to the superplasticizer 
range from 0 to 22 Kg/m3, while the coarse aggregate values range from 801 to 1145 Kg/m3, evidencing that 
the data from different features are not in the same magnitude. Thus, the authors rescaled the input data, as 
follows: 

𝑋𝑋𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛  =  𝑋𝑋𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜−𝜇𝜇
𝜎𝜎

  (13) 

where 𝑋𝑋𝑖𝑖𝑜𝑜𝑙𝑙𝑑𝑑 is the original input value, 𝜇𝜇 is the average, 𝜎𝜎 is the standard deviation, and 𝑋𝑋𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 the modified input value. 
After the rescaling step, all values are centered at zero with a standard deviation equal to 1. 

2.3.4 Cross-validation (k-fold) 

Cross-validation is a technique widely used to assist in the evaluation of ML models [37]. It consists of 
randomly dividing the data into “k” sets, each of which is used to validate the model once [38], [39]. This 
strategy provides a less biased assessment compared to common techniques such as just splitting data once into 
training and testing. 

This study adopted k=10, which is widely used in the literature for similar problems [5], [11], [40]. Initially, 
the complete dataset is randomly divided into 10 subsets or folds. In the first iteration, the first subset is used 
to test the model, after all the others have been used to train it. In the next iteration, the algorithm uses the 
second segmentation to test the model after it has used everything else for training. This procedure is repeated 
until all 10 sets have been used to test the model, as illustrated in Figure 4. The results shown in this work 
correspond to the mean of the 10 iterations. 
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Figure 4. Scheme of the cross-validation process for k=10 

2.3.5 Assessment Metrics 
Three quantitative metrics were used to assess the performance of each model, aiming, together, to provide a global 

analysis of its accuracy. They are the coefficient of determination (R2), the mean absolute error (MAE) and the root 
mean square error (RMSE). They are vastly used to assess regression models for this type of problem [5] [41] [42]. 

The R2 is calculated using (14) [43], where 𝑦𝑦� is the value predicted by the model and 𝑦𝑦 is the observed value. R2 
results in a number between minus infinity and 1. When the analyzed model fits perfectly to the data, the R2 will assume 
the value 1, indicating that the predictors are able to explain all the variability of the data [44]. As the R2 compares the 
performance of the tested model with a flat line (a baseline model in which all predictions will be the mean value of 
the outputs), if the assessed model presents a worse fit than the line that represents the mean value, the R2 will be 
negative. 

𝑅𝑅2(𝑦𝑦,𝑦𝑦�) = 1 − ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

  (14) 

The MAE measures the average magnitude of the errors (the difference between observed and predicted values), 
regardless of their direction. It can be determined using (15) [45]. In MAE, large errors caused by outliers are not so 
important, because this metric is absolute and not quadratic [44]. 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑦𝑦,𝑦𝑦�) = 1
𝑛𝑛
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|𝑛𝑛
𝑖𝑖=1   (15) 

Finally, the RMSE ((16 [45]) is a vastly used metric when the researcher wants to measure the average magnitude of 
the errors [44]. Unlike MAE, in RMSE, as the error of each prediction increases, the RMSE increases considerably. 
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𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀(𝑦𝑦,𝑦𝑦�) = �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1   (16) 

Both MAE and RMSE range from zero to positive infinity. The lower these metrics, the better the model. 

2.4 Significance of the input features 
Finally, the authors sought to understand the impact that each feature had on the predictions. For this evaluation, 

the decision tree technique (XGBoost) was used. In these models, each node has a condition to split the values so that 
similar instances end up in the same set. The condition is based on the Gini impurity for classification problems and in 
the variance for the regression problems [46]. Thus, when a decision tree-based model is trained, it intrinsically 
calculates how much each variable contributes to reducing the variance and, consequently, it can estimate how useful 
each variable is to the construction of the model. For a 𝐿𝐿 dataset with 𝑗𝑗 classes, (17) calculates the Gini impurity, with 
𝑝𝑝𝑖𝑖 being the class probability [47]. The Gini impurity ranges from 0 to 1, with 0 relating to an impure node. The smaller 
the Gini, the more important that variable is for the tree. 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐿𝐿) = 1 −  ∑ 𝑝𝑝𝑖𝑖2
𝑗𝑗
𝑖𝑖=1   (17) 

 

3 RESULTS 

3.1 Creation and evaluation of the models 
Table 3 summarizes the evaluation metrics (R2, MAE and RMSE) of the four models created to predict the 

compressive strength of conventional concrete specimens. In this initial stage, the models were trained and cross-
validated with the Yeh [13] dataset. The XGBoost achieved the best correlation between predicted and observed values, 
reaching an R2 of 0.83. On the other hand, SVR had the worst performance (R2 = 0.79), although it was very close to 
the other models (R2 = 0.82). 

As part of the assessment of the best models to develop future studies, the authors have also recorded the time 
required to process each algorithm. Due to the small amount of data available for training, the running time ranged from 
0.15 (SVR) to 69.73 seconds (ANN). Despite both being relatively short periods, the processing time for the ANN 
model was approximately 465 times that of the SVR, 50 times the XGBoost and 19 times the GPR. This result means 
that the application of ANN to larger datasets may be impractical depending on the situation. 

Table 3. Evaluation of the models developed from 4 ML algorithms: Extreme Gradient Boosting (XGBoost), Support Vector 
Regression (SVR), Artificial Neural Networks (ANN), Gaussian Process Regression (GPR). 

Model Running time (s) R2 RMSE 
(MPa) 

MAE 
(MPa) 

Maximum absolute 
error (MPa) 

Minimum absolute 
error (MPa) 

XGBoost 1.40 0.83 3.41 2.24 18.78 0.00 
SVR 0.15 0.79 3.73 2.26 19.90 0.00 
ANN 69.73 0.82 3.40 2.26 23.79 0.01 
GPR 3.67 0.82 3.43 1.96 21.12 0.00 

 
The best model in this article obtained a lower R2 than that of other authors who used the same dataset put together 

by Yeh [13]. For example, Dao et al. [12] used GPR and ANN to obtain the compressive strength of concrete and 
reached R2 of 0.89 (against our 0.82 shown in Table 3). However, as opposed to the current work, these authors used 
the curing time as one of the features and evaluated all strength ranges. It means that they had access to a bigger dataset 
and their metrics were boosted by “easier” predictions (since the variability of the concrete strength at 3 and 7 days is 
usually much lower than that at 28 days). For comparison purposes, applying the complete dataset to our models would 
result in R2 ranging from 0.87 to 0.93. 
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Similarly, Mustapha and Mohamed [14] applied SVR to the Yeh [13] dataset, obtaining R2 up to 0.93 (versus 0.79 
in this work). However, Mustapha and Mohamed [14] not only used the complete dataset (all ages and strengths) but 
also did not perform cross-validation to remove possible bias when splitting the data for training and testing. 

It is also possible to compare the accuracy of our models with works in which the authors produced their own concrete 
specimens. For example, Lam et al. [48] produced 75 specimens to obtain the data used in their algorithms. They built an ANN-
based model that obtained R2 = 0.92, (versus R2 = 0.82 in the current work). However, this type of approach can limit the 
generalization ability of the model, as the algorithms learned from only one homogeneous source of concrete. 

Regarding the other metrics, the XGBoost and ANN models obtained very similar RMSE and MAE results, around 
3.40 MPa and 2.24 MPa, respectively. GPR obtained a lower MAE, 1.96 MPa, and a slightly higher RMSE, 3.43 MPa. 
As with the R2 results, the SVR presented the worst results, MAE of 2.26 MPa and RMSE of 3.73 MPa. It is noteworthy 
that the models proposed in the current work resulted in relatively close MAE and RMSE values. At a first glance, these 
results indicate a good performance of the models. 

Comparatively, Dao et al. [12], mentioned above, obtained a RMSE of 5.46 MPa and a MAE of 3.86 MPa – while 
using the complete dataset, including compressive strengths higher than 50 MPa. In the same conditions, Mustapha and 
Mohamed [14] reached a MAE of 5.89 MPa. We can also mention Hoang et al. [11], who achieved a RMSE of 4.04 
MPa, even though they created their own dataset of 246 specimens (ranging from 13.5 – 85.2 MPa). 

It is important to remember that the RMSE is influenced by the square of the individual errors [44]. Thus, large 
errors are weighted more heavily than small ones. Therefore, this metric is recommended to evaluate models when 
large errors are particularly undesirable (such as in the prediction of concrete strength). However, Willmott and 
Matsuura [45] argue that the RMSE should not be used to compare two or more models, as this value varies according 
to the scale of the errors. The authors claim that the MAE is a metric that represents the magnitude of the error more 
naturally and, therefore, comparisons between different models should be based on the MAE. 

Given the heterogeneous nature of cement-based composites and the infrastructure of construction sites, the calculation of 
the target mean strength of concrete is usually influenced by the quality control of its preparation. In Brazil, these parameters are 
set by NBR 12655 [49]. The smallest standard deviation value for the calculation of this strength, considering the best preparation 
conditions, normal-strength concrete, and no prior experiments, is 4.0 MPa [49]. Thus, both the RMSE and MAE values for all 
models were below the standard deviation indicated by NBR 12655. Important note: this comparison is not a measure of the 
safety of this mix design methodology, but it shows that the weighted average of errors obtained through the ML algorithms is 
smaller than the typical variability considered among specimens at a construction site. 

Regarding individual errors, Figure 5 shows the frequency distribution of absolute errors (the difference between 
predicted and observed values) for all the mixtures in the dataset, regardless of direction. For all the models, at least 
84% (275 instances) of the errors fell below 5MPa (for SVR), reaching 91% (300 instances) (for ANN). Conversely, 
for any algorithm, less than 3% of the predictions (10 instances) deviated more than 10 MPa from the real values. 
However, the maximum absolute error reached 18.78 – 21.12 MPa, which is a significant value. 

 
Figure 5. Frequency of errors (difference between predicted and observed values) for the 329 evaluated mixtures. 

Seeking to understand the factors that led to these high singular errors, the authors assembled the 10 concrete 
mixtures that led the models to the biggest deviations, shown in Table 4. This table reveals that 3 observations are 
repeated in all models (being the top 3 errors of the XGBoost, ANN, and GPR); and another 3 are repeated in 3 models. 
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When analyzing the observations that presented the highest errors, one notices that they refer to concretes 
with unconventional proportions of materials. For example, mixture #1 of XGBoost (that was also #1 in SVR, 
ANN, and GPR), has only 200 kg/m3 of Portland cement (and another 200 kg/m3 of blast furnace slag), an 
unusual w/c ratio of 0.95, and still reached 49.25 MPa (versus an average of 27.7 MPa, predicted by the 
algorithms). Conversely, mixture #2 in XGBoost (that was #3 in GPR and ANN, and #7 in SVR) has a cement 
consumption of 436 kg/m3, w/c ratio of 0.5 and only reached 23.85 MPa (while the algorithms predicted 
approximately 38.9 MPa). The other observations that were repeated in the top 10 errors also showed mix 
proportions that are not commonly found in conventional concretes (e.g., over 30% of mineral admixtures in 
relation to cement mass). 

Table 4. The 10 worst observations of each model regarding absolute error 

Algori-
thm # Portland 

Cement 
Blast 

Furnace Slag 
Fly 
Ash Water Super-

plasti-cizer 
Coarse 
Aggreg. 

Fine 
Aggreg. 

Observed 
Strength 

Predicted 
Strength Error 

XGBoost 

11 200.00 200.00 0.00 190.00 0.00 1145.00 660.00 49.25 30.47 18.78 
21 436.00 0.00 0.00 218.00 0.00 838.40 719.70 23.85 38.46 14.61 
31 277.10 0.00 97.40 160.60 11.80 973.90 875.60 48.28 35.19 13.09 
4 165.00 0.00 150.00 182.00 12.00 1023.00 729.00 18.03 29.09 11.06 
53 194.70 0.00 100.50 170.20 7.50 998.00 901.80 37.27 26.87 10.40 
6 212.00 0.00 124.80 159.00 7.80 1085.40 799.50 38.50 29.18 9.32 
7 165.00 128.50 132.10 175.10 8.10 1005.80 746.60 46.39 37.36 9.03 
82 249.10 0.00 98.80 158.10 12.80 987.80 889.00 30.85 39.85 9.00 
93 297.20 0.00 117.50 174.80 9.50 1022.80 753.50 47.40 38.52 8.88 
10 164.60 0.00 150.40 181.60 11.70 1023.30 728.90 18.03 26.75 8.72 

SVR 

11 200.00 200.00 0.00 190.00 0.00 1145.00 660.00 49.25 29.35 19.90 
21 277.10 0.00 97.40 160.60 11.80 973.90 875.60 48.28 31.46 16.82 
32 249.10 0.00 98.80 158.10 12.80 987.80 889.00 30.85 44.99 14.14 
42 381.40 0.00 0.00 185.70 0.00 1104.60 784.30 22.49 36.14 13.65 
53 144.00 15.00 195.00 176.00 6.00 1021.00 709.00 15.34 27.84 12.50 
62 385.00 0.00 0.00 186.00 0.00 966.00 763.00 31.35 43.57 12.22 
71 436.00 0.00 0.00 218.00 0.00 838.40 719.70 23.85 35.97 12.12 
8 446.00 24.00 79.00 162.00 11.60 967.00 712.00 44.42 33.46 10.96 
9 142.00 167.00 130.00 174.00 11.00 883.00 785.00 44.61 34.10 10.51 
10 141.90 166.60 129.70 173.50 10.90 882.60 785.30 44.61 34.20 10.41 

ANN 

11 200.00 200.00 0.00 190.00 0.00 1145.00 660.00 49.25 25.46 23.79 
21 277.10 0.00 97.40 160.60 11.80 973.90 875.60 48.28 29.52 18.76 
31 436.00 0.00 0.00 218.00 0.00 838.40 719.70 23.85 42.52 18.67 
43 168.00 42.10 163.80 121.80 5.70 1058.70 780.10 24.24 36.01 11.77 
52 385.00 0.00 0.00 186.00 0.00 966.00 763.00 31.35 41.89 10.54 
6 142.00 167.00 130.00 174.00 11.00 883.00 785.00 44.61 34.59 10.02 
72 381.40 0.00 0.00 185.70 0.00 1104.60 784.30 22.49 32.34 9.85 
83 297.20 0.00 117.50 174.80 9.50 1022.80 753.50 47.40 37.80 9.60 
9 151.00 0.00 184.00 167.00 12.00 991.00 772.00 15.57 24.89 9.32 
10 400.00 0.00 0.00 187.00 0.00 1025.00 745.00 43.70 34.50 9.20 

GPR 

11 200.00 200.00 0.00 190.00 0.00 1145.00 660.00 49.25 28.13 21.12 
21 277.10 0.00 97.40 160.60 11.80 973.90 875.60 48.28 33.34 14.94 
31 436.00 0.00 0.00 218.00 0.00 838.40 719.70 23.85 38.45 14.60 
42 249.10 0.00 98.80 158.10 12.80 987.80 889.00 30.85 42.14 11.29 
52 381.40 0.00 0.00 185.70 0.00 1104.60 784.30 22.49 33.73 11.24 
63 144.00 15.00 195.00 176.00 6.00 1021.00 709.00 15.34 26.24 10.90 
73 168.00 42.10 163.80 121.80 5.70 1058.70 780.10 24.24 34.51 10.27 
82 385.00 0.00 0.00 186.00 0.00 966.00 763.00 31.35 41.60 10.25 
9 162.00 207.00 172.00 216.00 10.00 822.00 638.00 39.84 29.69 10.15 

103 194.70 0.00 100.50 170.20 7.50 998.00 901.80 37.27 27.23 10.04 
1 Observations that appear in the top 10 worst predictions of all techniques. 2 Observations that appear in the top 10 worst predictions of 3 techniques. 3 
Observations that appear in the top 10 worst predictions of 2 techniques.  
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Assuming that these results are not due to typing mistakes or experimental issues, they indicate: 
• the relevance of the input data for the construction of models with good quality predictions, bearing in mind that 

the data must be like the problem studied. 
• the necessity to collect multiple observations of concrete mixes of all types if one wants to create mix design tools 

that are as generalizable as possible. 

3.2 Significance of each feature 
Figure 6 shows the importance of each feature to the construction of the boosted decision trees within the model, 

obtained with the XGBoost technique. The more a feature is used to make key decisions during the construction of the 
model, the higher will be its relative significance. As expected, the cement has the greatest relative impact among the 
input features, while the aggregates had the smallest. Following the cement, we observed a significant influence of 
supplementary cementitious materials (mineral admixtures, such as blast furnace slag and fly ash). This is explained 
because all these binders have characteristics that significantly increase the strength of concrete [1] [50] [51]. These 
results indicate that the model had a good interpretation of the data. 

 
Figure 6. Relative importance of each input feature in predicting the compressive strength, according to the Extreme Gradient 

Boosting Decision Tree (XGBoost) model. 

3.3 Considerations on model generalization 
Table 5 presents the performance of the models trained with Yeh’s dataset [13], when validated with the new dataset with 22 

instances elaborated by the authors. No model performed a good prediction, with the R2 falling from 0.79-0.83 (Table 3) to 0.37-
0.59. MAE rose from 1.96-2.26 MPa to 3.04-4.04 MPa, and RMSE rose from 3.40-3.73 MPa to 3.75-4.67 MPa. This result 
demonstrates the low generalization ability of the models for the evaluation of new concrete mixes. 

The characteristics of Yeh’s dataset [13] may explain this scenario. First, this dataset was built from relatively old 
studies (between 1987 and 1997), which is probably a major source of inaccuracies given the technological 
advancements of construction materials, especially Portland cement and chemical admixtures. Additionally, most of 
these works were carried out in Taiwan, using relatively homogeneous local materials, and coarse aggregates with a 
maximum size of 20mm. Thus, the dataset is incapable of representing the variability of concretes on a global scale. 
And this low generalization ability is even more worrisome because a significant portion of articles on the application 
of artificial intelligence for concrete mix design uses this dataset. 

Table 5. Results of the model validation step carried out with the new dataset developed by the authors. 

Model R2 RMSE MAE Maximum absolute 
error (MPa) 

Minimum absolute 
error (MPa) 

XGBoost 0.42 4.46 3.57 9.75 0.26 
SVR 0.37 4.67 4.04 9.22 0.67 
ANN 0.51 4.09 3.23 9.75 0.13 
GPR 0.59 3.75 3.04 8.40 0.07 
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The regional peculiarities of concrete components are well known by professionals in this field. For example, even 
within Brazil, cements and concretes from the South region tend to adopt pozzolanic admixtures, while cements and 
concretes from the Southeast region commonly incorporate blast furnace slag [52]. However, despite this heterogeneity 
being empirically known, studies are still lacking to measure its impact on algorithms for concrete mix design. 

To allow the development of safe, efficient, and economical mix design tools, the authors see two possibilities: 1) 
each country or region must work with its own dataset to generate models that are adapted to the local reality or 2) the 
creation of databases with more input features, such as country of origin, maximum aggregate size, type of cement, 
etc., thus allowing the creation of fewer mix design tools, but highly adaptable to different types of concrete. 

4 CONCLUSION 

This article compared four machine learning techniques to predict the compressive strength of conventional concrete 
specimens from their components. A well-known database, elaborated by Yeh [13], was used to train four models: 
Gaussian Process Regression (GPR), Extreme Gradient Boosting Decision Tree (XGBoost), Artificial Neural Networks 
(ANN), and Support Vector Regression (SVR). After evaluating these models, a new database was put together by the 
authors to validate them. This test sought to analyze the models’ generalization ability to new concrete mixes. 

In the first stage, the GPR, XGBoost, and ANN models obtained R2> 0.82, while SVR had the worst performance, 
R2 = 0.79. For all algorithms, the MAE was below 2.26 MPa and the RMSE, below 3.73 MPa, which the authors 
consider relatively positive results compared to the minimal standard deviation prescribed in real mix design 
procedures. Although better correlations have been found in the literature, our work adopted a more conservative 
approach, looking only for resistance at 28 days. 

To identify the causes of the inaccuracies in the proposed models, we ranked the top 10 mix proportions with the 
greatest deviations between the predicted and observed results. Most of them appeared in at least 3 algorithms, 
indicating that the issue was probably related to these particular mix proportions rather than with the proposed models. 
Indeed, the authors observed that these entries had unconventional percentages of admixtures front what is normally 
observed in conventional concretes. This result highlights the importance of the input data for the development of high-
quality prediction models. 

The relatively small number of observations meant that the running time was not significant to select the best 
algorithm. In this sense, a study analyzing how the dataset size would affect the processing time of the models should 
be carried out in the future. 

In the validation step, the quality of the models dropped sharply, with the best R2 being only 0.59 (for the GPR 
model). The probable main contribution to this result was the difference between the characteristics of the dataset used 
for validation and the one used for model training. The models were created from the classic Yeh’s dataset [13], which 
can be considered relatively homogeneous in terms of the origin of concrete observations and aggregate sizes. 

This result shows that the regionalization and homogeneity of some datasets can lead to false-positive results in the 
search for universal concrete mix design strategies. In a future study, the authors intend to quantitatively assess this 
ability to generalize models. Furthermore, joint initiatives are needed to build a more comprehensive and varied 
database of concrete properties. Until that happens, the authors recommend that ML models for concrete mix design 
should be limited to predicting the strength of specimens from the same laboratories that trained them. 

In summary, this article showed that ML techniques are potentially viable to predict the compressive strength of 
concrete. For now, more studies regarding the creation and validation of bigger and more varied databases are needed. 
However, soon, this approach may reduce the time and resources currently spent on the mix design processes. 
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APPENDIX 
The articles listed below were consulted for the creation of the dataset used to validate the models. Although they 

refer to steelmaking slag concrete, we only collect the data related to conventional aggregates (used as reference) for 
this work. 
• Anastasiou, E., Filikas, K. G., & Stefanidou, M. (2014). Utilization of fine recycled aggregates in concrete with fly 

ash and steel slag. Construction and Building Materials, 50, 154-161. 
• Andrade, H. D. (2018). Carbonatação em concreto de escória de aciaria. Universidade Federal de Ouro Preto 
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