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Abstract: Nowadays, structural “limit state” design is made using characteristic or nominal values of actions, 
partial safety factors and load combination factors. The actual loading that a structure will be subjected to 
throughout its life is not known at the design phase. Yet, probabilistic models of such loadings are useful for 
the rational determination of partial safety factors and load combination factors. The probabilistic model 
leading to nominal live loads of NBR 6120:2019 (Design Loads for Structures) has never been openly 
discussed. Herein a simple probabilistic model describing spatial and temporal variabilities of live loads in 
buildings is presented and discussed. The model is built as a sum of two stochastic processes representing the 
sustained and intermittent parts of the live load. Model parameters are the ones recommended by the Joint 
Committee on Structural Safety (JCSS), based on extensive surveys done in several countries. By way of 
Monte Carlo simulations, sample values of live load actions are obtained for buildings of different occupancy 
types. These values are compared with those recommended by international standards, and those 
recommended in NBR 6120:2019 and NBR 8681:2003 (Actions and Safety of Structures). The corresponding 
statistics for the fifty-year extreme and arbitrary point-in-time distributions of live loads are presented; these 
statistics are very relevant for reliability analyses and for reliability-based code calibration. The stochastic live 
load model is also employed in a reliability-based calibration to obtain partial safety factors and load 
combination factors to be used in Brazilian design codes, for ultimate and serviceability limit state 
verifications. 

Keywords: live load model, probabilistic model, structural reliability, partial safety factor, load combination 
factor, NBR 8681, NBR 6120. 

Resumo: Hoje em dia, o projeto estrutural baseado em estados limites é feito utilizando valores característicos 
ou nominais das ações, fatores parciais de segurança e fatores de combinação de ações variáveis. As ações às 
quais uma estrutura estará sujeita durante sua vida não são conhecidas com exatidão na fase de projeto. Neste 
contexto, modelos estocásticos das ações são úteis para a determinação racional dos fatores parciais de 
segurança, e dos coeficientes de combinação de ações. O modelo probabilístico que levou aos valores 
nominais das ações de utilização da NBR 6120: 2019 (Ações para o Cálculo de Estruturas de Edificações) 
nunca foi discutido abertamente. Neste artigo, apresenta-se uma revisão crítica de um modelo estocástico 
simples que descreve as flutuações espaciais e temporais da ação variável de utilização em prédios. O modelo 
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é construído como uma soma de dois processos estocásticos, representando as parcelas sustentada e 
intermitente da ação de utilização. Parâmetros para este modelo são recomendados pelo Joint Committee on 
Structural Safety (JCSS), com base em surveys realizados em diversos países. Utilizando simulações de Monte 
Carlo, amostras de ações de utilização são obtidas para edifícios com diferentes tipos de ocupação. Estes 
valores são comparados com aqueles recomendados em diferentes normas técnicas internacionais, bem como 
com valores preconizados nas normas brasileiras NBR 6120:2019 e NBR 8681:2003 (Ações e Segurança nas 
Estruturas). As estatísticas obtidas para as distribuições de probabilidade das ações “extrema de cinquenta 
anos” e de “ponto arbitrário no tempo” são apresentadas; estas distribuições são extremamente importantes 
em análises de confiabilidade. O modelo estocástico também é empregado em uma calibração baseada em 
confiabilidade dos coeficientes parciais de segurança e fatores de combinação de ações variáveis das 
principais normas de projeto brasileiras. 

Palavras-chave: ação de utilização, modelo estocástico, confiabilidade estrutural, coeficiente parcial de 
segurança, fator de combinação de ações, NBR 8681, NBR 6120. 
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1 INTRODUCTION 

1.1 Background 
In order to achieve consistent safety levels in the design of structures, while also meeting economical, functionality 

and robustness criteria, the engineer must have proper knowledge of the strength properties of materials and structural 
elements, but also of the loads to which a structure is expected to be subjected throughout its lifetime. 

Among these loads, one of the most fundamental when designing buildings is the live load (sometimes also referred 
to as imposed load), generally specified in design codes as a uniformly distributed load depending on floor occupancy 
type. In Brazil, design live loads are prescribed by design code NBR 6120:2019 [1]. 

The nominal values of live loads given by most major foreign design codes are generally based on probabilistic 
models built from data measured in live load surveys. Extensive reviews of survey results are reported by Sentler [2] 
and Chalk and Corotis [3], covering investigations conducted between years 1893 and 1976 and covering many 
occupancy types in six different countries: Australia [4], United States [5]–[13], Finland [14], United 
Kingdom  [15]– [18], Hungary [19] and Sweden [20], [21]. 

To the authors best knowledge, there are no records of any similar live load surveys carried out in Brazilian 
buildings, nor of the existence of stochastic models that may have been used to derive the nominal values for live loads 
presented in NBR 6120:2019. Instead, those values were established by consensus of the technical community, based 
upon comparisons with foreign design codes, such as the American ASCE/SEI 7-16 [22], the European EN 1991-1-
1:2002 [23], and ISO 2103:1986 [24]. 

1.2 Representative values of variable actions 
When designing a structure using a semi-probabilistic approach, such as the limit states format employed by most 

design codes, representative values of the loads are considered. These can be characteristic or nominal values, design 
values, or combination values used in ultimate or serviceability limit states. The definitions of these values are given in 
the Brazilian design code for Actions and Safety of Structures, NBR 8681:2003 [25]. 

Particularly for the live load, the recently superseded version of the design loads code, NBR 6120:1980 [26], did 
not mention the return period corresponding to the nominal values proposed. The current version, which came into 
effect late 2019, repeats the definition found in NBR 8681:2003: “the characteristic values of variable actions, 
established by consensus, correspond to values that have between 25 to 35% probability of being exceeded, in the 
unfavorable sense, in a period of 50 years”. Furthermore, NBR 6120:2019 adds to this definition, stating that these 
probabilities correspond to an average return period between 174 and 117 years, respectively. 

The definition used in this study is that the characteristic value 𝐿𝐿𝑘𝑘 of the live load corresponds to the 70th percentile 
(i.e., the value that has 30% exceedance probability) of the fifty-year extreme live load, denoted 𝐿𝐿50 in this paper. This 
would be equivalent to saying that the mean return period of 𝐿𝐿𝑘𝑘 is around 140 years. Consequently, 𝐿𝐿𝑘𝑘 is equal to the 
mode of the 140-year extreme distribution (𝐿𝐿140) and can also be obtained as the 1 − 1/140 ≈ 99,3% fractile of the 
1-year extreme distribution (𝐿𝐿1), provided that the annual maxima are independent. This hypothesis of independence 
in challenged in the sequence. 
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In the limit state design format, employed in Brazilian structural design codes, the required safety margin is achieved 
by introducing partial safety factors 𝛾𝛾𝑚𝑚 that reduce the characteristic value of material strength and 𝛾𝛾𝑓𝑓 that increase the 
nominal values of actions (or their effects), resulting in design values. 

The safety factor for actions is expressed as the product of three other partial factors, 𝛾𝛾𝑓𝑓 = 𝛾𝛾𝑓𝑓1𝛾𝛾𝑓𝑓2𝛾𝛾𝑓𝑓3. The first of 
these, 𝛾𝛾𝑓𝑓1, takes into consideration possible unfavorable deviations from the representative values due to the inherently 
variable nature of loads. The second, 𝛾𝛾𝑓𝑓2, is a load combination factor that takes into account the reduced probability 
that all actions happen simultaneously with their representative values. Lastly, 𝛾𝛾𝑓𝑓3 accounts for the inaccuracies in the 
assessment of action effects, whether due to constructive deviations or to shortcomings arising from simplifications 
assumed in modelling. 

Particularly for live loads, the safety factor given by 𝛾𝛾𝑓𝑓1𝛾𝛾𝑓𝑓3, denoted 𝛾𝛾𝐿𝐿 in this paper, is usually equal to 1.4 when 
considered grouped with other variable actions, or 1.5 when considered separately, as indicated in NBR 8681:2003. 
The 𝛾𝛾𝑓𝑓2 factor can be equal to 𝜓𝜓0, 𝜓𝜓1 or 𝜓𝜓2, depending on what limit state is being verified. 

The combination factor 𝜓𝜓0 ≤ 1, used in verification of ultimate limit states (ULS), takes into account that it is 
highly unlikely that two (or more) independent variable actions simultaneously present their maximum values of over 
a reference period. It is calculated so that the probability of the combined effect – due to multiple variable actions – 
being exceeded during the reference period is somewhat equivalent to the exceedance probability when only a single 
variable action is considered with its characteristic value. 

The frequent and quasi-permanent values, used in verification of serviceability limit states (SLS), are obtained by 
multiplying the characteristic values by reduction factors 𝜓𝜓1 ≤ 1 and 𝜓𝜓2 ≤ 1. The frequent value 𝜓𝜓1 can be defined in 
two different ways: based on the frequency with which the variable action exceeds this value or based on a small 
fraction of the total lifetime of the structure in which it is surpassed. NBR 8681:2003 states that the frequent value is 
that which is exceeded about 105 times in a period of 50 years, or during 5% of the structure lifetime. In the present 
study, the second definition was considered, since it is easier to use. Similarly, the quasi-permanent value 𝜓𝜓2 is defined 
so that its total time of application is a considerable portion (around half) of the structure´s lifetime. 

2 METHODOLOGY 

2.1 Probabilistic model for live loads 

Live loads in buildings depends on its corresponding occupancy type, and are intrinsically stochastic in nature, 
varying in space and time. In general, live loads can be decomposed in two parts with different behavior regarding its 
temporal variability: a sustained load and an extraordinary load (sometimes also referred to as intermittent or transient 
load). 

The sustained load includes weight of all furniture, equipment, stored objects and personnel that are regularly 
present in the analyzed area. This load is the one effectively measured in load surveys. 

The extraordinary load is associated with exceptional events that may lead to short duration high-intensity loading, 
such as temporary crowding due to a party or special event; or caused by a large number of people trying to evacuate 
the building in an emergency situation; or even the relocation and concentration of furniture in a room while the adjacent 
premises are undergoing renovations. Due to the exceptional and transient nature of extraordinary loads, it is very 
unlikely that these events can be reliably measured in load surveys. 

The model analyzed in this study is the hierarchical model presented in Part 2 of the JCSS Probabilistic Model Code [27], 
which is based on a formulation initially proposed by Peir [28] and Peir and Cornell [29]. This model has been used 
with great success by several authors since then, among which McGuire and Cornell [30]; Ellingwood and Culver [31]; 
and Chalk and Corotis [3]. These were the studies that served as a basis for obtaining the live load statistics used in the 
calibration of the partial safety factors of North-American design codes in the eighties [32]. 

The central idea of the model is to represent the sustained load 𝑄𝑄(𝑡𝑡) by a rectangular-wave process with random 
intensities and durations (Figure 1a), and the extraordinary load 𝑃𝑃(𝑡𝑡) by a spike process with random intensities and 
time between pulses (Figure 1b). The total live load is given by the sum of these processes, 𝐿𝐿(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) + 𝑃𝑃(𝑡𝑡) (Figure 1c). 
As shown in Figure 1, finding the maximum of the combined process is not a trivial task, since this value may not 
coincide with any of the individual maxima for each process. 
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Figure 1. Time histories of live loads: (a) sustained load; (b) extraordinary load;  

(c) total live load. 

2.1.1 Sustained load 
As presented in JCSS [27], the sustained load intensity acting on an infinitesimal area 𝛿𝛿𝛿𝛿 at a location (𝑥𝑥,𝑦𝑦) of a 

given floor of a given building at an arbitrary point-in-time can be represented as a stochastic field 𝑊𝑊(𝑥𝑥,𝑦𝑦) expressed 
by: 

𝑊𝑊(𝑥𝑥,𝑦𝑦) = 𝑚𝑚 + 𝑉𝑉 + 𝑈𝑈(𝑥𝑥,𝑦𝑦) (1) 

where 𝑚𝑚 is a “grand mean” of the load intensity over all buildings under the same occupancy type; 𝑉𝑉 is a zero-mean 
normally distributed random variable; and 𝑈𝑈(𝑥𝑥,𝑦𝑦) is a zero-mean random field. 

The random variable 𝑉𝑉 can be thought as the sum of two other zero-mean independent and normally distributed 
random variables 𝐵𝐵 and 𝐹𝐹, where 𝐵𝐵 describes the deviation of the average for the whole building from the grand mean 
𝑚𝑚; and 𝐹𝐹 describes the deviation of the floor average with respect to 𝑚𝑚 + 𝐵𝐵. The random field 𝑈𝑈(𝑥𝑥,𝑦𝑦) represents the 
spatial variability of the load intensity within that particular floor and shows a characteristic skewness to the right [27]. 

This model, while very simple, allows for the calculation of load effects caused by the real loading up to a sufficient 
degree of accuracy for all practical purposes. Assuming linear elastic behavior, where the superposition principle is 
valid, the resulting effect 𝑆𝑆 can be obtained by: 

𝑆𝑆 = ∬ 𝑊𝑊(𝑥𝑥,𝑦𝑦)𝐼𝐼(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦𝐴𝐴  (2) 

where 𝑊𝑊(𝑥𝑥,𝑦𝑦) is the load intensity; 𝐼𝐼(𝑥𝑥,𝑦𝑦) is the surface influence for the desired effect; and 𝛿𝛿 is the influence area. 
For non-linear structural response, the load effect can be approximated by an incremental analysis assuming stepwise 
linearity, replacing 𝑊𝑊 and 𝑆𝑆 in Equation 2 for steps Δ𝑊𝑊 and Δ𝑆𝑆 of load magnitude and effect, and the surface influence 
𝐼𝐼(𝑥𝑥,𝑦𝑦) for some equivalent function that takes into account the total load history. 

In design codes, live load values are generally specified as uniform loads. Thus, it is of practical interest to define 
an equivalent uniformly distributed load (EUDL), i.e., the uniform load that produces the same effect 𝑆𝑆 as the actual 
load field 𝑊𝑊(𝑥𝑥,𝑦𝑦). Denoting the sustained load EUDL by 𝑄𝑄, it follows that: 

𝑄𝑄 = ∬ 𝑊𝑊(𝑥𝑥,𝑦𝑦)𝐼𝐼(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦𝐴𝐴
∬ 𝐼𝐼(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦𝐴𝐴

 (3) 

Its mean and variance are given by: 
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E[𝑄𝑄] = ∬ 𝐸𝐸[𝑊𝑊(𝑥𝑥,𝑦𝑦)]𝐼𝐼(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦𝐴𝐴
∬ 𝐼𝐼(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦𝐴𝐴

= 𝑚𝑚 (4) 

Var[𝑄𝑄] = ∬ ∬ 𝐼𝐼(𝑥𝑥1,𝑦𝑦1)𝐼𝐼(𝑥𝑥2,𝑦𝑦2) Cov[𝑊𝑊(𝑥𝑥1,𝑦𝑦1)𝑊𝑊(𝑥𝑥2,𝑦𝑦2)] 𝑑𝑑𝑥𝑥1 𝑑𝑑𝑦𝑦1 𝑑𝑑𝑥𝑥2 𝑑𝑑𝑦𝑦2𝐴𝐴𝐴𝐴

�∬ 𝐼𝐼(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦𝐴𝐴 �2
 (5) 

In general, if the load intensity at a particular location (𝑥𝑥1,𝑦𝑦1) is greater than the floor average, it is likely that the 
load intensity at a nearby point (𝑥𝑥2,𝑦𝑦2) is also high. In other words, there is a generally positive correlation to the field 
𝑈𝑈(𝑥𝑥,𝑦𝑦) that tends to decay as the distance separating the points increases. 

Hauser [33] proposed three different empirical expressions for the correlation of the random field 𝑈𝑈. The following 
one is widely used, due to its convenience for integration: 

Cov[𝑈𝑈(𝑥𝑥1,𝑦𝑦1),𝑈𝑈(𝑥𝑥2,𝑦𝑦2)] = 𝜎𝜎𝑈𝑈2 exp �− 𝑟𝑟2

𝑑𝑑2
� (6) 

In the above expression, 𝜎𝜎𝑈𝑈2 is the variance of 𝑈𝑈; 𝑟𝑟 = �(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2 is the horizontal distance separating 
the points (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2); and 𝑑𝑑 is a constant to be determined that dictates how fast the correlation decays over 
distance (usually between 1 to 2 m). 

Mitchell and Woodgate [16] studied what they called the “stacking effect”, i.e., the tendency for tenants to load 
different floors in a similar way vertically. This effect can be accounted for by introducing a vertical correlation 
parameter 𝜌𝜌𝑐𝑐 in Equation 6, as shown in [29]. This parameter was estimated by Peir and Cornell [29] to be 
approximately equal 𝜌𝜌𝑐𝑐 = 0.7 for office buildings. 

In this study, the random field 𝑈𝑈(𝑥𝑥,𝑦𝑦) was regarded as a “white-noise” process, which means that load intensities 
in two points are uncorrelated if there is any separation between them. This frequently employed assumption is quite 
reasonable, as long as the area 𝛿𝛿 is not too small [31]. Choi [34] investigated both hypotheses and concluded that, in 
general, the assumption that load intensity is spatially correlated is marginally better than the white-noise 
approximation. However, this uncorrelated assumption is sufficiently accurate for practical applications, and has the 
advantage of considerably simplifying the quadruple integral in Equation 5, allowing for a conservative upper bound 
to be established for Var[𝑄𝑄]: 

Var[𝑄𝑄] ≤ 𝜎𝜎𝑉𝑉2 + 𝜎𝜎𝑈𝑈2
𝐴𝐴0
𝐴𝐴
𝜅𝜅 (7) 

where 𝜎𝜎𝑉𝑉2 is the variance of the random variable 𝑉𝑉; 𝜎𝜎𝑈𝑈2 is the variance of the random field 𝑈𝑈; 𝛿𝛿0 is the smallest area for 
which a distributed load is of interest; and 𝜅𝜅 is a shape factor (sometimes also referred to as a peak factor) depending 
on the influence surface, given by: 

𝜅𝜅 = 𝛿𝛿 ∬ [𝐼𝐼(𝑥𝑥,𝑦𝑦)]2𝐴𝐴  𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦

�∬ 𝐼𝐼(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦𝐴𝐴 �2
 (8) 

Equation 7 is valid only for 𝛿𝛿 ≥ 𝛿𝛿0. For 𝛿𝛿 < 𝛿𝛿0, one should take 𝛿𝛿0/𝛿𝛿 = 1. 
Usually, it is more convenient to normalize the double integrals in Equation 8. For example, for a rectangular area 

with sides 𝑎𝑎 and 𝑏𝑏, one can define normalized coordinates (𝜉𝜉, 𝜂𝜂) ranging from 0 to 1 so that 𝑥𝑥 = 𝜉𝜉𝑎𝑎 and 𝑦𝑦 = 𝜂𝜂𝑏𝑏. Then, 
the expression for 𝜅𝜅 becomes: 

𝜅𝜅 = ∫ ∫ [𝐼𝐼(𝜉𝜉,𝜂𝜂)]1
0

2
𝑑𝑑𝜉𝜉 𝑑𝑑𝜂𝜂1

0

�∫ ∫ 𝐼𝐼(𝜉𝜉,𝜂𝜂) 𝑑𝑑𝜉𝜉 𝑑𝑑𝜂𝜂1
0

1
0 �

2  (9) 

Naturally, 𝜅𝜅 depends on the shape of the influence surface, which in turn depends on the considered load effect (Figure 
1 of the Data Availability Material), usually assuming values between 2 and 3 [54]. JCSS [27] presents some examples 
of influence surfaces with 𝜅𝜅 = 2.0 and 𝜅𝜅 = 2.4, but does not clarify to which effect each of these corresponds. McGuire 
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and Cornell [30] report the following values for 𝜅𝜅: 2.76 for midspan moment in beams, 2.04 for end moment in beams, 
and 2.20 for column loads. Tran et al. [35] present 𝜅𝜅 values for flat slabs, ranging from 1.2 to 1.9. 

The calculated EUDL is generally observed to be relatively insensitive to the action being considered, provided that 
the influence area and the shapes of their influence surfaces are reasonably similar. The exception to this rule would be 
midspan shear in beams, which becomes comparable to other effects when considering only half the influence area, 
since the influence surface for this effect has regions with negative values [30]. In this study, 𝜅𝜅 = 2.0 was adopted as 
a general value representing no particular effect for the sake of simplicity. 

At this point, it is important to emphasize the distinction between influence area and tributary area, made very clear 
in the ASCE/SEI 7-16 [22]. The area 𝛿𝛿 in Equations 7 and 8 is the influence area, i.e, the area over which the influence 
surface for a structural effect is significantly different from zero. This definition does not correspond to the usual notion 
of tributary area – often mistakenly called influence area – which is thought of as the area that contributes to the loading 
on a particular element, delimited by the panel centerlines in a slab. The influence area is usually equal to twice the 
tributary area for beams and four times the tributary area for columns (Figure 2). 

 
Figure 2. Tributary and influence areas for typical structural members. 

Data from load surveys show a distinct skewness where most of the observed values sit left of the mean and exhibit 
very good agreement with a gamma distribution [29], [36]. Since the arbitrary point-in-time load intensity and the 
EUDL differ from each other only by the weighting function 𝐼𝐼(𝑥𝑥,𝑦𝑦), it is reasonable to extend this hypothesis to 𝑄𝑄 and 
assume that it will also be gamma distributed, with mean and variance given by Equations 4 and 7, respectively. 

In addition to spatial variability, live load is also variable over time. The EUDL is, therefore, a function of time. In 
general, the sustained load remains relatively constant for long periods of time, showing only insignificant fluctuations 
around a mean value that changes from time to time due to a tenancy or occupancy change. 

Typically, it is assumed that the EUDL for sustained load is constant between occupancy changes1, and that the 
number of occupancy changes follow a Poisson distribution with mean rate 𝜆𝜆𝑞𝑞 (Figure 1a). Consequently, the time 
between occupancy changes (or the duration of a tenancy) follows an exponential distribution, and the mean number 
of occupancy changes in a reference period 𝑇𝑇 is equal to 𝜆𝜆𝑞𝑞𝑇𝑇. 

Under these assumptions, the extreme value distribution for the maximum sustained load 𝑄𝑄max over a reference 
period 𝑇𝑇 can be obtained from the arbitrary point-in-time distribution using the following expression [29]: 

 
1This might not be the case for storage areas, where it may be necessary to take into account a gradual increase of the sustained load 
over time between occupancy changes. 
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𝐹𝐹𝑄𝑄max(𝑥𝑥) = 𝐹𝐹𝑄𝑄(𝑥𝑥) exp �−𝜆𝜆𝑞𝑞𝑇𝑇𝐹𝐹𝑄𝑄(𝑥𝑥) �1 − 𝐹𝐹𝑄𝑄(𝑥𝑥)�� (10) 

For values of 𝑥𝑥 in the upper tail region, which are the loads of practical interest, 𝐹𝐹𝑄𝑄(𝑥𝑥) tends to 1, and Equation 10 
can be simplified to: 

𝐹𝐹𝑄𝑄max(𝑥𝑥) ≈ exp �−𝜆𝜆𝑞𝑞𝑇𝑇 �1 − 𝐹𝐹𝑄𝑄(𝑥𝑥)�� (11) 

2.1.2 Extraordinary load 
The extraordinary load is associated with unusual gatherings of people, furniture or equipment in an area for a short 

period of time. Due to its extraordinary and transient nature, it is quite difficult to accurately measure data related to 
this type of loading during load surveys. Most of the available data on extraordinary load has been gathered through 
questionnaires submitted to the surveyed building occupants and is, therefore, liable to a considerable amount of 
uncertainty and subjectivity. 

A model for extraordinary loads was initially proposed by Peir [28], which divides the area of interest into a number 
of randomly distributed load cells and represents the extraordinary event as a cluster of concentrated loads (such as the 
weight of people) acting on these cells, both the number and intensities of these loads being random variables. A similar 
model was used by McGuire and Cornell [30] and Ellingwood and Culver [31]. Harris et al. [37] proposed a more 
general extension of this model, where three different extraordinary load processes are considered, each modeled by a 
group of loads with their own parameters. The combination of these loads is accomplished using an expression proposed 
by Wen [38]. 

The JCSS Probabilistic Model Code [27] states that, for design purposes, the same approach as for the sustained 
load can be used. Thus, the EUDL for extraordinary load (denoted 𝑃𝑃 in this paper) has mean and variance given by: 

E[𝑃𝑃] = 𝑚𝑚𝑝𝑝 (12) 

Var[𝑃𝑃] = 𝜎𝜎𝑈𝑈,𝑝𝑝
2 𝐴𝐴0

𝐴𝐴
𝜅𝜅 (13) 

where the subscript 𝑝𝑝 is used to differentiate extraordinary load parameters from sustained load ones (which are denoted 
by subscript 𝑞𝑞). 

Similarly to the sustained load, it is assumed that the arbitrary point-in-time extraordinary load is adequately 
described by a gamma distribution, although there is not enough data to substantiate this assumption. 

While it gives different values for 𝑚𝑚𝑝𝑝 and 𝜎𝜎𝑈𝑈,𝑝𝑝, JCSS [27] also states that the standard deviation usually results in 
the same magnitude as the mean value, and that the extraordinary load is, therefore, assumed to be exponentially 
distributed. This assumption, however, is in clear contradiction with the previous statement: adopting the same 
formulation employed for sustained load would necessarily imply in a constant mean value for a given occupancy type 
and a standard deviation that decays with the increase in area, whereas an exponential distribution should always have 
equal mean and standard deviation regardless of the area 𝛿𝛿. 

This inconsistency seems to have been clarified in a current draft for the “Technical Report for Reliability 
Background of Eurocodes”2, that prescribes a single parameter 𝑚𝑚𝑝𝑝 and states that 𝑃𝑃 ∼ Exponential(𝜇𝜇𝑝𝑝 = 𝜎𝜎𝑝𝑝 = 𝑚𝑚𝑝𝑝). 
However, the authors personally believe that the choice for an exponential distribution to represent extraordinary load 
is inadequate. This is due to the fact that, since its variance is area-independent, it tends to quickly dominate the behavior 
of the total load 𝐿𝐿 = 𝑄𝑄 + 𝑃𝑃 as the area increases and Var[𝑄𝑄] gets smaller, leading to excessively conservative results 
for large areas when compared to the live load reduction allowed for in major design codes around the world. 

Based on data from 1989 extraordinary events recorded in a load survey carried out in Sydney [39] in the seventies, 
Choi [40] found out that in reality both the mean and the standard deviation of the extraordinary load are area dependent. 
However, the variation for the mean value is much smaller, and it seems reasonable that it could be disregarded. 

In this study, the intermittent part of the live load is represented by a Gamma distribution, following many other 
studies. Moments of the distribution are obtained from Equations 12 and 13. 

 
2 Unpublished, still being worked on at the time this paper was written. 
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As for temporal variability, the extraordinary load is represented by a Poisson-arriving spike process with mean rate 
𝜆𝜆𝑝𝑝 (Figure 1b). Accordingly, time between pulse arrivals follows an exponential distribution. The duration 𝑑𝑑𝑝𝑝 of each 
pulse is considered deterministic. 

The extreme value distribution 𝑃𝑃max of a Poisson-distributed number of extraordinary events happening over a 
reference period 𝑇𝑇 is obtained from the arbitrary point-in-time distribution 𝑃𝑃 using the same approach as for the 
sustained load (Equation 11). 

2.1.3 Model parameters 
Ideally, model parameters should be estimated from statistical analysis and fitting to the results of load survey data. 

Since there are no specific survey data on Brazilian live loads, the values for the model parameters used in this study 
were taken from JCSS [27] and Honfi [41], as shown in Table 1. 

Table 1. Live load parameters for some major occupancies. 

Occupancy type 𝑨𝑨𝟎𝟎  
(m2) 

Sustained load Extraordinary load 
Reference 𝒎𝒎𝒒𝒒 

(kPa) 
𝝈𝝈𝑽𝑽,𝒒𝒒 

(kPa) 
𝝈𝝈𝑼𝑼,𝒒𝒒 

(kPa) 
𝟏𝟏/𝝀𝝀𝒒𝒒 

(years) 
𝒎𝒎𝒑𝒑 

(kPa) 
𝝈𝝈𝑼𝑼,𝒑𝒑 
(kPa) 

𝟏𝟏/𝝀𝝀𝒑𝒑 
(years) 

𝒅𝒅𝒑𝒑 (days) 

Office 20 0.50 0.30 0.60 5 0.20 0.40 0.3 1–3 JCSS [27] 
Residence 20 0.30 0.15 0.30 7 0.20 0.30 1.0 1–3 JCSS [27] 
Hotel room 20 0.30 0.05 0.10 10 0.20 0.40 0.1 1–3 JCSS [27] 

Patient room 20 0.40 0.30 0.60 5–10 0.20 0.40 1.0 1–3 JCSS [27] 
Classroom 100 0.60 0.15 0.40 10 0.20 0.40 0.3 1–5 Honfi [41] 

Retail 100 0.90 0.60 0.60 1–5 0.40 0.60 1.0 1–14 Costa [42] 

The JCSS [27] also proposes parameters for classroom and retail areas. However, investigations by Costa [42] and 
Honfi [41] show that these parameters are too conservative, when compared to actual values employed in major 
international codes. For that reason, the values suggested by Honfi [41] and Costa [42] for these occupancies are adopted 
in this study. 

2.1.4 Total live load 
In order to obtain the total live load, one must consider the combined effects of the stochastic processes for the 

sustained and extraordinary loads over time, i.e., 𝐿𝐿(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) + 𝑃𝑃(𝑡𝑡) (Figure 1c). The statistical combination of 
extreme loads is not a trivial task. 

An approximate theoretical model for the maximum total load 𝐿𝐿max over a given reference period 𝑇𝑇 is presented in 
Chalk and Corotis [3]. This simplified model, however, is limited as it assumes several simplifications that, while 
reasonable for values in the upper tail region of the distribution, makes this formulation more suitable for obtaining 
estimates for nominal values of loads (corresponding to the upper fractiles) rather than describing the complete 
distribution of 𝐿𝐿max. 

In the present study, the total live load statistics for the extreme value and arbitrary point-in-time distributions are 
derived through Monte Carlo simulations. Daily realizations of both sustained and extraordinary loads are generated 
according to the known distributions of the model previously described, over reference periods 𝑇𝑇 equal to 1, 50 and 
140 years. An example of a realization of the sustained and extraordinary loads in an office floor with 𝛿𝛿 = 500 m2 
over 50 years is shown in Figure 3. 

This process is repeated 104 times for each considered influence area (ranging from 𝛿𝛿 = 10 to 500 m2), reference 
period and occupancy type. The obtained data is then plotted and fitted to candidate distributions. The quality of the 
distribution fit to the histogram is assessed through goodness-of-fit tests such as the Pearson’s chi-squared, 
Kolmogorov-Smirnov or Anderson-Darling tests. A pseudocode detailing the simulation procedure employed herein is 
presented in Figure 4. 

Figure 5 shows the obtained PDF and CDF histograms for 104 samples of the fifty-year extreme live load (𝐿𝐿50) in 
an office floor with influence area 𝛿𝛿 = 100 m2. Superimposed to the histograms, the fitted distribution is also shown 
in blue, which in this case is a Type I Extreme Value distribution, also known as Gumbel distribution. The quality of 
this fit is also graphically visualized through P-P (probability-probability) and Q-Q (quantile-quantile) probability plots, 
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presented in Figure 6. The obtained p-values for the goodness-of-fit tests are shown in Table 2. At a significance level 
of 𝛼𝛼 = 0.05, the null hypothesis that 𝐿𝐿50 follows a Gumbel distribution is accepted considering all performed tests. 

 
Figure 3. Time histories of one sample of sustained, extraordinary and total live load  

for an office floor with 𝛿𝛿 = 500 m2. 

 
Figure 4. Pseudocode of Monte Carlo simulations of live loads in buildings 
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Figure 5. Probability density and cumulative distribution histograms vs. fitted Gumbel distribution for 𝐿𝐿50 in an office floor with 

𝛿𝛿 = 100 m2. 

 
Figure 6. P-P and Q-Q probability plots showing the deviation of 𝐿𝐿50 from the  

fitted Gumbel distribution in an office floor with 𝛿𝛿 = 100 m2. 

Table 2. Goodness-of-fit tests for 𝐿𝐿50 in an office floor with 𝛿𝛿 = 100 m2. 

Test Statistic P-value 
Anderson-Darling 0.2482592 0.9713050 

Kolgomorov-Smirnov 0.0056237 0.9098539 
Pearson 𝜒𝜒2 70.272 0.7479799 

2.2 Partial safety factor for ULS verification 
In this study, the partial safety factor 𝛾𝛾𝐹𝐹 = 𝛾𝛾𝑓𝑓1𝛾𝛾𝑓𝑓3 for live loads is estimated using the Design Value Method, as 

presented in the Annex C of EN 1990:2002 [43], [44]. The partial safety factor 𝛾𝛾𝑆𝑆 for the effect of a generic variable 
action can be determined from its design value 𝑆𝑆𝑑𝑑 and characteristic value 𝑆𝑆𝑘𝑘 by: 

𝛾𝛾𝑆𝑆 = 𝑆𝑆𝑑𝑑
𝑆𝑆𝑘𝑘

 (14) 

Characteristic values obtained with the stochastic model presented herein are shown in Section 3 (Results). The 
design value 𝑆𝑆𝑑𝑑, in turn, can be calculated as a function of the known probability distribution of 𝑆𝑆. For a Gumbel 
distributed variable, 𝑆𝑆𝑑𝑑 is given by: 

𝑆𝑆𝑑𝑑 = 𝑢𝑢 − 1
𝑎𝑎

ln�− ln�Φ(−𝛼𝛼𝑆𝑆𝛽𝛽𝑇𝑇)�� (15) 

where Φ(∙) is the cumulative distribution function of the standard normal distribution; 𝛼𝛼𝑆𝑆 is the FORM sensitivity factor 
for the action effects, and 𝛽𝛽𝑇𝑇 is the target reliability index. In Section 3.6, the reliability-based calibration of partial 
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safety factors employed in Brazilian design codes for steel [45] and concrete [46] structures – originally performed by 
Santiago et al. [47] – is re-processed using the live load statistics developed herein, and the mean reliability index using 
current NBRs 8681, 8800 and 6118 factors is found to be equal to 3.17 for a period of 50 years. Hence, a target reliability 
index of 𝛽𝛽𝑇𝑇 = 3.17 is considered herein. Also, the sensitivity factor was taken as 𝛼𝛼𝑆𝑆 = −0.66, which is the average 
value found in the re-calibration. 

In Equation 15, 𝑢𝑢 and 𝑎𝑎 are the location and scale parameters of the Gumbel distribution, respectively, calculated 
from its mean 𝜇𝜇 and standard deviation 𝜎𝜎 as: 

𝑢𝑢 = 𝜇𝜇 − 𝛾𝛾
𝑎𝑎
 (16) 

𝑎𝑎 = 𝜋𝜋
𝜎𝜎√6

 (17) 

where 𝛾𝛾 = 0.577216 is the Euler-Mascheroni constant. Alternatively, Equation 15 can be reasonably approximated by [44]: 

𝑆𝑆𝑑𝑑 ≈ 𝜇𝜇 − 𝜎𝜎�0.45 + 0.78 ln�− ln�Φ(−𝛼𝛼𝑆𝑆𝛽𝛽𝑇𝑇)��� (18) 

2.3 Combination value 
Similarly, the combination factor 𝜓𝜓0 was also estimated using the same approach described in Annex C of EN 

1990:2002 [43], [44]. This method is based on representing the effects of two independent generic variable actions to 
be combined, 𝑆𝑆1 and 𝑆𝑆2, by a Ferry-Borges-Castanheta model, that is, by a rectangular-wave process with fixed 
durations 𝑇𝑇1 and 𝑇𝑇2 (with 𝑇𝑇1 > 𝑇𝑇2) smaller than the reference period 𝑇𝑇. The magnitude of the effect in each basic 
interval is assumed constant, uncorrelated, and equal to the maximum value within this period (Figure 2 of the Data 
Availability Material). It is also assumed that 𝑆𝑆1 and 𝑆𝑆2 are stationary and ergodic, so that a particular realization over 
a sufficiently long interval may be used, instead of an envelope of samples. 

The basic period for live loads is taken as the mean time between tenancy changes, 𝑇𝑇 = 1/𝜆𝜆𝑄𝑄, which usually ranges 
from 5 to 10 years for the major occupancy types. Live load effects are usually to be combined with environmental 
loads such as wind, whose basic period is generally taken as 𝑇𝑇2 = 1 year. 

Under these assumptions, the combination factor can be calculated as: 

𝜓𝜓0 = 𝐹𝐹𝑆𝑆
−1(Φ(0.4𝛽𝛽𝑐𝑐)𝑟𝑟)
𝐹𝐹𝑆𝑆
−1(Φ(𝛽𝛽𝑐𝑐)𝑟𝑟)

 (19) 

where 𝐹𝐹𝑆𝑆−1(∙) is the inverse cumulative distribution function of the extreme value of the accompanying action in the 
reference period 𝑇𝑇; Φ(∙) is the standard normal cumulative distribution function; 𝑟𝑟 is the ratio 𝑇𝑇/𝑇𝑇1 rounded to the 
nearest integer; and 𝛽𝛽𝑐𝑐 is the equivalent reliability index for the interval 𝑇𝑇1, given by: 

𝛽𝛽𝑐𝑐 = −Φ−1(Φ(𝛼𝛼𝑆𝑆𝛽𝛽𝑇𝑇)/𝑟𝑟) (20) 

In the above expression, 𝛼𝛼𝑆𝑆 and 𝛽𝛽𝑇𝑇 are the same as described in Equation 15. 
Alternatively, the combination factor can be derived according to Turkstra’s Rule, leading to the following 

expression for a Gumbel distributed variable: 

𝜓𝜓0 = 1−0.78𝑉𝑉�0.577+ln�− ln�Φ(−0.4𝛼𝛼𝑆𝑆𝛽𝛽𝑇𝑇)��+ln(𝑟𝑟)�
1−0.78𝑉𝑉�0.577+ln�− ln�Φ(−𝛼𝛼𝑆𝑆𝛽𝛽𝑇𝑇)���

 (21) 

where 𝑉𝑉 = 𝜎𝜎/𝜇𝜇 is the coefficient of variation of the accompanying action for the reference period 𝑇𝑇. A more detailed 
derivation of these formulas can be found in ISO 2394:1998 [48]. 
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2.4 Frequent and quasi-permanent values 
Figure 3 of the Data Availability Material shows the temporal variability of a certain effect of a generic variable 

action 𝑆𝑆 over a reference period 𝑇𝑇. For a given level 𝑆𝑆∗, the relative duration 𝜂𝜂 that the process 𝑆𝑆(𝑡𝑡) spends above that 
level 𝑆𝑆∗ given by the sum of the time periods 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛 divided by 𝑇𝑇. 

For an ergodic process, the relative duration 𝜂𝜂 can be computed as: 

𝜂𝜂 = 𝑝𝑝𝑞𝑞 = 𝑞𝑞 �1 − 𝐹𝐹Sapt(𝑆𝑆
∗)� (22) 

where 𝐹𝐹Sapt  is the cumulative distribution function of the average point-in-time value of action 𝑆𝑆; and 𝑞𝑞 is the 
probability of 𝑆𝑆 having a non-zero value. It is important to note that the distribution 𝑆𝑆apt refers only to the cases where 
𝑆𝑆 has a non-zero value. Thus, the level 𝑆𝑆∗ corresponding to a given relative duration 𝜂𝜂 can be obtained by: 

𝑆𝑆∗(𝜂𝜂) = 𝐹𝐹𝑆𝑆apt
−1 �1 − 𝜂𝜂

𝑞𝑞
� (23) 

The distinction for the case where 𝑆𝑆 can assume values equal to zero may be relevant for a generic stochastic process 
𝑆𝑆(𝑡𝑡). For live loads, however, the sustained load 𝑄𝑄(𝑡𝑡) – and therefore the total load 𝐿𝐿(𝑡𝑡) – is always “on”, i.e., 𝑞𝑞 = 1 
in Equation 23. 

Following the definitions stated in Section 1.2, the frequent and quasi-permanent factors 𝜓𝜓1 and 𝜓𝜓2 can be 
calculated as: 

𝜓𝜓1 = 𝐿𝐿1
𝐿𝐿𝑘𝑘

=
𝐹𝐹𝐿𝐿apt
−1 (1−0.05)

𝐿𝐿𝑘𝑘
 and 𝜓𝜓2 = 𝐿𝐿2

𝐿𝐿𝑘𝑘
=

𝐹𝐹𝐿𝐿apt
−1 (1−0.50)

𝐿𝐿𝑘𝑘
 (24) 

where 𝐿𝐿𝑘𝑘  is the characteristic value calculated according to the definition given in NBR 8681:2003 [25] and NBR 
6120:2019 [1] 

It should be noted that, in order to determine 𝜓𝜓1 and 𝜓𝜓2 using Equation 24, one must know the arbitrary point-in-
time distribution of the total live load (𝐿𝐿apt), which is obtained through Monte Carlo simulation. These simulations, 
however, can be very time and memory consuming. Alternatively, an approximate theoretical model can be employed 
that allows one to calculate the relative duration 𝜂𝜂 that 𝐿𝐿(𝑡𝑡) spends above a given load level from the arbitrary point-
in-time distributions for the sustained and extraordinary load. Both follow a gamma distribution whose moments are 
easily determined from the model parameters in Table 1. A more detailed derivation of this analytical model is provided 
in Corotis and Tsay [49]. Herein, the simulation approach is adopted, since many realizations of the load processes 
were already carried out in order to derive the 1, 50 and 140-year extreme distributions. 

3 RESULTS AND DISCUSSIONS 

3.1 Characteristic values of live loads 
The characteristic values of live loads for the occupancy types indicated in Table 1 were obtained through Monte 

Carlo simulation for increasing values of influence area, up to 𝛿𝛿 = 500 m2. The obtained results for office and 
residential buildings are shown in Figures 7 and 8, respectively. 

Figure 7a shows the characteristic values as calculated by three approaches: a) as the 70th fractile (30% exceedance 
probability) of 𝐿𝐿50; b) as the mode of 𝐿𝐿140; and c) from the annual maxima 𝐿𝐿1 as the value corresponding to the 140-year 
return period. Those values are compared to the nominal values from different international design codes [22], [23], [24], 
including the live load reduction prescribed by these codes. The nominal values from NBR 6120:2019 [1] are not indicated, 
since the Brazilian code does not allow area-based live load reduction; instead, it allows only story-based reduction for 
columns and foundations. A comparison with NBR 6120:2019 live-load reduction factor is presented in Section 3.2. 

In general, the results obtained using the JCSS model seem to be slightly higher than those indicated in the 
considered design codes. However, a direct comparison is inappropriate, given that the definitions of characteristic 
value adopted by these codes differ from that of NBR 8681:2003. Furthermore, the curves for the 70th percentile of 
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𝐿𝐿50 and the mode of 𝐿𝐿140 are practically coincident, but the results calculated from 𝐿𝐿1 are somewhat higher. This occurs 
because the annual maxima are not fully independent, since the tenancy duration for the sustained load is usually longer 
than 1 year. 

Figure 7b represents, in red, the nominal value (𝐿𝐿𝑛𝑛 = 2.5 kN/m2) given in NBR 6120:2019 for office buildings, 
and the simulation results for exceedance probabilities of 25% and 35% in 50 years. The blue region between the curves 
correspond to the values that are in agreement with the definition of characteristic value from NBR 8681:2003. For 
influence areas around 100 to 120 m2, the results obtained from the stochastic model are consistent within the 25% to 
35% range definition. For the design of an internal beam, an influence area between 100 and 120 m2 corresponds to a 
floor plan with a regular span between 7.1 and 7.7 m. For an internal column and considering a single-story load, this 
interval represents spans between 5.0 and 5.5 m. 

Figure 7c shows the frequency with which the maximum total load 𝐿𝐿50 is caused by the combinations denoted by the 
authors as Cases I to IV, as explained in Table 3. For office buildings, the relative importance of the sustained load in the 
combination tends to increase while, on the other hand, the extraordinary load becomes less relevant for larger areas. 

Table 3. Combinations of sustained and extraordinary loads leading to the maximum total load 𝐿𝐿50. 

Case Description 
I Lifetime maximum sustained load + maximum extraordinary load during that tenancy 
II Lifetime maximum extraordinary load + corresponding instantaneous sustained load 
III Simultaneous occurrence of lifetime maxima for both sustained and extraordinary loads 
IV Combination where the neither the sustained nor the extraordinary loads are at their maximum values 

 
Figure 7. Simulated total live load for office buildings 
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Figure 8. Simulated total live load for residential buildings. 

Similar to office buildings, the simulated loads for residential buildings (Figure 8) seem to reasonably agree with the 
design codes – especially for higher influence areas –, resulting in marginally higher values. This is probably because office 
and residential buildings are by far the occupancy types with the most amount of available survey data, and therefore have 
more reliable model parameters. However, for influence areas smaller than 100 m2, the stochastic model produces loads 
greater than the normative nominal values; this should be considered with caution when designing elements with small 
influence area. Figure 8 also shows the same tradeoff between sustained and extraordinary load as the influence area increases. 

Similar results for the other occupancy types in Table 1 are shown and discussed in [42] and in the dataset related 
to this paper (Data Availability Material). The simulation results for classrooms and retail areas using JCSS [27] 
parameters, not shown here, led to results much higher than the representative values given in design codes [42]. A 
comparison with parameters used in similar studies [3], [37] shows that the values recommended by the JCSS are 
unreasonably high and should be revised, especially for the extraordinary load. 

The same shortcoming of the JCSS [27] model was also observed by Honfi [41]. In an attempt to bring the results 
more in line with those of other occupancy types, the author proposed a set of modified parameters for these occupancy 
types (presented in Table 1), which are used in this study. The suggested parameters are more consistent with the JCSS [27] 
statement that the standard deviation and mean value of the extraordinary load are usually of the same magnitude. It 
should be mentioned that, for patient rooms and retail areas, the largest mean duration of the sustained load was adopted 
(1/𝜆𝜆𝑄𝑄 = 10 years and 1/𝜆𝜆𝑄𝑄 = 5 years, respectively). 

3.2 Live load reduction factor 

As shown in the previous results, the characteristic value for live loads is primarily dependent on the influence area 
𝛿𝛿. For larger areas, the equivalent uniformly distributed load tends to decrease, as it becomes more and more unlikely 
that the load magnitude would be very high over the entire loaded area. To account for this behavior, design codes 
usually allow some form of live load reduction to be applied. 

The ASCE code [22] presents an expression for live load reduction based on the square root of the influence area, allowing 
for a reduction of up to 50%. Similar expressions can be found in EN 1991-1-1:2002 [23] and ISO 2103:1986 [24]. While the 
latter unambiguously states that the area to be considered is the tributary area, Eurocode 1 refers only to a “loaded area”, not 
making clear whether or not the area intended to be used in the formula corresponds to the customary definition of tributary area. 
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The Brazilian NBR 6120:2019 allows the design loads to be reduced only for columns and foundations. The 
reduction factor is specified as a function of the number of floors for which live load reduction is permitted. In addition 
to area-based reduction, Eurocode 1 [23] also allows story-based reduction for columns. 

A column typically will have an influence area spanning over multiple floors, each floor owned by a different tenant. 
However, tenancy changes are not likely to occur over all floors simultaneously. Hence, there is some correlation 
between two successive values of the sustained load when designing a column, since a tenancy change in one floor only 
affects part of the area contributing to that effect. McGuire and Cornell [30] studied the influence of tenant arrangement 
and independence and floor-to-floor-correlation and concluded that the organization of tenants in a building does not 
significatively affect the upper fractiles of the maximum total load. Therefore, it is reasonable to conservatively assume 
that one tenant occupies the entirety of the influence area for a column. In this study, the same white-noise model 
employed in the previous section is also employed for multi-story column design. 

In order to compare the stochastic model results with provisions of the Brazilian code, it is necessary to first assume 
a regular column spacing so that the total influence area of a column can be computed from the number of floors. Two 
situations were considered: an interior column and an edge column of a multi-story building with regular column 
spacing of 5 m, which is a usual span for concrete beams. The influence area contributing to the column load is, 
therefore, 𝛿𝛿 = 4𝛿𝛿trib = 4 ⋅ 5 ⋅ 5 = 100 m2 per supported floor for the interior column, and half that area for the edge 
column. The adopted peak factor was 𝜅𝜅 = 2.2, as indicated by McGuire and Cornell [30] for column loads. 

Simulations were performed only for office and residential buildings, since those are the most common reducible 
occupancy types and the model results have been shown to agree well with the nominal loads specified in NBR 
6120:2019. The results are shown in Figure 9. Since each floor would have its own reduction factor, results from the 
simulations were compared to the average reduction factor over all floors. The story-based live load reduction formula 
given in Eurocode 1 [23] is also presented, for comparison purposes. 

 
Figure 9. Comparison of the stochastic model results with the live load reduction factor allowed in the Brazilian design code for 

office and residential buildings. 

As can be seen in Figure 9, the live load reduction allowed in NBR 6120:2019 is conservative until around 6 to 10 
floors, but then becomes non-conservative, since 𝛼𝛼𝑛𝑛 tends to 0.4 (i.e., an allowed reduction of 60%) when the number 
of floors increases, but the simulation results caps around 60% of the nominal load for offices and 50% for residential 
buildings when the area goes to infinity. The story-based reduction formula, on the other hand, seems to be overly 
conservative, allowing for a maximum reduction of 30%. 

Because it is more consistent with the stochastic model, the influence-area based approach employed in 
ASCE/SEI 7-16 [22] seems to be better suited for determining live load reduction. Similar expressions are proposed 
for office and residential buildings by fitting simulation data to a power law of the form 𝛼𝛼𝐴𝐴 = 𝑎𝑎 + 𝑏𝑏𝛿𝛿−0.5, where 𝛿𝛿 
is the influence area: 

Office ⟹ 𝛼𝛼𝐴𝐴 = 0.4 + 6.25
√𝐴𝐴

≤ 1.0 (25) 
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Residential ⟹ 𝛼𝛼𝐴𝐴 = 0.3 + 5.45
√𝐴𝐴

≤ 1.0 (26) 

Figure 10 compares these two formulas to the simulation values obtained herein for office and residential 
occupancies: a very good match can be observed. Naturally, for practical applications, it is desirable to have a single 
formula that is valid for all occupancy types for which reduction is allowed. The objective of this example is only to 
show that the model presented herein can be used to derive a reasonably simple formula that is both easy to use and 
provides a good and consistent fit with the mathematical formulation. 

 
Figure 10. Example of proposed expressions for live load reduction based on influence area. 

3.3 Partial safety factor for ULS verification 

Figure 11 shows the variation of the partial safety factor 𝛾𝛾𝐿𝐿 for live loads, estimated using Equation 18, valid for a 
Gumbel distributed variable. Results for classrooms and retail premises are based upon the modified set of model 
parameters proposed by Honfi [41] and Costa [42]. 

It is clear that 𝛾𝛾𝐿𝐿 varies over a wide range of values for the different occupancy types considered, but tends to decay 
as the area increases, as a result of the decrease in the coefficient of variation of 𝐿𝐿50. Table 4 shows the values of 𝛾𝛾𝐿𝐿 
calculated for specific reference areas chosen so that the characteristic value from the simulations is equal to the 
representative value in NBR 6120:2019. For these areas, the coefficient 𝛾𝛾𝐿𝐿 seems to lie between 1.50 and 1.60 for most 
occupancy types. This result is more in line with the values 𝛾𝛾𝐿𝐿 = 1.60 prescribed by ASCE/SEI 7-16 [22] and 𝛾𝛾𝐿𝐿 =
1.50 found in EN 1991-1-1:2002 [23], This also indicates that the value 𝛾𝛾𝐿𝐿 = 1.40 adopted in Brazilian codes is too 
low and doesn’t properly reflect the variability of live loads. 

For comparison, Santiago et al. [47] found 𝛾𝛾𝐿𝐿 = 1.68 (rounded to 1.70) as result of a reliability-based calibration 
exercise. Yet, the authors of [47] acknowledged that the live load statistics they employed were leading to unusually 
low reliability indexes for many of the considered structural configurations, when compared to similar studies. This 
was the main motivations to develop the study presented herein. Section 3.6 presents the fresh results obtained in a re-
evaluation of the reliability-based calibration, which reflect the new live load statistics in Table 4. 

As for the 50-year extreme live load (𝐿𝐿50) statistics themselves, the results found in this study seem to indicate that 
the coefficient of variation adopted by Santiago et al. [47] was too high. The statistics indicated in Table 4 are more in 
line with those presented by Ellingwood et al. [32] and Szerszen and Nowak [50]. The reason why the 𝐿𝐿50 statistics 
reported by Holický and Sýkora [51] are so unlike the others is because the authors relate the characteristic value to a 
5% exceedance probability in a reference period of 50 years, according to the definition found in background documents 
to the Eurocode 0 pre-standard ENV 1991-1:1994 [52]. In addition to that, Holický and Sýkora [51] only considered 
the sustained load part. 

The average point-in time live load (𝐿𝐿apt) statistics obtained in this study have a coefficient of variation somewhat 
higher than those reported by Ellingwod et al. [32], but a smaller bias factor. 
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Figure 11. Partial safety factor 𝛾𝛾𝐿𝐿 with increasing influence area 𝛿𝛿. 

Table 4. Live load statistics and corresponding estimated partial safety factor 𝛾𝛾𝐿𝐿 for specific reference areas 𝛿𝛿ref and comparison 
with statistics from the literature. 

Occupancy type 𝑳𝑳𝒏𝒏*  
(kN/m2) 

𝑨𝑨𝐫𝐫𝐫𝐫𝐫𝐫  
(m2) 

𝑳𝑳𝐚𝐚𝐚𝐚𝐚𝐚 (Gamma) 𝑳𝑳𝟓𝟓𝟎𝟎 (Gumbel) 𝑳𝑳𝟏𝟏𝟏𝟏𝟎𝟎 (Gumbel) 𝜸𝜸𝑳𝑳 𝝍𝝍𝟎𝟎 
𝝁𝝁 c.o.v. 𝝁𝝁 c.o.v. 𝝁𝝁 c.o.v. 

Office 2.5 110 0.20 𝐿𝐿𝑛𝑛 0.94 0.93 𝐿𝐿𝑛𝑛 0.26 1.11 𝐿𝐿𝑛𝑛 0.21 1.56 0.42 
Residence 1.5 140 0.20 𝐿𝐿𝑛𝑛 0.75 0.93 𝐿𝐿𝑛𝑛 0.22 1.09 𝐿𝐿𝑛𝑛 0.18 1.48 0.52 
Hotel room 1.5 220 0.20 𝐿𝐿𝑛𝑛 0.24 0.95 𝐿𝐿𝑛𝑛 0.14 1.05 𝐿𝐿𝑛𝑛 0.13 1.31 0.67 

Patient room 2.0 110 0.20 𝐿𝐿𝑛𝑛 1.16 0.89 𝐿𝐿𝑛𝑛 0.35 1.13 𝐿𝐿𝑛𝑛 0.28 1.72 0.42 
Classroom 3.0 300 0.20 𝐿𝐿𝑛𝑛 0.61 0.92 𝐿𝐿𝑛𝑛 0.24 1.09 𝐿𝐿𝑛𝑛 0.20 1.52 0.53 

Retail 4.0 310 0.22 𝐿𝐿𝑛𝑛 0.86 0.92 𝐿𝐿𝑛𝑛 0.28 1.11 𝐿𝐿𝑛𝑛 0.22 1.59 0.40 
Average   0.21 𝑳𝑳𝒏𝒏 0.76 0.92 𝑳𝑳𝒏𝒏 0.25 – – 1.53 0.49 

Santiago et al. [47]   0.25 𝐿𝐿𝑛𝑛 0.55 1.00 𝐿𝐿𝑛𝑛 0.40 – –   
Ellingwood et al. [32]   0.25 𝐿𝐿𝑛𝑛 0.55 1.00 𝐿𝐿𝑛𝑛 0.25 – –   

Szerszen and Nowak [50]   – – 0.93 𝐿𝐿𝑛𝑛 0.18 – –   
Holický and Sýkora [51]   – – 0.60 𝐿𝐿𝑛𝑛 0.35 – –   

* The reference value 𝐿𝐿𝑛𝑛 for each occupancy type is the nominal value given in NBR 6120:2019 [1]. 

3.4 Combination factor 𝝍𝝍𝟎𝟎, frequent and quasi-permanent values 𝝍𝝍𝟏𝟏 and 𝝍𝝍𝟐𝟐 
Due to space constraints, combination values, frequent and quasi-permanent values are presented and discussed in 

the dataset related to this manuscript (Data Availability Material). 

3.5 Updated reliability-based calibration of NBRs 8681, 6118 and 8800 
The live load statistics 𝐿𝐿50 and 𝐿𝐿apt presented in Table 4, direct result of this study, were used to reprocess the 

reliability-based calibration of partial load factors and load combination factors of NBRs 8681, 6118 and 8800. Due to 
space constraints, only the main results are presented here. For more information on the implementation of the 
calibration procedure, the reader is referred to Santiago et al. [47], where it is described in detail. 

Using the new live load statistics, the mean reliability index obtained using current NBR 6118:2014 partial safety 
factors is equal to 3.17 and using NBR 8800:2008 factors is 3.28. The target reliability index 𝛽𝛽𝑇𝑇 = 3.17 was considered 
herein in the calibration. 
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Table 5. Updated partial safety factors, following the procedure of [47] with new live load statistics. 

Coefficient Before calibration  
NBR 8800:2008 [45] 

Before calibration  
NBR 6118:2014 [46] 

Original calibration 
[47] 𝜷𝜷𝑻𝑻 = 𝟑𝟑.𝟎𝟎 

New calibration† 
𝜷𝜷𝑻𝑻 = 𝟑𝟑.𝟏𝟏𝟏𝟏 

𝛾𝛾𝐶𝐶 − 1.40 1.40 1.40 
𝛾𝛾𝑆𝑆 − 1.15 1.15 1.15 
𝛾𝛾𝑎𝑎1 1.10 − 1.10 1.10 
𝛾𝛾𝑎𝑎2 1.35 − 1.30 1.40 
𝛾𝛾𝐷𝐷 1.25 1.40 1.25 1.20⅋ 
𝛾𝛾𝐿𝐿 1.50 1.40 1.70 1.50 
𝛾𝛾𝑊𝑊 1.40 1.40 1.65 1.50 
𝜓𝜓𝐿𝐿 0.50 / 0.70 / 0.80 0.50 / 0.70 / 0.80 0.35 0.45 
𝜓𝜓𝑊𝑊 0.60 0.60 0.30 0.35 

𝛾𝛾𝐿𝐿 ∙ 𝜓𝜓𝐿𝐿* 0.75 / 1.05 / 1.20 0.70 / 0.98 / 1.12 0.60 0.68 
𝛾𝛾𝑊𝑊 ∙ 𝜓𝜓𝑊𝑊* 0.84 0.84 0.50 0.53 

* Effective combination value for secondary action. † Rounded values, to make NBR 6118 compatible with NBR 8800. ⅋ This coefficient is suggested to 
remain 1.4 when live and wind loads are zero. 

Results for the re-calibration are presented in Table 5. The main effect observed in [47] is also observed here: more 
uniform reliability indexes, for the different structures designed using the codes, are obtained by increasing the main 
variable load and reducing the secondary load in the combinations. The recommended values for live load (𝛾𝛾𝐿𝐿 = 1.5) 
and for wind load (𝛾𝛾𝑊𝑊 = 1.5) are very close to the values recommended in Eurocodes. The values 𝛾𝛾𝐿𝐿 = 1.5 and 𝜓𝜓𝐿𝐿 = 0.45 
obtained in the reliability-based calibration are very close to the 𝛾𝛾𝐿𝐿 = 1.52 and 𝜓𝜓0 = 𝜓𝜓𝐿𝐿 = 0.51 obtained herein as the 
mean for different occupancy types (see Table 4). The partial safety factors in Table 5 are recommended to be adopted 
in future revisions of NBRs 8681, 6118 and 8800. 

4 CONCLUDING REMARKS 
In this paper, the temporal and spatial variability of the live load in buildings is addressed, using a stochastic model 

that is well documented in the literature. Due to the lack of survey data for Brazilian buildings, the model parameters 
suggested by JCSS [27] and Honfi [41] were adopted. Monte Carlo simulations were performed for office buildings, 
residential buildings, hotel rooms, patient rooms, classrooms, and retail areas. From the results, the following 
conclusions can be drawn: 
a)  The parameters 𝜇𝜇𝑄𝑄 and 𝜎𝜎𝑈𝑈,𝑄𝑄 for sustained load suggested by JCSS seem to be largely based on the summary of 

survey data presented by Chalk and Corotis [3]. The 𝜎𝜎𝑉𝑉,𝑄𝑄 parameter seems to be slightly larger than the findings of 
those authors, but not unreasonably so. 

b)  There is some contradiction in the JCSS Probabilistic Model Code over whether the extraordinary load should be 
modeled as a gamma or an exponential distribution. It is the authors’ personal belief that the gamma distribution is 
more adequate, which is backed by most of the studies employing similar models found in the literature. 

c)  The parameters for the extraordinary load are mostly empirical, since there are very few survey data regarding this 
kind of load. For classrooms and retail premises, the JCSS suggested parameters are unreasonably high when 
compared to similar studies. 

d)  Brazilian code NBR 6120:2019 presents two definitions for the characteristic value of live loads: exceedance 
probabilities between 25 to 35%, and mean return periods between 174 and 117 years. The second definition would 
only be true if the annual maxima for live loads were independent, which is not the case, given that the mean time 
between occupancy changes is greater than one year for most uses. Hence, NBR 6120:2019 should follow NBR 
8681:2003 and limit itself to the first definition. 

e)  Employing the model described herein, live load statistics that are consistent with the definitions given by Brazilian 
design codes were derived to be used in reliability analyses. The obtained fifty-year extreme live load (𝐿𝐿50) has a bias 
factor of 0.92 and coefficient of variation of 25%. For the arbitrary point-in-time distribution (𝐿𝐿apt), those values are 
equal to 0.21 and 76%, respectively. The obtained statistic for 𝐿𝐿50 has a smaller coefficient of variation than the one 
employed by Santiago [53] and is more in line with most of the statistics reported by other authors in the literature. 
The arbitrary point-in-time distribution (𝐿𝐿apt) obtained herein is also significantly different than that of [53]. 

f)  The reference areas shown in Table 4 for which the nominal load values given in NBR 6120:2019 are reproduced 
by the stochastic model depend on occupancy type. These areas are somewhat greater than those considered in 
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similar studies, such as Chalk and Corotis [3] – which employs a different model for the extraordinary load with 
both the mean and standard deviation decaying with the increase in area – further corroborating that the JCSS 
parameters might be overly conservative. Investigations by Costa [42] show that, while the reference areas that lead 
to Brazilian nominal loads obtained using other models for intermittent loads are smaller, their corresponding bias 
factors and coefficients of variation do not change appreciably with respect to the values reported in Table 4 for the 
JCSS model. Hence, it is the authors understanding that the 𝐿𝐿50 and 𝐿𝐿apt statistics presented herein are adequate for 
use in reliability problems. 

g)  Currently, NBR 6120:2019 allows live load reductions only for columns and foundations, and the reduction factor 
is given as a function of the number of supported floors. However, an approach similar to ASCE/SEI 7-16 [22] is 
more consistent with the stochastic model, i.e., allowing live loads to be reduced for floor beams and slabs as well 
(although to a smaller extent), and based on the influence area. 

h)  The obtained results show that the partial safety factor for live loads currently employed in Brazilian codes (𝛾𝛾𝐿𝐿 = 1.40 
for grouped variable actions) is too low and should be revised. Using the live load statistics obtained herein, the 
reliability-based calibration of partial safety factors of NBRs 8681, 6118 and 8800 was re-processed, following 
Santiago et al. [47]. Using the target reliability index 𝛽𝛽𝑇𝑇 = 3.17, 𝛾𝛾𝐿𝐿 = 𝛾𝛾𝑊𝑊 = 1.5 were found, which are recommended 
for adoption in future revision of the above codes. Suggested combination values are 𝜓𝜓𝐿𝐿 = 0.45 and 𝜓𝜓𝑊𝑊 = 0.35. 

i)  The results presented in the complementary dataset (Data Availability Material) related to this study also showed 
that, in general, the combination factor 𝜓𝜓0 and the frequent value reduction factor 𝜓𝜓1 should probably be higher for 
Category A buildings (residential and other private access buildings). On the other hand, a quasi-permanent 
reduction factor of 𝜓𝜓2 = 0.3 seems to be sufficient for all occupancy types considered in this study, whereas a value 
of 𝜓𝜓2 = 0.4 is currently prescribed for Category B buildings (office and other public access buildings). It should be 
noted that these results are very sensitive to the model parameters, which – as previously stated – need further 
investigation, and should therefore be considered with caution. 
The probabilistic model employed in this study was shown to be appropriate to represent live load variability. Most 

of the obtained results show good agreement with the nominal loads found in Brazilian and foreign design codes, 
especially for office and residential buildings, since those are the occupancies most extensively surveyed. However, the 
majority of load survey data that backs up the model parameters was gathered decades ago. Ideally, new surveys should 
be carried out using modern technologies in order to validate and further support the stochastic model parameters. 
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