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Abstract: Punching shear failure is caused by shear stress concentration in the slab-column connection of 
reinforced concrete flat slabs. As it is a brittle failure, it is crucial to understand how this mechanism works 
and to correctly predict the resistance of slabs subjected to it. In this paper, machine learning-based models 
were developed and compared to predict the punching shear resistance of reinforced concrete interior slabs 
without shear reinforcement. The models were based on 373 experimental data of interior slabs. Artificial 
neural network, decision tree, random forest and extreme gradient boosting algorithms were employed. The 
input variables considered herein were the effective depth of the slabs, flexural reinforcement ratio, effective 
width of the columns, concrete compressive strength and steel yield strength, and the target variable was the 
punching shear strength. The results for the punching shear resistances obtained by the developed models, as 
well as those obtained by employing models presented in five reinforced concrete design codes, were 
compared to the experimental data. All machine learning models showed coefficient of determination above 
0.95 for test data. As for the design code models, large discrepancies were observed between them, with the 
Brazilian code showing more accuracy than the others in predicting the failure load of the slabs. 

Keywords: predictive models, structural safety, design provisions, computational modeling, XGBoost. 

Resumo: A ruptura por punção é causada pela concentração de tensões de cisalhamento na ligação laje-pilar de lajes 
lisas de concreto armado. Por se tratar de uma ruptura frágil, é fundamental entender como esse mecanismo funciona e 
prever corretamente a resistência das lajes submetidas a ele. Neste artigo, modelos baseados em aprendizado de máquina 
foram desenvolvidos e comparados para prever a resistência à punção de lajes internas de concreto armado sem armadura 
de cisalhamento. Os modelos foram baseados em 373 resultados experimentais de lajes apoiadas sobre pilar 
intermediário. Os algoritmos de rede neural artificial, árvore de decisão, floresta aleatória e extreme gradient boosting 
foram empregados. As variáveis de entrada aqui consideradas foram a altura útil das lajes, taxa de armadura de flexão, 
largura efetiva dos pilares, resistência à compressão do concreto e tensão de escoamento do aço, e a variável alvo foi a 
resistência à punção. Os resultados das resistências ao cisalhamento obtidos pelos modelos desenvolvidos, bem como 
aqueles obtidos pelo emprego de modelos apresentados em cinco códigos de projeto de concreto armado, foram 
comparados com os dados experimentais. Todos os modelos de aprendizado de máquina apresentaram coeficiente de 
determinação acima de 0,95 para dados de teste. Quanto aos modelos de normas de projeto, foram observadas grandes 
discrepâncias entre eles, com a norma brasileira apresentando maior precisão que as demais na previsão da carga de 
ruptura das lajes. 

Palavras-chave: modelos preditivos, segurança estrutural, disposições de projeto, modelagem 
computacional, XGBoost. 
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1 INTRODUCTION 
Flat slabs are systems where the slabs are supported directly on the columns. Although simple in appearance, the flat 

slab system presents a complex behavior, especially in the slab-column connection, since punching failure develops in a 
brittle manner and with limited deflections, and is followed by an almost complete loss of the load carrying capacity [1]. 

According to Muttoni [2], the design of flat slabs is mostly governed by serviceability conditions (with relatively 
large deflections in service) and by the ultimate limit state of punching shear (also called two-way shear). The design 
standards for concrete structures present models to try to predict the shear resistance of flat slabs. However, several 
studies in the literature suggest that the standards differ significantly in predicting punching shear strength. 

In the paper by Sanabria et al. [3] two slabs were studied and it was found that the results obtained using the 
formulations presented in the Brazilian, European and North American standards varied by up to 70% for the same 
slab, with most of the results being far from the experimental data. Avagyan [4] studied the punching shear resistance 
of four slabs with shear reinforcement according to the European, North American, Armenian and Russian design 
models, and found that the strength of the slabs varied by up to 35% between the design provisions. Silva et al. [5] 
observed significant differences between the North American, Brazilian and European standards regarding the 
prediction of the punching shear strength of four flat slabs, with results varying by up to 75% for the same slab. Issa 
and Ismail [6] studied the punching shear strength of 257 slabs using the European, North American, British, Egyptian, 
Japanese and European design formulas. The authors observed large discrepancies between the models, and the 
European standards were the most accurate in predicting the punching shear resistance of the slabs, while the North 
American and Japanese were the less accurate. 

Experimental tests and numerical simulations can be used to better understand the mechanical behavior of structural 
elements. As a complement of these two approaches, models based on machine learning (ML) are increasingly 
employed. In Xu and Saleh [7] the state of the art and trends for the use of ML in structural engineering problems are 
presented. The authors stated that the areas of structural reliability and safety will, in the near future, be profoundly 
changed by the incorporation of ML. According to the authors, this is being made possible in part by the advent of big 
data, the collection and storage of large amounts of data and the development of powerful algorithms to probe it. 

By using self-learning features, ML extracts the complicated relationship between input and output data and then 
uses this relationship to make predictions, without being explicitly programmed to do so [8]. ML is actually a “black 
box” that maps the relationship between inputs and outputs, so it can be used for classification and regression, without 
complicated mathematical derivations. It usually has better performance compared to traditional models, making it a 
good complement to traditional structural mechanics approaches [9]. As disadvantages, ML-based models require many 
observational data to be built and are dependent on the quality and distribution of the data. Furthermore, they can be 
slow to train and they usually lack the extrapolation capacity and the physical meaning or interpretability that traditional 
numerical models usually have. 

Some recent studies that employed ML in structural engineering problems can be highlighted. Nguyen et al. [10] 
used the extreme gradient boosting algorithm (XGBoost or XGB) to predict the punching shear strength of interior 
slabs, using data from 497 slabs available in the literature. The XGB model was compared to models based in artificial 
neural networks (ANN) and random forest (RF), as well as design code models, showing superior accuracy and with 
coefficient of determination (R2) around 0.96 for test data. It was also observed that the effective depth of the slab was 
the variable with the greatest impact on the resistance. 

Mangalathu et al. [11] used 380 experimental results and the models were based on linear regression techniques and 
ML methods. These models were compared with each other and with design models. The XGB-based model was the 
most accurate in predicting punching shear, with R2 around 0.85 for test data. However, in conflict with the conclusions 
of Nguyen et al. [10], it was observed that the material properties had more influence on the punching shear strength 
than the geometric properties of the slab. 

Lu et al. [12] studied some approaches for the feature selection step to determine the best way to estimate the punching 
shear strength of RC slabs reinforced with SFRC (steel fibers). For this, the authors used 140 experimental results to build 
models based on trees, obtaining models with R2 between 0.95 and 0.98. Ly et al. [13] developed two hybrid models that 
combined ANN and optimization techniques to predict the shear strength of reinforced concrete beams reinforced with 
SFRC, where 463 experimental results were used and models with R2 of the order of 0.95 were obtained. Gomes [14] used 
a structural reliability approach to compare shallow and deep ANNs in the solution of four reliability problems, showing 
that while both types of ANN produce good results, deep networks usually outperform shallow ones. Feng et al. [9] used 
ensemble learning and developed a model capable of predicting the resistance and failure mode of circular columns 
subjected to cyclic loading, which is both a regression and classification problem. In their paper, 254 experimental results 
were used and the model based on the adaptive boosting (AdaBoost) algorithm was the one with the highest R2 (0.98). 
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The results were compared to design code predictions, showing superior accuracy. In the literature, other papers regarding 
application of ML to structural problems are available, including [15]–[20]. 

Despite usually providing more accurate models than those present in design codes, the use of ML in structural 
engineering problems is still in a maturing process and needs to be further investigated, which is one of the reasons for 
this study. Another reason is that, as already mentioned, some references in the literature show that the design standards 
for punching shear in RC slabs have large discrepancies between them. Thus, in the present paper, the ABNT NBR 
6118 [21], ACI 318 [22], Eurocode 2 [23], BS 8110 [24] and DIN 1045-1 [25] design models were compared. In 
particular, no comparisons involving ML models for punching shear and the NBR 6118 [21] model were found in the 
literature so far, so that the present paper expands the discussion about previously studied models and includes the 
model presented in the Brazilian standard. 

The present paper is organized as follows. A summary of the ML algorithms employed in this study is presented in 
section 2; a brief background of the structural problem is presented along with design provisions in section 3; the 
experimental dataset used herein is discussed in section 4, along with data cleaning and preprocessing; the development 
of the ML models is presented in section 5; the results of the developed ML models are presented in section 6; discussions 
about design standard models and comparisons are made in section 7; and the conclusions are drawn in section 8. 

2 MACHINE LEARNING ALGORITHMS OVERVIEW 

Four regression algorithms are used in this research: ANN, decision tree (DT), RF and XGBoost. The basic concepts 
behind each technique are presented below. 

2.1 Artificial Neural Network – ANN 

Artificial neural networks emerged from the idea of mathematically modeling the functioning of biological neurons, 
whose discussions began in the 1940s. In a generic way, neural networks are the implementation of connections between 
inputs, mathematical functions and outputs in computer code [26]. For Albon [27], neural networks can be visualized 
as a series of connected layers that form a network that connects features at one end to target values at the other. At the 
heart of neural networks is the unit (also called a neuron). The unit takes one or more inputs, multiplies each input by 
a parameter (also called a weight), adds these values to a constant (bias), and feeds them to an activation function. The 
output is then passed on to the next layers in the network, if any, or presented as the output of the ANN if no more 
deeper layers are present. 

Aggarwal [28] explains that the most basic architecture of a neural network is known as perceptron. The 
perceptron contains two layers of nodes (neurons), one corresponding to inputs and one to output, with a single 
node in the latter. The number of nodes in the input layer depends on the dimensionality of the problem. Each 
input node is connected to the output and for each connection a weight is assigned. Just as learning in biological 
systems is done by modifying the intensity of synapses, learning in the perceptron is done by adjusting the 
weights of connections between inputs and outputs whenever an incorrect prediction is made. The function 
employed by the perceptron at each node is called an activation function. Arbitrary functions like logistic, 
sigmoid, hyperbolic tangent or rectified linear unit (ReLU) can be used. 

The perceptron algorithm cycles through all the training samples and iteratively adjusts the weights until convergence 
is reached. Each cycle is called an epoch. During the learning process, a loss function (or cost function) is employed to 
evaluate how poorly the model is performing at each epoch. Mohri et al. [29] explain that a loss function measures the 
difference between a predicted label and a true one. Examples of loss functions are the mean absolute error (MAE) and 
the root mean squared error (RMSE). According to Aggarwal [28], the perceptron algorithm starts with a random vector 
of weights. The algorithm then performs the initial predictions and updates the weight vector using optimization algorithms 
(such as gradient descent) and a learning rate to minimize the error defined by the loss function. 

In practice, one or more hidden layers are used between the inputs and the output. In this case, the network is a 
multilayer perceptron. Neural networks with many hidden layers are considered deep networks and their application is 
called deep learning [27]. In networks with hidden layers, the gradient descent algorithm cannot be used to calculate 
the error gradient for hidden neurons [30]. Consequently, the contribution of each neuron to the overall error of the 
network must be calculated by using a backpropagation algorithm. 

Examples of single and multilayer perceptrons are shown in Figure 1. 
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Figure 1. Illustration of single layer (a) and multilayer perceptron (b). 

ANNs have been widely used in civil and structural engineering problems, as in [8]–[10], [13], [14] and [31]–[33]. 

2.2 Decision Tree – DT 
Decision trees are models based on a tree-like structure where a series of decisions are connected [27]. One of the 

reasons for their popularization is that, unlike ANNs, they are more interpretable, intuitive and faster to train. 
According to Aggarwal [28], the algorithm for building a decision tree has two types of nodes, called internal and 

leaf nodes. Each leaf is labeled with the dominant class at that node. A special internal node is the root node that 
corresponds to the entire feature space. The generic decision tree induction algorithm starts with the complete training 
dataset at the root node and partitions the data into lower level nodes based on a split criterion. Only nodes that contain 
a mix of different classes need to be split further. Eventually, the decision tree algorithm stops the tree from growing 
based on a stopping criterion. A generic example of a decision tree is presented in Figure 2. 

 
Figure 2. Generic example of a decision tree. 

The simplest stopping criterion is one where all training examples in the leaf belong to the same class. One problem 
is that building the decision tree at this level may lead to overfitting, in which the model fits the random noise of the 
training data. In this case, this tree will have high variance and will not generalize well to unknown data. To try to 
reduce the loss of precision associated with overfitting, the classifier uses a pruning mechanism to remove nodes. 

In general, simpler models (shallow decision trees) are preferable to more complex models (deep decision trees) if 
they produce the same error in the training data. Thus, a common stopping criterion is the use of a maximum number 
of levels (or maximum depth) that the model can reach. 
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Decision trees can be used for regression or classification and have found applications in different areas of structural 
engineering, as in [9], [11] and [12]. However, in recent studies, researchers tend to adopt enhanced versions of the 
classical decision tree algorithm, like random forests and boosting techniques. 

2.3 Random Forest – RF 
The random forest algorithm emerged as an evolution of decision trees. In general, the data split procedure in 

decision trees tends to lead to overfitting, when the model performs well with the training data but does not generalize 
as well to unknown data. The random forest tries to fix this problem by generating several decision trees (estimators), 
and was developed by Breiman [34]. 

Random forests are defined as a set of decision trees where randomness is explicitly inserted in the process of 
splitting the nodes of each tree. The idea is to use this randomness to generate less correlation between the components 
of the set, allowing each tree to specialize in a slightly different way from the others [28]. The result is the average of 
the individual results of each tree. 

Bootstrapping is one of the sources of randomness in RF. According to Aggarwal [28], in the bootstrap method, the 
labeled data is sampled randomly and uniformly, with replacement, to create a bootstrapped training dataset that might 
possibly contain duplicates. The labeled data of size n can be sampled n times with replacement. This results in a 
training data with the same size as the original labeled data. However, the bootstrapped dataset typically contains 
duplicates and also misses some points in the original data. Therefore, each estimator in the random forest is trained 
using a slightly different dataset. 

The results of the RF are usually more accurate than those of the simple decision tree and the model is resistant to noise and 
outliers, which made RF a popular technique nowadays. Recent structural engineering studies include [9]–[12] and [35]. 

2.4 Extreme Gradient Boosting – XGBoost 
Tree boosting is the construction of decision tree models in sequence, iteratively, where a model is based on the 

results of the previous one. According to Aggarwal [28], the basic idea is to focus on the errors (residuals) and try to 
adjust the weights of each incorrectly classified instance to improve the next model. In gradient boosting, as the name 
suggests, the adjustment of the weights is performed through the gradient of the prediction error. 

Extreme gradient boosting is a recent technique, developed in 2014 and published by Chen and Guestrin [36] as an 
evolution of traditional gradient boosting. It was developed to not only have high accuracy, but also low risk of 
overfitting. According to Chen and Guestrin [36], simple gradient boosting contains three main elements: a loss function 
to be optimized, a classification and regression tree (CART) for making predictions and a model for adding trees in 
sequence to minimize the loss function. As an improvement of this algorithm, XGBoost adds regularization to the 
objective function to avoid overfitting, along with many other enhancements. Russell and Norvig [37] also point out 
that XGBoost aims at being efficient, carefully organizing memory to avoid cache issues and allowing parallel 
computing across multiple machines, making it an easily scalable algorithm. 

Chen and Guestrin [36] point that the tree ensemble model with regularization minimizes the objective function 
shown in Equation 1, where 𝑖𝑖 is the number of inputs, 𝑁𝑁 is the number of predictions and 𝐾𝐾 is the number of trees. The 
function 𝑙𝑙 is a differentiable convex loss function that measures the difference between the prediction 𝑦𝑦�𝑖𝑖 and the target 
𝑦𝑦𝑖𝑖. The term Ω penalizes the complexity of the model, where 𝑇𝑇 is the number of leaves and 𝛾𝛾 is the minimum loss 
reduction required to make a further partition on a leaf node of the tree. The additional L2 regularization term 𝜆𝜆 helps 
to smooth the final learnt weights to avoid overfitting. When 𝜆𝜆 is set to 0, the objective falls back to the traditional 
gradient tree boosting. 

ℒ(𝜙𝜙) = ∑ 𝑙𝑙(𝑦𝑦�𝑖𝑖 ,𝑦𝑦𝑖𝑖)𝑁𝑁
𝑖𝑖 + ∑ Ω(𝑓𝑓𝑘𝑘)𝐾𝐾

𝑘𝑘 , where Ω(𝑓𝑓) = 𝛾𝛾𝑇𝑇 + 1
2
𝜆𝜆‖𝑤𝑤‖2 (1) 

Besides the regularized objective, two additional techniques are used to further prevent overfitting. The first 
technique is shrinkage, which scales newly added weights by a factor 𝜂𝜂 after each step of tree boosting. Similar to a 
learning rate in stochastic optimization, shrinkage reduces the influence of each individual tree and leaves space for 
future trees to improve the model. The second technique is feature subsampling, which is also used in RF in commercial 
software such as TreeNet, and helps to prevent overfitting even more [36]. 

According to Chen and Guestrin [36], the XGBoost uses a gain-based score to search for the best node splits when 
building a tree. Gain can be seen as the improvement in accuracy brought by a feature to the branches it is on. Equation 2 
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gives the gain at a leaf node during splitting. Nguyen et al. [10] explain that this formula is composed of four terms, which 
in turn represent the scores of the new left leaf (𝑔𝑔𝐿𝐿), new right leaf (𝑔𝑔𝑅𝑅), original left and right leaves (ℎ𝐿𝐿, ℎ𝑅𝑅), and the 
regularization of the additional leaf. The tree ceases growing when the gain becomes smaller than 𝛾𝛾. In the ensemble 
model, the prediction scores of all trees are summed to obtain the final score. 

𝐺𝐺𝐺𝐺𝑖𝑖𝐺𝐺 = 1
2
� 𝑔𝑔𝐿𝐿

2

ℎ𝐿𝐿+𝜆𝜆
+ 𝑔𝑔𝑅𝑅

2

ℎ𝑅𝑅+𝜆𝜆
− (𝑔𝑔𝐿𝐿+ℎ𝑅𝑅)2

ℎ𝐿𝐿+ℎ𝑅𝑅+𝜆𝜆
� − 𝛾𝛾 (2) 

As it is a recent technique, there are still few civil engineering studies applying XGBoost, such as [10], [11] and [38]–[42]. 

3 PUNCHING SHEAR IN FLAT SLABS AND DESIGN CODE MODELS 
The flat slab system of reinforced concrete has been used more frequently because it has some advantages when 

compared to conventional structural systems. Among these advantages, one can mention greater architectural freedom 
in defining internal environments or future layout changes; simplification of reinforcement and consequent reduction 
of labor and material costs; ease in the arrangement of installations and simplification of forms and framing. The system 
also has disadvantages compared to conventional ones, such as higher levels of vertical displacement of the structure, 
reduction of the global stability and the possibility of failure by punching shear [43]. 

Punching shear is a type of shear failure that can occur in plate elements subjected to a concentrated load or reaction applied 
transversally and is characterized by occurring abruptly, which can lead the structure to ruin through progressive collapse. The 
shear strength of the slab-column connection is one of the most important parameters in the design of flat slabs [44]. 

Wight and MacGregor [45] mention that the two-way shear involves a truncated cone or pyramid-shaped surface 
around the column. According to Muttoni [2], most design codes for punching shear base their verifications on a critical 
section, with the punching shear strength of slabs without shear reinforcement defined as a function of the concrete 
compressive strength and often of the reinforcement ratio. Some codes also account for size effect, membrane effect, or 
the ratio of column size to the depth of the slab. This critical section or control perimeter is defined as shown in Figure 3. 

 
Figure 3. Control perimeters. 

The design equations for calculating the punching shear resistance of flat RC slabs without shear reinforcement 
investigated herein are presented as follows. Note that, to ensure comparison with real failure data, no safety coefficients 
were introduced in the presented equations. Units are in SI. 

3.1 Eurocode 2 (2004) 
Eurocode 2 [23] uses Equation 3 for punching shear design, where ρl is the longitudinal (flexural) reinforcement 

ratio, fc is the compressive strength of the concrete, u1 is the control perimeter, d is the effective depth of the slab and ξ 
is the size effect factor, calculated by Equation 4. 
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𝑉𝑉𝐸𝐸𝐸𝐸2,𝑝𝑝 = 0.18𝜉𝜉(100𝜌𝜌𝑙𝑙𝑓𝑓𝑐𝑐)1/3𝑢𝑢1𝑑𝑑,𝜌𝜌𝑙𝑙 ≤ 2% (3) 

𝜉𝜉 = 1 + �200
𝑑𝑑
≤ 2 (4) 

3.2 ABNT NBR 6118 (2014) 
NBR 6118 [21] uses Equations 5 and 6 for design, using the same procedure as Eurocode 2 [23], but without 

limitations on the reinforcement ratio and size effect factor. 

𝑉𝑉𝑁𝑁𝑁𝑁𝑅𝑅,𝑝𝑝 = 0.18𝜉𝜉(100𝜌𝜌𝑙𝑙𝑓𝑓𝑐𝑐)1/3𝑢𝑢1𝑑𝑑 (5) 

𝜉𝜉 = 1 + �200
𝑑𝑑

 (6) 

3.3 ACI 318M (2019) 
Equation 7 is used in the design of flat slabs by ACI 318 [22], where αs is equal to 20 for corner columns, 30 for 

edge columns and 40 for interior columns, 𝛽𝛽 is the ratio between the largest and smallest sides of the column and λs is 
the modification factor related to the size effect, given by Equation 8. 

𝑉𝑉𝐴𝐴𝐸𝐸𝐴𝐴,𝑝𝑝 = 𝜆𝜆𝑠𝑠�𝑓𝑓𝑐𝑐𝑢𝑢1𝑑𝑑min

⎩
⎪
⎨

⎪
⎧

1
3

1
6
�1 + 2

𝛽𝛽
�

1
12
�2 + 𝛼𝛼𝑠𝑠𝑑𝑑

𝑢𝑢1
�

 (7) 

𝜆𝜆𝑠𝑠 = � 2
1+0.004𝑑𝑑

≤ 1 (8) 

3.4 BS 8110 (1987) 
The British standard BS 8110 [24] uses Equation 9 for punching shear design. Reinforcement ratio is capped at 3%. 

For concretes with 𝑓𝑓𝑐𝑐 above 25 MPa, the calculated value must be multiplied according to Equation 10. Equation 11 
calculates the size effect factor. 

𝑉𝑉𝑁𝑁𝐵𝐵,𝑝𝑝 = 0.79𝜉𝜉(100𝜌𝜌𝑙𝑙)1/3𝑢𝑢1𝑑𝑑,𝜌𝜌𝑙𝑙 ≤ 3% (9) 

𝑉𝑉𝑁𝑁𝐵𝐵,𝑝𝑝 = 𝑉𝑉𝑁𝑁𝐵𝐵,𝑝𝑝 �
𝑓𝑓𝑐𝑐
25
�
1/3

 for 𝑓𝑓𝑐𝑐 ≥ 25 MPa (10) 

𝜉𝜉 = �400
𝑑𝑑

4 ≥ 1 (11) 

3.5 DIN 1045-1 (2008) 
Equation 12 is used to calculate the punching shear resistance by the German standard DIN 1045-1 [25]. Equation 

4 gives the size effect factor, corresponding to the same formulation as in Eurocode 2 [23]. 

𝑉𝑉𝐷𝐷𝐴𝐴𝑁𝑁,𝑝𝑝 = 0.21𝜉𝜉(100𝜌𝜌𝑙𝑙𝑓𝑓𝑐𝑐)1/3𝑢𝑢1𝑑𝑑,𝜌𝜌𝑙𝑙 ≤ 2% (12) 
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4 DATA ENGINEERING 

The dataset applied in this study is the same used by [11]. This is a database with experimental results of 519 flat 
slabs tested by several authors since 1938. A preliminary treatment is carried out to reduce the dimensionality of the 
problem, considering only the most relevant variables that were used in other papers on the subject, such as [10]–[12]. 
The selected input variables are: average effective depth of the slab (davg) in X and Y directions, effective column width 
(b*), concrete compressive strength (fc), steel yield strength (fy) and average flexural reinforcement ratio (ρavg) in X and 
Y directions. 

In most cases, the average compressive strength at time of slab testing was informed and, thus, this variable could 
be used directly. However, in some of the experimental tests, only the compressive strength at 28 days was reported. In 
these cases, strength at the time of slab testing was estimated from the strength at 28 days based on the elapsed time. 
Specimen details are presented in the original dataset. 

In few cases, the longitudinal reinforcement bars of the slabs were arranged with non-uniform spacing along the 
section, and the reinforcement ratios employed herein had to be adjusted from the reported ones. The reinforcement 
ratio considered corresponded only to the region that passes through the column. 

For the cases of rectangular or circular columns, b* is the width of the equivalent square area section, given by 
Equations 13a and 13b [11], where D is the diameter and b1 and b2 are the smaller and larger side of the column, 
respectively. Thus, the number of features is reduced to five and the output variable is the punching shear strength of 
the slab (Pu). 

𝑏𝑏∗ = 𝜋𝜋𝐷𝐷
4

 (circular section) (13a) 

𝑏𝑏∗ = 𝑏𝑏1+𝑏𝑏2
2

 (rectangular section) (13b) 

As the objective of this study is to predict the punching shear failure load, 84 slabs that did not fail exclusively by 
this mechanism are excluded. In addition, missing values are identified in fy for 18 of the samples. These samples are 
removed from the dataset. Finally, 44 slabs that did not have longitudinal reinforcement in the region of the column are 
excluded, leaving 373 experimental results. Table 1 shows the descriptive statistics of the dataset after this treatment. 

Table 1. Descriptive statistics of the dataset. 

 davg (mm) ñavg (‰) b* (mm) fc (MPa) fy (MPa) Pu (kN) 
Mean 110.73 12.98 180.95 32.80 461.63 384.30 

Std. dev. 66.50 6.50 97.25 18.62 118.23 458.86 
Min. 29.97 3.25 39.90 8.66 250.00 24.00 
25% 76.20 8.44 109.96 22.13 359.00 165.00 
50% 107.00 11.75 159.59 28.05 462.00 265.00 
75% 121.56 15.19 225.00 35.34 530.00 405.00 
Max. 668.50 50.10 707.64 118.70 749.00 4915.00 

A common step in the data preprocessing for ML models is data scaling. In the input data, the parameters usually 
have very different magnitudes and units from each other, which can lead the model to incorrectly assign greater 
importance to variables with higher numerical values. To prevent this problem, data is scaled so that the features are of 
the same order of magnitude (with values close to zero, usually between 0 and 1 or between -1 and 1). In this study, 
three scaling methods from the Python scikit-learn (sklearn) library are applied: StandardScaler, Normalizer and 
MinMaxScaler. According to the documentation of the sklearn library [46], the StandardScaler transforms the data 
through the z-score technique, setting null mean and unit standard deviation; the Normalizer normalizes the data by 
rescaling them to unitary norm; and MinMaxScaler scales the data so that the values are always between 0 and 1. For 
each ML algorithm, the scaling method that obtained the best results is used. Figure 4 shows the pairplots of the scaled 
variables after applying the StandardScaler. 
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Figure 4. Pairplot. 

A pairplot can be interpreted as a symmetric matrix of graphs, where kernel density estimation (KDE) graphs 
(equivalent to smoothed histograms) are plotted on the main diagonal and, in the other cells, the relationship between each 
variable and the others is observed through scatter plots. In this way, it is possible to analyze, in a preliminary way, if there 
is correlation between variables and what type of distribution they follow. Another way to get insights from data is by 
plotting a heatmap, which corresponds to a representation of data in the form of a diagram in which data values are 
represented with colors. Heatmap for the features in the dataset (with correlation values) is shown in Figure 5. 

 
Figure 5. Heatmap. 
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Through Figures 4 and 5 it is observed that there is a strong correlation between the effective depth and the ultimate 
load. It is noticed that there is always some degree of positive correlation between individual parameters and the strength 
of the slabs: when increasing the width of the column, the strength of the concrete, the yield strength of the steel, the 
effective depth or the flexural reinforcement ratio, the punching shear strength also increases. It is also observed that, 
apparently, the geometric properties of the slabs (davg and b*) show a proportional behavior, which can be explained by 
the fact that, in experimental tests, larger slabs (with higher widths) are usually supported on larger columns (larger b*). 

Before running the ML algorithms, it is common to split the data into training and test sets. In this way, models are developed 
based on a portion of the dataset (training set) and tested with the remaining data (test set), to evaluate their accuracy with 
unknown data and avoid overfitting. For all models of this paper, the data are split in the proportion 70% training and 30% test, 
which is a common ratio used in the literature. Data scaling is performed only after this split to avoid issues like data leakage. 

The repeated holdout technique is used for each algorithm. According to Aggarwal [28], the holdout consists of 
randomly dividing the data into two disjoint sets, corresponding to the training and test data. The repeated holdout, as 
the name suggests, repeatedly does this to find the best random state for the training/test split for a given problem. 
Random state is the seed (or starting point in random number generators), which is a value specified to control 
randomness and to generate reproducible results. 

5 MODEL ENGINEERING 
Python libraries sklearn for RF and DT, XGBoost for XGB and Tensorflow/Keras for ANN are used. Hyperparameters must 

be set to the ML algorithms. Hyperparameters are free parameters that are not determined by the learning algorithm, but rather 
specified as inputs to it [29]. Table 2 shows the settings used for each algorithm, with initial values based on [10] and [11] and 
subsequently adjusted via hyperparameter tuning with grid search. Grid search is the process of trying combinations of values in 
given intervals and seeing which performs best on the validation data [37]. Other hyperparameters take default values from their 
respective libraries. 

Table 2. Hyperparameters used for each ML algorithm. 

Model Parameters 

ANN Number of hidden layers = 2, number of neurons in each hidden layer = 94, activation function = ReLU, optimizer = 
Adam, learning rate = 0.3, loss function = RMSE, epochs = 50, random state = 0 

DT Maximum depth = 10, random state = 0 
RF Number of estimators = 69, random state = 0 

XGB Number of estimators = 72, learning rate = 0.22, maximum depth = 5, random state = 0 

The coefficient of determination (R2) quantifies the fraction of variability in the series that is explained by the 
regression [28]. It is therefore desirable for this coefficient to be as close to 1 as possible. It provides an indication of 
goodness of fit and a measure of how well unseen samples are likely to be predicted by the model. Another metric is 
the RMSE, which measures the average error between predictions. It is desirable for this metric to be as close to zero 
as possible. Equations 14 and 15 give the R2 and RMSE calculations, where Y and Ŷ are the actual and predicted values 
by the model, Nt is the number of samples and Ȳ is the mean. 

𝑅𝑅2 = 1 −
∑ (𝑌𝑌�𝑖𝑖−𝑌𝑌𝑖𝑖)2
𝑁𝑁𝑡𝑡
𝑖𝑖=1

∑ (𝑌𝑌�𝑖𝑖−𝑌𝑌�𝑖𝑖)2
𝑁𝑁𝑡𝑡
𝑖𝑖=1

 (14) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ �𝑌𝑌�𝑖𝑖 − 𝑌𝑌𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1  (15) 

There are several rules in the literature for trying to choose the optimal number of hidden neurons in ANNs. 
However, most predicting research fields are heuristic in nature, and there is no generally accepted theory to determine 
how many hidden neurons are needed to approximate any given function [47]. Therefore, the use of systematic 
experimentation to discover what works best for a specific dataset may be the most general approach. In this paper, the 
number of hidden neurons is chosen so that R2 is maximized and RMSE is minimized for test data. Figure 6 indicates 
that the optimal number of neurons to meet these conditions is 94 for the problem at hand. 
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Figure 6. Experimentation of the number of neurons in the ANN. 

A similar process is done to find the optimal maximum depth for the DT and number of estimators for the RF and 
XGB algorithms. Results are shown in Figures 7, 8 and 9, where optimal values are 10 levels for DT, 69 trees for RF 
and 72 trees for XGB. In Figures 7 and 8, it is observed that the prediction accuracy for test data starts to decrease after 
certain values of maximum tree depth (DT) and number of estimators (RF), which is a sign of overfitting. Figure 7 also 
indicates that the maximum possible depth for the DT is 18. 

 
Figure 7. Experimentation of the maximum depth in the DT. 

 
Figure 8. Experimentation of the number of estimators in the RF. 
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Figure 9. Experimentation of the number of estimators in the XGB. 

6 RESULTS AND DISCUSSIONS 
Figure 10 shows the results of the regression models (regplots) for training and test data and for the entire dataset. 

Results are presented from highest to lowest R2 for test data. 

 
Figure 10. Regplots. 
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From Figure 10, XGB is the model with highest R2 (0.9857) and lowest RMSE (38.69 kN) for test data. It is followed 
by RF and DT. The RF and DT models show similar performance; however, the RF has less variance (less overfitting 
or higher accuracy for test data). The DT and XGB models also present similar results, but the DT shows a significantly 
lower R2 for the test data. The DT not performing as well to test data as it does to training data can be explained by the 
tendency to overfitting of the classical decision tree models. It is observed that ANN is the model that shows the lowest 
R2 (0.9597) and highest RMSE (68.32 kN) for test data, but these results agree with what was found in the literature, 
as shown in section 1. 

Figure 11 shows histograms of the Pu,pred/Pu,experimental ratio (using the test sets of each model), with all models having 
values concentrated around 1. From a structural safety point of view, it is desirable that, if the model makes an incorrect 
prediction, its prediction must be in favor of safety (that is, that it underestimates the structural resistance). Therefore, 
ratios closer to 1 and lower standard deviations are desirable. The ANN outperforms the DT and RF models when 
analyzing this relationship, as opposed to what is observed in Figure 10. It is observed that the XGB (Figure 11d) shows 
the closest to 1 mean and the lowest standard deviation between the four models, and also the lowest maximum value. 

 
Figure 11. Histograms of the predicted/actual punching shear strength ratios. 

In applications related to structural engineering, it is essential to understand whether the model usually leads to 
values in favor of safety, that is, conservative, or not. In this sense, the method proposed in [48] is employed herein to 
compare the different ML models. Table 3 presents the calculated conservatism indexes (C) and indicates that all 
models are considered slightly non-conservative according to the method, with negative values. 

Table 3. Conservatism indexes. 

Model C 
XGB -0.0262 
ANN -0.0464 
RF -0.0671 
DT -0.0714 
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Therefore, considering the metrics in Figures 10 and 11 and Table 3, it is decided, from now on, to use only the 
XGB model for the purposes of comparison with design standard models in this study. 

After selecting the best model, a feature importance analysis is performed to identify the impact of the input variables 
on the output. The bar graph in Figure 12 shows the feature importance through their gain. The feature importance based 
on this metric shows the average gain across all splits where a particular feature is used. Therefore, higher gain means 
higher importance. As presumed in the data engineering step, the effective depth is the most important variable, followed 
by the column dimension, reinforcement ratio and steel yield strength. The concrete strength is the variable that provides 
the smallest gain in this model. These results agree with what was observed by [10]. 

 
Figure 12. Relative feature importance in the XGB model. 

7 COMPARATIVE STUDY OF MODELS 
The equations for RC slab design according to the design standards [21]–[25] are presented in section 3. It is noted 

that none of these codes directly use the column width in their formulas. Instead, a critical perimeter around the column 
is considered, which depends on its dimensions and the effective depth of the slab. None of the standards uses the fy 
parameter in the design, while the American standard also ignores the longitudinal reinforcement ratio. Most standards 
differ in calculating the size effect factor. 

In all evaluations performed with the standards, for a fair comparison with the XGB model, only the 112 slabs used in the 
XGB test dataset are considered. The regplots, R2 and RMSE of the design code models and XGB are shown in Figure 13. 

 
Figure 13. Regplots with design code results. 
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From Figure 13 it is observed that, although providing accurate results, all design models show inferior accuracy than 
the XGB. The ACI (Figure 13a) shows the least accurate results, followed by DIN (Figure 13b), BS (Figure 13c), EC2 
(Figure 13d) and NBR (Figure 13e). The XGB (Figure 13f) is the model that shows the highest R2 and the lowest RMSE. 

The histograms of the Pu,pred/Pu,experimental ratios are shown in Figure 14. Based on the results presented, there is a 
tendency for the ACI (Figure 14a) to underestimate the strength of the slabs, being a conservative model, due to the 
method used to calculate the control perimeter (only 0.5d away from the column face). The DIN (Figure 14b), BS 
(Figure 14c) and EC2 (Figure 14d) standards, in general, also show conservative results. These standards tend to 
underestimate the slabs resistances, as expected. The NBR (Figure 14e) shows better estimates than the other standards, 
as the NBR does not limit the size effect factor (ξ) and the reinforcement ratio in its formulas, obtaining results closer 
to reality than the other standards. Between the design models, the NBR shows the closest to 1 average error. Thus, the 
recommendation of NBR is the most indicated by the authors regarding the size effect. 

 
Figure 14. Histograms of the predicted/actual punching shear strength ratios with design code results. 

From Figure 14, the ACI, DIN, BS, EC2 and NBR models estimate, on average, failure loads 30.1% lower, 27.2% 
lower, 9.9% lower, 15.1% lower and 5,6% higher than the real ones, respectively. On the other hand, the XGB estimates 
values, on average, 2.6% higher than the experimental ones. 

Table 4 shows the descriptive statistics of the ultimate load for each model. The NBR and XGB showed similar 
statistics for the 112 slabs, with the NBR being closer to the actual mean and the XGB closer to the experimental 
standard deviation. 

Table 4. Descriptive statistics of the results. 

 Exp. (kN) ACI (kN) DIN (kN) BS (kN) EC2 (kN) NBR (kN) XGB (kN) 
Mean 320.02 225.95 233.85 275.50 278.07 322.18 323.87 

Std. dev. 324.29 228.28 240.08 259.18 299.74 310.96 320.02 
Min. 34.00 19.81 20.80 33.39 24.24 42.54 30.96 
25% 159.00 91.06 102.52 132.84 122.20 153.55 173.34 
50% 244.00 169.28 201.92 208.00 210.35 252.88 248.70 
75% 346.25 280.44 282.00 326.18 320.13 370.04 352.55 
Max. 2400.00 1609.56 1710.26 1839.25 2201.13 2386.79 2348.72 
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Table 5 shows the results for conservatism indexes (C) calculated according to the method presented in [48], with 
results for the design code models. Despite presenting the lowest conservatism index and having predicted, on average, 
values greater than the real ones, it cannot be said that the NBR was against safety, as there may be other factors that 
influence resistance that were not addressed in this study. For example, according to Sousa and Debs [49], the aggregate 
interlock effect is not accounted in the ACI, EC2 and NBR standards, which is known to be an important factor in the 
shear resistance of concrete structures. 

Table 5. Conservatism indexes with design code results. 

Model C 
ACI 0.3011 
DIN 0.2715 
EC2 0.1510 
BS 0.0989 

NBR -0.0557 
XGB -0.0262 

8 CONCLUSIONS 
In this paper, four ML models were developed to predict the punching shear strength of RC flat slabs based on 373 

experimental results. After a comparative analysis between them, the model based on extreme gradient boosting (XGB) 
was considered the best one, with higher R2, lower RMSE and lower error ratio. 

The XGB model was compared with models of five design standards: ABNT NBR 6118 [21], ACI 318 [22], 
Eurocode 2 [23], BS 8110 [24] and DIN 1145-1 [25]. It was observed that the standard models, although showing 
satisfactory results in general, presented lower accuracy not only in comparison with the XGB, but also with the other 
developed ML models. The design code models were compared to the experimental data, where the one that came 
closest to the real results was the NBR, while the ACI was the most distant from the actual resistances. It was found 
that the ACI, EC2, BS and DIN tend to underestimate the strength of the slabs, providing values on average lower than 
the real ones, being conservative. 

As a result, the following conclusions are drawn: 
1. The XGB model had the best performance between the developed ML models and it was closer to the real results 

than the studied design code models, showing good ability to predict the punching shear strength of flat RC slabs, 
with R2 equal to 0.9857 and RMSE of 38.69 kN for the test data; 

2. Between the five input variables of the XGB model, it was found that the effective depth of the slab is the most 
important, and the properties of concrete and steel are the least relevant; 

3. Between the studied models from design codes, there were large discrepancies in the results and the NBR 6118 [21] 
model showed the best overall performance in predicting the failure load of the slabs, as well as the lowest 
conservatism, followed by Eurocode 2 [23], BS 8110 [24], DIN 1145-1 [25] and ACI 318 [22]. 
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