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Abstract: The corrosion of steel rebars is the main cause of reinforced concrete degradation, which results in increasing 
costs with structural rehabilitation and repairs. As a solution, corrosion resistant rebars, such as those of FRP – Fiber-
reinforced polymer –, have been used to replace conventional steel. This paper describes the development of a design 
program that calculates the flexural FRP reinforcement of T-shape beams. The possibilities as regards the neutral axis 
position, failure mode and concrete linear or non-linear behavior define the design scenarios for which their respective 
equations were deduced. The flexural strengths computed using the deduced equations showed agreement with 
experimental results for 125 beams, validating the proposed methodology. Since FRP rebars are vulnerable to creep 
rupture, the sustained stresses must be lower than the maximum allowed by ACI 440.1R-15, which may require increases 
in areas, modifying the flexural strength. Therefore, the equations to compute the new neutral axis depth and flexural 
strength based on the adjusted area were deduced and implemented in the computational program. Subsequently, this 
paper presents design examples considering all scenarios for which the equations were deduced. The design of one T-
section considering different FRP rebars combined to normal and high-performance concretes is also reported. The 
results showed that beams reinforced with aramid and glass FRP required large areas to avoid creep rupture, whereas the 
areas of those reinforced by carbon FRP rebars were considerably small; however, they exhibited small curvatures and 
fragile failure when under-reinforced. 

Keywords: reinforced concrete, FRP rebars, T-sections, non-metallic reinforcement, design program. 

Resumo: A corrosão do aço é a principal causa de degradação do concreto estrutural, implicando elevados custos com 
reabilitação e reparos. Diante disto, barras de FRP – Polímeros Reforçados por Fibras – constituem uma alternativa ao 
aço convencional em virtude de sua excelente resistência à corrosão. Este trabalho descreve o desenvolvimento de um 
programa para dimensionamento da armadura de FRP à flexão em vigas de seção T. As diferentes possibilidades 
referentes à posição da linha neutra, modo de falha e comportamento linear ou não-linear do concreto definem os cenários 
de dimensionamento para os quais se aplicam as formulações desenvolvidas. Os momentos resistentes calculados 
apresentaram concordância com valores obtidos experimentalmente, validando a metodologia proposta. Uma vez que as 
barras de FRP são suscetíveis à ruptura por fluência, tensões devido a cargas permanentes devem se manter inferiores ao 
limite estabelecido pelo ACI 440.1R-15, ajustando-se as áreas de armadura quando necessário. Desta maneira, foram 
implementadas no programa, as equações para cálculo da linha neutra e momento resistente baseadas nas áreas ajustadas. 
Subsequentemente, são apresentados exemplos de dimensionamento considerando os diversos cenários para os quais 
desenvolveram-se as formulações, combinando-se diferentes tipos de FRP a variadas classes de concreto. Os resultados 
mostraram que vigas T armadas com FRP de aramida e vidro exigiram elevadas áreas de armadura para atender ao estado 
limite de ruptura por fluência. Em contrapartida, seções armadas com FRP de carbono exigiram áreas menores, porém 
exibindo ruptura frágil e curvaturas reduzidas quando sub-armadas. 

Palavras-chave: concreto armado, barras de FRP, seções T, armadura não-metálica, programa de dimensionamento. 
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1 INTRODUCTION 
During the past century, the focus on obtaining high strength concretes entailed certain unconcern regarding 

durability issues. Somehow, the use of materials with excellent mechanical properties contributed to negligence as 
regards quality control at construction sites [1]. However, the degradation of structures subjected to aggressive 
environments as well as the increasing costs in repairs raised the discussion on how to avoid steel corrosion and preserve 
structural integrity [2]. Therefore, the use of different types of fiber-reinforced polymer (FRP) reinforcements in place 
of steel has gained space, especially in structures located in aggressive environments [3]. 

FRP rebars are constituted by a tangle of high strength and stiffness fibers impregnated in a low modulus resin, 
which characterizes them as anisotropic materials. The fibers contribute to the material tensile strength and modulus, 
whereas the polymeric matrix governs the overall stress-strain relationship and protects the fibers against the concrete 
environment [4]. Moreover, the resin low modulus entails very large strains, which ensures that the maximum load is 
transferred to the fibers [5]. 

FRP is also a lightweight material. Its specific weight varies from 20 to 25% of that of steel, which facilitates the handling 
process. This property allows using FRP rebars in slender columns, where steel congestion is very common [3]. Moreover, 
FRP has been utilized as internal reinforcement for tunnels, retaining walls, bridges, highway pavements and sea walls. It also 
constitutes an economic solution for repairing existing bridges, replacing the conventional steel of the decks [6]. 

The most popular polymeric rebars are defined according to their respective types of fiber: aramid (AFRP), carbon 
(CFRP) and glass (GFRP). Among all FRP categories, CFRP has the highest tensile strength and elasticity modulus; 
however, the raw materials necessary for its production are difficult to find, and the production of carbon fibers requires 
high energy consumption, which makes the utilization of CFRP very costly [6]. AFRP bars, in turn, are characterized 
by their high tensile strength and toughness, in addition to possessing the highest strength-to-weight ratio [4]. 

Nonetheless, losses in strength due to sustained stresses and exposition to UV radiation have limited the AFRP use 
in the civil construction [5]. In contrast, GFRP became the most popular non-metallic reinforcement due to its low cost 
and environmental resistance [6]. Some of GFRP properties include excellent response to cyclic loads, high strength-
to-weight ratio, non-conductivity and coefficient of thermal expansion close to that of concrete [7]. 

Despite the corrosion resistance, non-conductivity and lightweight, FRP rebars behave linearly up to failure, not 
exhibiting a yield plateau as steel does. The cross-sections fail due to either concrete crushing or FRP rupture. Both 
failure modes are fragile; yet, previous versions of ACI 440.1R-15 [3] recommended over-reinforcing the cross-sections 
since concrete exhibits some plateau before failure. 

2 RESEARCH SIGNIFICANCE 
As previously mentioned, the costs with structural repairs have considerably increased, which suggests the gradual 

replacement of steel by non-metallic reinforcements such as FRP. However, there is no code approaching the design of 
FRP flexural members, which means the responsibility for structural safety and functionality is entirely attributed to 
the designer [6]. Furthermore, in spite of the excellent design examples presented by ACI 440.1R-15, this guideline 
does not address the design of T-shape sections. All examples refer to rectangular sections, with priority to compression-
controlled members. 

T-shape beams often occur in practice, given the need to consider the slab contribution to the flexural strength. Their 
design with FRP rebars is not as simple as that of steel, especially for under reinforced cross-sections where the 
parameters α and λ of the concrete simplified stress block are unknown. There are several design approaches that depend 
on the neutral axis position associated to FRP and concrete simultaneous failure, as well as that related to the initiation 
of the concrete non-linear behavior at the most compressed fiber [8]. 

Therefore, the development of computational programs incorporating the FRP constitutive models and safety factors 
to a particular reinforced concrete code has the potential to familiarize students and engineers with the design of T-
shape beams reinforced with FRP, given the need to replace steel by durable and sustainable materials. Furthermore, 
they are able to calculate the same cross-section for different FRP types and concrete strength grades, electing the 
design that combines structural safety and functionality to economic solutions. 

3 SCOPE 
This paper incorporates the FRP parameters provided by ACI 440.1R-15 [3] to the Brazilian code NBR 6118:2014 [9], 

deducing the formulations to calculate the FRP longitudinal reinforcement of tension and compression-controlled T-shape 
sections. The design assumptions accounted for failure due to concrete crushing and FRP rupture, neutral axes on the 
flange or web and concrete exhibiting linear or non-linear behavior. Additionally, considering that the reinforcement areas 
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may be adjusted to avoid creep rupture, the assumptions and formulations to compute the final flexural strength are also 
described. Those formulations are validated by comparing the flexural capacities obtained experimentally to those 
predicted by the proposed procedures. 

The primordial objective was to computationally implement those formulations, developing a design program that 
calculates the longitudinal FRP reinforcement of T-sections under different scenarios of failure mode, neutral axis 
position and concrete linear or non-linear behavior. The objective was to identify effective combinations of FRP and 
concrete strengths resulting in balanced sections, ductility and proper use of materials’ mechanical properties. 
Furthermore, this research aimed to evaluate changes in failure modes, flexural strengths and curvatures caused by 
adjustments in the FRP areas to avoid creep rupture. 

4 DESIGN FOR THE ULTIMATE LIMIT STATE FOR FLEXURE 
In order to develop the formulations for the design, the concrete constitutive model of NBR 6118:2014 [9] as well 

as its parameters were utilized. Figure 1 illustrates the parabola-rectangle model defined by Equations 1 and 2. 

 
Figure 1. Concrete constitutive model for compression, for which 0.85fcd and fck correspond to the design and characteristic 

strength, respectively [9] 

𝜎𝜎cd = 0.85fcd �1- �1-
𝜀𝜀c
𝜀𝜀c2
�n� if 0 ≤  𝜀𝜀c < 𝜀𝜀c2  (1) 

𝜎𝜎cd = 0.85fcd
 if 𝜀𝜀c2 ≤ 𝜀𝜀c< 𝜀𝜀cu

 (2) 

The FRP RC cross-sections fail due to concrete crushing or reinforcement rupture. ACI 440.1R-15 [3] introduces 
the concept of balanced reinforcement ratio, for which both failure modes occur simultaneously. The balanced area Ab 
is associated to the neutral axis position xb and to the balanced moment Mb. Unlike ACI 440.1R-15, Barbosa [8] 
compares the design moment Md to Mb to define the failure mode. If Md < Mb, the cross-section is tension-controlled, 
whereas Md ≥ Mb indicates compression-control. Since concrete and FRP reaches their ultimate strains εcu and εfud 
simultaneously, xb is obtained through compatibility as: 

 xb= � 𝜀𝜀cu
𝜀𝜀cu + 𝜀𝜀fud

� d (3) 

Table 4.2.1 of ACI 440.1R-15 [3] establishes intervals of tensile strengths ffu* and elasticity moduli Ef for the three 
types of FRP rebars. The strengths are reduced by the environmental coefficients specified in Table 6.2 of this guideline. 
Unlike NBR 6118:2014 [9], ACI 440.1R-15 imposes safety factors to the cross-section flexural strength and not to the 
FRP tensile strength. Thus, to incorporate the FRP parameters to NBR 6118:2014 [9] design procedures, the adjusted 
strength for environmental conditions still needs another factor. As indicated by the Brazilian Recommended Practice 
for FRP RC structures CT 303 [10], the value of 1.30 was adopted. Thus, the design tensile strength ffud accounts for 
the environment and eventual uncertainties covered by this factor. 
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Figures 2 and 3 illustrate balanced sections for which the concrete simplified stress block reaches the flange and 
web, respectively, resulting in two different approaches to calculate Mb. If λuxb < hf, the calculation of the balanced 
moment accounts only for the flange compressed area. Otherwise, if λuxb ≥ hf, both flange and web compressed areas 
are considered. Equations 4 and 5 define the balanced moments for both scenarios, following the order they were 
mentioned: 

Mb=𝛼𝛼u𝜆𝜆ufcdbfxb(d - 0.5𝜆𝜆uxb) (4) 

Mb=𝛼𝛼ufcd[𝜆𝜆uxbbw(d - 0.5𝜆𝜆uxb) + hf(bf - bw)(d - 0.5hf)] (5) 

 
Figure 2. Equilibrium and compatibility of a balanced cross-section with the simplified stress block located on the flange [8] 

 
Figure 3. Compatibility and equilibrium of a balanced cross-section with the simplified stress block reaching the web [8] 

If the balanced block depth λuxb does not reach the web and the design bending moment is lower than the balanced 
one, the cross-section is tension-controlled and the actual stress block λux associated to Md is smaller than the flange 
thickness [7). Moreover, if the cross-section is too under-reinforced, the FRP rebars may fail before the concrete 
exhibits non-linear behavior. As a result, the values of αu and λu no longer applies, which suggests a linear constitutive 
model for concrete [3]. Therefore, this scenario results in two design approaches distinguished by the concrete behavior. 
In contrast, if Md ≥ Mb, the actual stress block may reach the web or not, leading to other two approaches [8]. 
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Conversely, if the balanced stress block λuxb reaches the web and Md < Mb, there are two possibilities as regards the 
stress block associated to the design moment: λux < hf or λux ≥ hf. Furthermore, for each of these two possibilities, 
concrete may behave linearly or not, resulting in other four design approaches. However, if Md ≥ Mb, the actual stress 
block reaches the web [8]. Therefore, there are nine different design approaches considering only the ultimate limit 
state for flexure. All formulations are deduced as follows: 

4.1 Scenario 1 – Balanced block on the flange and tension-controlled section 
This scenario is characterized by λuxb < hf and Md < Mb, which implies that λux < hf. However, given the assumption 

of concrete behaving linearly, it is necessary to define the neutral axis position and the bending moment from which 
linearity no longer applies. NBR 6118:2014 [9] allows considering the linear stress-strain relationship for stresses under 
50% of the concrete compressive strength. Accordingly, this research adopted the maximum stress of 0.5(0.85fcd), 
which provides the strain εclin from Equation 1 as εc2(1-0.51/n). Therefore, the neutral axis xlin related to the linearity limit 
and obtained through strain compatibility is: 

xlin= � 𝜀𝜀clin
𝜀𝜀clin + 𝜀𝜀fud

� d (6) 

Since the balanced block lies on the flange and the section is tension-controlled, xlin is smaller than the flange 
thickness [8]. Figure 4 illustrates the equilibrium and compatibility conditions to calculate the moment Mlin associated 
to xlin considering the linear stress-strain relationship for concrete. Thus, if the design moment Md is lower than the 
reference moment Mlin provided by Equation 7, the linear constitutive model applies [8]. 

 
Figure 4. Equilibrium and compatibility conditions of a tension-controlled section with neutral axis on the flange and concrete 

exhibiting linear behavior [8]. 

Mlin= �0.425fcdxlinbf
 2 

� �d - xlin
3
� (7) 

The secant elasticity modulus Elin adopted for the linear approach corresponds to the slope of the line connecting 
the origin to the point (εclin, 0.425fcd). In order to find the unknown neutral axis depth x, the values of Mlin and xlin in 
Equation 7 are replaced by Md and x, respectively. The stress 0.425fcd, in turn, is replaced by the product of the secant 
modulus Elin and the most compressed fiber strain εt, written as a function of x. As a result, there is a cubic equation 
whose solution within the interval 0 < x < hf corresponds to the neutral axis depth: 

x³ - 3dx² + � 6Md
Elin𝜀𝜀fudbf

� (d - x) = 0 (8) 

Equation 8 is solved through the Newton-Raphson Method, initially assuming that x = 1.5xb. The iterative process ends 
once the error |xi+1 – xi| reaches 10-5, which means the neutral axis depth has been found. Negative roots or values 
exceeding xlin are computationally disregarded. By imposing equilibrium, the required area Af to resist Md is found 
through: 
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Af = Md

ffud�d -x
3�

 (9) 

Conversely, if the design moment Md is higher than Mlin, the linear approach no longer applies seeing that the stress in 
the most compressed fiber exceeds 50% of 0.85fcd. Although concrete does not fail, ACI 440.1R-15 recommends using, 
as a conservative approach, the simplified stress block associated to the crushing of the concrete. In this scenario, the 
parameters αcu and λu are calculated as follows, in consonance with NBR 6118:2014 [9]: 

αcu = 0.85 

λu = 0.8 if fck ≤ 50 MPa (10) 

αcu = 0.85[1 − (fck − 50)/200] 

λu = 0.8 − (fck − 50)/400 if 50 <  fck  ≤ 90 MPa (11) 

By imposing the equilibrium conditions illustrated in Figure 5, the neutral axis and the required FRP area are 
computed as follows: 

x = d
𝜆𝜆u
�1 -�1 - 2Md

𝛼𝛼cufcdbfd
2� (12) 

Af = Md
ffud(d - 0.5𝜆𝜆ux)

 (13) 

Regardless on the concrete behavior, the strain at the most concrete compressed fiber εt is computed through 
compatibility as: 

𝜀𝜀t= 𝜀𝜀fud �
x

d - x
� (14) 

 
Figure 5. Equilibrium and compatibility conditions of a tension-controlled section for which concrete behaves non-linearly [8]. 

4.2 Scenario 2 – Balanced block on the web and tension-controlled section 
If the balanced stress block reaches the web and the cross-section is tension-controlled, there are four possibilities: 

first, the actual stress block is on the flange and the concrete linear approach applies; second, the stress block remains 
on the flange but concrete exhibits non-linear behavior; third, the stress block reaches the web while concrete behaves 
linearly and fourth, the linear approach no longer applies for the stress block on the web [8]. 

Furthermore, the reference neutral axis xlin may be either on the flange or web, which results in two different methods 
to compute the reference moment Mlin. If xlin < hf, Mlin is determined from Equation 7; otherwise, the compressive 
stresses on the flange and web must be considered as shown in Figure 6. First, it is necessary to determine the resulting 



F. A. S. Barbosa, T. N. Bittencourt, G. R. Boriolo, F. R. André, and M. M. Frutai 

Rev. IBRACON Estrut. Mater., vol. 16, no. 4, e16403, 2023 7/20 

compressive force Flin from Equation 15 and its center y�lin from Equation 16. Therefore, the reference moment Mlin is 
computed as the product of Flin and the moment arm d - y�lin. 

Flin = 1
2

Elin𝜀𝜀clin ��2 - hf
xlin
� (bf - bw)hf + bwxlin� (15) 

y�lin=
bwxlin

2

3  + hf
2�1 - 23

hf
xlin

�(bf − bw)

bwxlin + hf�2 - 
hf

xlin
�(bf - bw)

 (16) 

If xlin < hf and Md < Mlin, the neutral axis x and the reinforcement area Af are computed through Equations 8 and 9, 
the same as for scenario 1. Conversely, if xlin ≥ hf and Md < Mlin, the neutral axis x associated to Md may be on the flange 
or web. Initially, it is assumed that x < hf, for which Equation 8 applies. If the value found for x is smaller than the 
flange thickness, the assumption is correct, and the required area is computed through Equation 9. Nonetheless, if x ≥ 
hf, the assumption is incorrect, and the value of x is not valid. Consequently, the calculation of the neutral axis depth 
and the required FRP area must account for the compressive stresses on the flange and web as shown in Figure 6. 

 
Figure 6. Compatibility and equilibrium of a tension-controlled cross-section for which the concrete linear stress-strain 

relationship applies [8]. 

Thus, the variables xlin and εclin in Equations 15 and 16 are replaced by the neutral axis depth x and the strain at the 
most compressed fiber εt, respectively. Since the strain εt can be written as a function of x, the neutral axis depth 
becomes the only unknown variable. As a result, the expression Fc (d - y�c) = Md results in a third-degree equation 
described as follows: 

a1= 6hf(d - 0.5hf)(bf − bw)
bw

 (17) 
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a2= 3hf
2[d - (hf 3⁄ )](bf - bw)

bw
 (18) 

a3= 6Md
Elin𝜀𝜀fudbw

 (19) 

x3 - 3dx2 - (a1 + a3)x + (a3d + a1hf - a2) = 0 (20) 

Equation 20 is solved exactly as Equation 8, through the Newton-Raphson Method, initially arbitrating x as 1.5xb and 
ceasing the iterative process once the error becomes smaller than 10-3. Entering the value of x in Fc leads to the resulting 
compressive and tensile forces, which allows determining the required FRP area as: 

Af = F𝑐𝑐
ffud

 (21) 

However, if xlin < hf and Md ≥ Mlin, concrete behaves non-linearly and the simplified stress block related to Md may 
reach either only the flange or the web. First, it is assumed that λux < hf so that x is computed through Equation 12. If 
the found neutral axis depth is smaller than hf/λu, the assumption is confirmed, and the reinforcement area computed 
through Equation 13. In contrast, if x ≥ hf/λu, the assumption is incorrect, and the calculation of x needs to account for 
both flange and web compressed areas. 

Figure 7 illustrates the cross-section analysis for two bending moments: Mdw and Mdf, accounting for the areas bwx 
and (bf-bw)hf, respectively. They are directly determined as: 

Mdf = 𝛼𝛼cufcdhf(bf  −  bw)(d - 0.5hf) (22) 

Mdw = Md - Mdf (23) 

Since the neutral axis position relies on the compressed area bwx and the moment Mdw, its depth x is computed as 
follows: 

x = d
𝜆𝜆u
�1 -�1 - 2Mdw

𝛼𝛼cufcdbwd2� (24) 

The areas Afw and Aff illustrated in Figure 7 are calculated to resist the moments Mdw and Mdf, respectively. Thus, 
the total reinforcement area Af corresponds to: 

Af = 1
ffud
� Mdw

d - 0.5𝜆𝜆ux
+  Mdf

d - 0.5hf
� (25) 

This approach is also valid if xlin ≥ hf and Md ≥ Mlin considering that concrete exhibits non-linear behavior and the 
stress block λux associated to Md reaches the web. For all these possibilities, the concrete most compressed fiber εt is 
determined in the same manner as for the scenario 1, through Equation 14. 
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Figure 7. Compatibility and equilibrium of a tension-controlled section for which the concrete behaves non-linearly [8]. 

4.3 Scenario 3 - Balanced block on the flange and compression-controlled section 

If the balanced stress block lies on the flange and the design moment is higher than the balanced one, the cross-
section is over-reinforced and the stress block λux can reach the web or not. First, it is assumed that λux < hf, with x 
obtained from Equation 12. If the value found for x confirms this assumption, the next step consists of computing the 
reinforcement stress ff. Since FRP exhibits linear elastic behavior, the compatibility conditions illustrated in Figure 8 
allows determining ff directly from its strain as: 

ff = Ef𝜀𝜀cu �
d - x

x
� (26) 

The required area Af found through equilibrium is calculated as follows: 

Af = Md
ff(d - 0.5𝜆𝜆ux)

 (27) 

However, if the neutral axis depth obtained from Equation 12 is equal to or higher than hf/λu, the assumption is 
incorrect, and the stress block reaches the web. Figure 9 depicts the cross-section analysis for the calculation of the 
neutral axis depth and reinforcement area. 
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Figure 8. Equilibrium and compatibility of a compression-controlled section with stress block on the flange [8]. 

 
Figure 9. Equilibrium and compatibility of a compression-controlled section whose stress block reaches the web [8]. 

The moments Mdf, Mdw as well as the neutral axis depth x are obtained from Equations 22, 23 and 24. This approach 
is the same as that of tension-controlled sections with stress block reaching the web and concrete behaving non-linearly. 
Nonetheless, the reinforcement stress is not equal to ffud since the FRP rebars do not fail. Therefore, the stress in the 
FRP layer is obtained from Equation 26, and the total reinforcement area Af from: 

Af = 1
ff
� Mdw

d - 0.5𝜆𝜆ux
+ Mdf

d - 0.5hf
� (28) 

4.4 Scenario 4 - Balanced block on the web and compression-controlled section 
Unlike the scenario 3, λuxb ≥ hf and Md ≥ Mb, which ensures that the stress block depth λux is equal to or larger than 

the flange thickness. Therefore, the compatibility and equilibrium conditions for this scenario are also illustrated in 
Figure 9. The neutral axis depth x and the reinforcement area Af, in turn, are computed through Equations 24 and 28, 
respectively. 

5 CHECKING FOR FRP CREEP RUPTURE 
The required area Af to meet the ultimate limit state for flexure may not be enough to avoid creep rupture due to 

sustained stresses [8]. ACI 440.1R-15 establishes that such stresses must not exceed 20, 30 and 55% of the tensile 
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strength ffu for GFRP, AFRP and CFRP, respectively. Accordingly, the tensile strength ffu for this verification accounts 
only for the environmental conditions, not incorporating other safety factors. 

To determine the sustained stresses ffs, the load combination defined as almost permanent by NBR 6118:2014 [9] was 
implemented. Additionally, Equations 29 to 31 developed by Ghali and Favre [11] were used to calculate the neutral axis 
depths xcr under service conditions as shown in Figure 10. The parameter ηf, in turn, refers to the modular ratio Ef /Ecs. 

a1 = bw
2

 (29) 

a2 = hf(bf  −  bw)+𝜂𝜂fAf (30) 

a3 = -d𝜂𝜂fAf  − hf
2

2
(bf - bw) (31) 

xcr = 
-a2+�a2

2 - 4a1a3

2a1
 (32) 

The cracking moment of inertia Icr depends on the neutral axis position. Equations 33 and 34 apply for xcr < hf and 
xcr ≥ hf, respectively [12]. To find the sustained stress ffs, ACI 440.1R-15 and NBR 6118:2014 [9] adopt the linear 
approach defined in Equation 35. The moment Mapc refers to the almost permanent load combination. 

Icr = bfxcr
3

3
 + 𝜂𝜂fAf(xcr - d)2 (33) 

Icr=
(bf - bw)hf

3

12
+ bwxcr

3

3
+(bf - bw) �xcr - 

hf
2
�

2
+ 𝜂𝜂fAf(xcr - d)2 (34) 

ffs = Mapc𝜂𝜂f
(d − xcr)

Icr
 (35) 

 
Figure 10. Compatibility and equilibrium to compute the sustained stress considering the almost permanent load combination 

[12]. 

If the sustained stress exceeds the maximum allowed by ACI 440.1R-15, areas of 0.001 cm2 are progressively 
incremented to Af, for which Equations 29 to 35 are computationally solved for each adjustment. The sustained stress 
decreases continuously, and the final adjusted area Aadj is that making the sustained stress equal to or slightly lower 
than the maximum allowed. Thus, the area Aadj meets both limit states for flexure and creep rupture. 
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6 DETERMINATION OF THE FLEXURAL STRENGTH 
Because of increments in FRP areas to meet both limit states, the flexural strengths and the neutral axis depths 

increase. Consequently, the simplified stress block previously located on the flange may reach the web, the failure mode 
may switch from tension to compression-controlled and for the cross-sections that remain tension-controlled, the 
concrete linear behavior may no longer apply [8]. 

In order to determine the failure mode, the adjusted area is compared to the balanced one Ab and, in case of tension-
control, Aadj is compared to Alin, the area from which the concrete linear approach no longer applies. There are four 
scenarios as regards the determination of the flexural strength, explained as follows: 

6.1 Tension-Control and balanced block on the flange 
If Aadj < Ab, the cross-section is under-reinforced with failure characterized by the FRP rupture. Additionally, if the 

balanced block depth is smaller than the flange thickness, the stress block associated to the adjusted area λuxadj does not 
reach the web. Furthermore, if Aadj < Alin, the concrete stress-strain relationship can be considered as linear [8]. 

By imposing equilibrium in Figure 4, the area Alin for which the stress in the most compressed fiber corresponds to 
50% of 0.85fcd is: 

Alin = Elin𝜀𝜀linxlinbf
2ffud

 (36) 

If Aadj < Alin, the adjusted neutral axis depth xadj associated to Aadj is computed by imposing the equilibrium and 
compatibility conditions illustrated in Figure 4, which leads to Equations 37 and 38. Once xadj is found, the flexural 
strength Mr is, thus, obtained from Equation 39. 

a = Elinbf
2EfAadj

 (37) 

xadj = √1 + 4ad - 1
2a

 (38) 

Mr = Aadjffud�d - xadj 3⁄ � (39) 

Conversely, if Aadj ≥ Alin, the simplified stress block represents the concrete constitutive model seeing that the linear 
approach no longer applies. By imposing the equilibrium conditions shown in Figure 5, the adjusted neutral axis and 
the flexural strength are determined as follows: 

xadj = Aadjffud

𝛼𝛼cu𝜆𝜆ufcdbf
 (40) 

Mr = Aadjffud�d - 0.5𝜆𝜆uxadj� (41) 

6.2 Tension-control and balanced block on the web 
If Aadj < Ab and the balanced stress block reaches the web, the block associated to the adjusted area as well as the reference 

neutral axis xlin can be located either on the flange or web. If xlin < hf and Aadj < Alin, the neutral axis associated to Aadj is on the 
flange [8]. Therefore, the adjusted neutral axis and the flexural strength are obtained from Equations 37, 38 and 39. 

However, if xlin < hf and Aadj ≥ Alin, concrete exhibits non-linear behavior and the adjusted stress block may be located 
either on the flange or web. First, it is assumed that λuxadj < hf, which allows computing the adjusted neutral axis and 
flexural strength through Equations 40 and 41, respectively. However, if the value found for xadj is equal to or higher than 
hf/λu, the assumption is incorrect; the stress block reaches the web [8]. Therefore, both flange and web compressed areas 
must be considered. Imposing equilibrium and compatibility for the cross-section illustrated in Figure 7 leads to the correct 
values of xadj and Mr, computed as follows: 
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xadj=
Aadjffud - 𝛼𝛼cufcdhf(bf − bw)

𝛼𝛼cu𝜆𝜆ufcdbw
 (42) 

Mr=𝛼𝛼cufcd�𝜆𝜆ubwxadj�d - 0.5𝜆𝜆uxadj� + hf(bf  −  bw)(d - 0.5hf)� (43) 

In contrast, if xlin ≥ hf, Equation 36 no longer applies to compute Alin since the linear distribution of the compressive 
stresses extends to the web, as shown in Figure 6. Therefore, Alin corresponds to the ratio between Flin, defined in 
Equation 15, and the FRP design tensile strength ffud. If Aadj < Alin, the adjusted neutral axis may be on the flange or 
web. The cross-section analysis illustrated in Figure 4 as well as Equations 37 and 38 determine xadj for the assumption 
xadj < hf. However, if the solution of such equations provides xadj ≥ hf, the assumption is invalid and the correct value of 
xadj is obtained considering the cross-section analysis shown in Figure 6. 

Subsequently, by imposing that the compressive force Fadj equals to the ultimate reinforcement load Aadjffud, the 
adjusted neutral axis depth is computed as follows: 

a1 = 2
bw
�(bf - bw)hf + 2Aadj

Ef
Elin
� (44) 

a2 = 1
bw
�(bw - bf)hf

2 - 2Aadjd
Ef

Elin
� (45) 

xadj = a1 ��
1
4

 - a2
a12  - 1

2
� (46) 

The compressive force center y�adjassociated to xadj is obtained from Equation 16, replacing xlin by xadj. Therefore, 
the adjusted flexural strength corresponds to: 

Mr = Aadjffud �d - y�adj� (47) 

Finally, if xlin ≥ hf and Aadj ≥ Alin, the stress block associated to Aadj reaches the web and the concrete exhibits non-
linear behavior. Thus, the adjusted neutral axis depth and the flexural strength are obtained from Equations 42 and 43, 
according to the cross-section analysis illustrated in Figure 7. 

6.3 Compression-control and balanced block on the flange 
If the balanced block is located on the flange and the section is compressed-controlled, the stress block associated 

to Aadj may reach the web or not. First, it is assumed that λuxadj < hf, corresponding to the analysis illustrated in Figure 
8. Since the reinforcement does not fail, its strain is unknown, written as a function of xadj [8]. Therefore, since the 
resulting compression and tension forces are equal, the adjusted neutral axis is obtained as follows: 

a = 𝛼𝛼cu𝜆𝜆ufcdbf
Ef𝜀𝜀cuAadj

 (48) 

xadj=
√4ad+1-1

2a
 (49) 

If the value found for xadj confirms the assumption that λuxadj < hf, the flexural strength is: 

Mr = 𝛼𝛼cu𝜆𝜆ufcdbfxadj�d - 0.5𝜆𝜆uxadj� (50) 
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Conversely, if xadj ≥ hf/λu, the assumption is incorrect and Equations 49 and 50 do not apply. It is necessary to 
consider the compressive stresses on the flange and web as shown in Figure 9, establishing equilibrium of forces and 
strain compatibility. Thus, xadj is computed as: 

a1 = 𝛼𝛼cu𝜆𝜆ufcdbw
Ef𝜀𝜀cuAadj

 (51) 

a2 = 1 + 𝛼𝛼cufcd(bf - bw)hf
Ef𝜀𝜀cuAadj

 (52) 

xadj = a2
a1
��1

4
 + a1

a22 d - 1
2
� (53) 

The flexural strength is obtained from Equation 43, the same as for tension-controlled sections whose neutral axis 
is on the web and concrete behaves non-linearly [8]. 

6.4 Compression-control and balanced block on the web 
If the balanced block reaches the web and the cross-section is compression-controlled, the adjusted neutral axis 

depth is larger than the balanced one, which means that λuxadj ≥ hf as well. Therefore, xadj is computed through Equations 
51, 52 and 53 while the flexural strength through Equation 43. The only difference from the previous scenario is that 
the designer knows for sure that the stress block reaches the web. 

7 EXPERIMENTAL VALIDATION 
To validate the proposed methodology, the design equations were used to inversely compute the flexural capacities 

of 125 beams to posteriorly compare with experimental results. The details of all specimens are shown in Table 1, 
where the reference in brackets indicates the experimental program related to a group of specimens. The T-section 
dimensions are given as bw/bf and h/hf in the fields corresponding to b and h, respectively. The abbreviations TC and 
CC refer to the tension and compression-controlled failure modes, respectively. 

The concrete compressive strengths were obtained experimentally, mostly from testing cylinders in uniaxial 
compression after 28 days. The majority of experimental programs obtained the FRP mechanical properties from direct 
tensile tests; others provided only the manufacturer data, as indicated with a * in Table 1. The majority of the beams 
were tested under four-point bending, with the load applied at a steady rate of 0.8 to 1.2 mm/min or at steps of 2 to 5 
kN. Those from [25] and [20], in turn, were tested under three-point loading. All specimens exhibited flexural failure 
either due to FRP rupture or crushing of the concrete. 

Since the experimental flexural capacities are influenced by the actual mechanical properties of materials, the reduction 
factors for the concrete compressive and FRP tensile strengths were not included in the analytical analysis. The term 0.85 
in αcu was also suppressed to account for the short-term loading inherent to the experimental programs. Moreover, since 
some beams had multiple reinforcement layers, the compatibility and equilibrium equations were adapted to account for 
different reinforcement distributions. The theoretical and experimental ultimate moments were plotted along with the 
identity line, and the accuracy of the analytical model assessed through the coefficient of determination R2. 

8 RESULTS AND DISCUSSION 
This section addresses two aspects of the results: the experimental validation of the proposed methodology and the 

application of the design program, considering different examples for each scenario described in Section 4. 

8.1 Comparison to Experimental Results 
Table 1 summarizes this comparison for each group of beams, considering different concrete grades and FRP types, as well 

as beams of rectangular and T-sections. The average ratio between theoretical and experimental moments Mth/Mexp corresponds 
to 1.0006, with mean deviation of 0.10 and coefficient of determination R2 = 0.962, which suggests agreement of the analytical 
methods with respect to experimental results. Figure 11 illustrates the scattering of the data in relation to the identity line. 
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Figure 11 – Correlation scatter plot for the experimental Mexp. and theoretical Mth flexural capacities 

8.2 Program Interface 
Using the developed design program, Figure 12 illustrates the calculation of a T-shape section reinforced with AFRP rebars. 

The user chooses the FRP type and inserts its mechanical properties. Yet, they are not able to define tensile strengths and elasticity 
moduli out of the intervals defined by Table 4.2.1 of ACI 440.1R-15 for each FRP type. For this example, in particular, the design 
bending moment corresponds to 98% of the balanced one, which indicates proper use of AFRP and concrete mechanical 
properties. Nonetheless, since the sustained stress due to the almost permanent load combination is higher than the maximum 
allowed by ACI 440.1R-15, the required area was increased by 1% to avoid creep rupture. This increment in the FRP area was 
not enough to switch the failure mode from tension to compression-controlled, resulting in a flexural strength 0.8% higher. This 
slight increase was not enough to characterize waste of the AFRP rebars’ mechanical properties. 

If a high-performance concrete with fck = 90 MPa is used, the cross-section becomes too under-reinforced, with 
flexural strength corresponding to 38% of the balanced moment. As a result, there is waste of the concrete’s mechanical 
properties since the strain at the top corresponds to only 29% of the ultimate strain εcu. In conclusion, the grade that 
best fits the reinforcement type for this particular load condition is the grade C20, which allows taking advantage of 
both concrete and FRP mechanical properties. 

 
Figure 12. Computation of the AFRP reinforcement area using the developed design program. 
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Table 1 - Comparison between experimental and predicted flexural capacities 

Ref. Beam Geometrical features Materials (MPa)  Ultimate Moments (kNm) Failure b (cm) h(cm) ρf (%) f'c ffu 10-3 Ef Mexp Mth  Mth/Mexp 

[13] 

C1-4 20 30 0.47 40.4 1368.0 114.0 71.20 71.72  1.01 TC 
C1-4b 20 30 0.47 40.4 1368.0 114.0 74.58 80.20  1.08 CC 
C1-6 20 30 0.71 39.3 1368.0 114.0 83.13 83.53  1.00 CC 
C1-8 20 30 0.95 39.3 1368.0 114.0 90.39 92.43  1.02 CC 
C2-4 20 30 0.43 39.9 1904.0 112.0 78.75 69.38  0.88 CC 
C2-4b 20 30 0.43 39.9 1904.0 112.0 78.18 76.16  0.97 CC 
C2-6 20 30 0.64 40.8 1904.0 112.0 80.89 82.09  1.01 CC 
C2-8 20 30 0.85 40.8 1904.0 112.0 89.39 91.09  1.02 CC 
G1-6 20 30 1.29 39.1 600.0 40.0 77.47 68.86  0.89 CC 
G1-8 20 30 1.72 39.1 600.0 40.0 86.76 76.77  0.88 CC 
G2-6 20 30 1.13 39.1 648.0 36.0 71.00 63.03  0.89 CC 
G2-8 20 30 1.51 39.1 648.0 36.0 84.54 70.52  0.83 CC 
AR-6 20 30 0.71 39.1 1716.0 52.0 70.85 61.62  0.87 CC 
AR-8 20 30 0.95 39.1 1716.0 52.0 71.75 69.04  0.96 CC 

[14] 

BC4NA 13 18 2.03 46.2 772.9 38.0 22.40 20.13  0.90 CC 
BC4NB 13 18 2.03 46.2 772.9 38.0 20.60 20.13  0.98 CC 
BC4HA 13 18 2.03 53.9 772.9 38.0 21.00 20.63  0.98 CC 
BC4HB 13 18 2.03 53.9 772.9 38.0 21.40 20.63  0.96 CC 
BC2NA 13 18 1.02 53.1 772.9 38.0 21.90 18.89  0.86 CC 
BC2NB 13 18 1.02 53.1 772.9 38.0 20.00 18.89  0.94 CC 
BC2HA 13 18 1.02 57.2 772.9 38.0 19.70 18.48  0.94 CC 
BC4HB 13 18 1.02 57.2 772.9 38.0 20.60 18.48  0.90 CC 

[15] 

CB2B-1 20 30 0.58 52.0 779.0 38.0 57.90 65.04  1.12 TC 
CB2B-2 20 30 0.58 52.0 779.0 38.0 59.80 65.04  1.09 TC 
CB3B-1 20 30 0.87 52.0 779.0 38.0 66.00 79.30  1.20 CC 
CB3B-2 20 30 0.87 52.0 779.0 38.0 64.80 79.30  1.22 CC 
CB4B-1 20 30 1.16 45.0 779.0 38.0 75.40 74.63  0.99 CC 
CB4B-2 20 30 1.16 45.0 779.0 38.0 71.70 74.63  1.04 CC 
CB6B-1 20 30 1.74 45.0 779.0 38.0 84.80 87.48  1.03 CC 
CB6B-2 20 30 1.74 45.0 779.0 38.0 85.40 87.48  1.02 CC 

[16] 

FB-2 30 40 0.22 30.0 690.0 41.0 68.94 62.75  0.91 TC 
FB-3 30 40 0.33 30.0 690.0 41.0 111.18 93.04  0.84 TC 
FB-4 30 40 0.44 30.0 690.0 41.0 125.88 121.91  0.97 TC 
FB-6 30 40 0.66 30.0 690.0 41.0 171.54 158.56  0.92 CC 
FB-8 30 40 0.88 30.0 690.0 41.0 222.60 178.05  0.80 CC 

HFB-3 30 40 0.33 50.0 690.0 41.0 93.24 94.89  1.02 TC 
HFB-4 30 40 0.44 50.0 690.0 41.0 119.04 124.63  1.05 TC 
HFB-6 30 40 0.66 60.0 690.2 41.0 200.46 185.69  0.93 TC 
HFB-8 30 40 0.88 50.0 690.0 41.0 218.04 241.47  1.11 TC 

HFB-10 30 40 1.11 50.0 690.0 41.0 219.36 265.55  1.21 CC 

[17]* 

ISO30-2 20 30 0.95 44.0 688.8 42.0 80.40 85.18  1.06 CC 
KD30-1 20 30 0.95 44.0 640.9 49.0 50.60 79.79  1.58 CC 
KD30-2 20 30 0.95 44.0 640.9 49.0 63.80 79.79  1.25 CC 
KD45-1 20 45 0.64 55.0 640.9 49.0 106.60 136.16  1.28 TC 
KD45-2 20 45 0.64 55.0 640.9 49.0 113.00 136.16  1.20 TC 
ISO55-1 20 55 0.52 43.0 688.8 42.0 181.50 184.17  1.01 TC 
ISO55-2 20 55 0.52 43.0 688.8 42.0 181.50 184.17  1.01 TC 
KD55-1 20 55 0.52 43.0 640.9 49.0 146.90 171.48  1.17 TC 
KD55-2 20 55 0.52 43.0 640.9 49.0 172.50 171.48  0.99 TC 

[18]* 
ISO2 20 30 0.95 43.0 688.5 45.0 80.40 83.26  1.04 CC 
ISO3 20 55 0.52 43.0 688.5 45.0 181.70 189.95  1.05 TC 
ISO4 20 55 0.52 43.0 688.5 45.0 181.70 189.95  1.05 TC 

[19] 

Beam 2 15 20 0.19 27.7 650.0 38.0 5.89 5.84  0.99 TC 
Beam 4 15 25 0.15 27.7 650.0 38.0 7.85 7.94  1.01 TC 
Beam 6 15 30 0.13 27.7 650.0 38.0 10.79 9.77  0.91 TC 
Beam 8 15 20 0.19 50.1 650.0 38.0 5.89 5.90  1.00 TC 
Beam 10 15 25 0.15 50.1 650.0 38.0 9.48 8.00  0.84 TC 
Beam 12 15 30 0.25 50.1 650.0 38.0 16.75 19.46  1.16 TC 



F. A. S. Barbosa, T. N. Bittencourt, G. R. Boriolo, F. R. André, and M. M. Frutai 

Rev. IBRACON Estrut. Mater., vol. 16, no. 4, e16403, 2023 17/20 

Ref. Beam Geometrical features Materials (MPa)  Ultimate Moments (kNm) Failure b (cm) h(cm) ρf (%) f'c ffu 10-3 Ef Mexp Mth  Mth/Mexp 

[20]* 

1FRP1 38 .1 20.3 0.10 27.6 829.7 41.4 11.49 11.60  1.01 TC 
1FRP2 38.1 20.3 0.10 27.6 829.7 41.4 12.67 11.60  0.92 TC 
1FRP3 38.1 20.3 0.10 27.6 829.7 41.4 11.49 11.60  1.01 TC 
2FRP1 31.8 21.6 0.12 27.6 829.7 41.4 13.62 12.46  0.91 TC 
2FRP2 31.8 21.6 0.12 27.6 829.7 41.4 13.26 12.46  0.94 TC 
2FRP3 31.8 21.6 0.12 27.6 829.7 41.4 13.06 12.46  0.95 TC 
4FRP1 20.3 15.2 1.04 27.6 829.7 41.4 15.78 14.68  0.93 TC 
4FRP2 20.3 15.2 1.04 27.6 829.7 41.4 15.58 14.68  0.94 TC 
4FRP3 20.3 15.2 1.04 27.6 829.7 41.4 16.29 14.68  0.90 TC 
5FRP1 19.1 15.2 1.10 27.6 829.7 41.4 16.37 14.14  0.86 CC 
5FRP2 19.1 15.2 1.10 27.6 829.7 41.4 16.65 14.14  0.85 CC 
5FRP3 19.1 15.2 1.10 27.6 829.7 41.4 15.78 14.14  0.90 CC 

[21] 

C-S-1 20 30 0.75 26.9 1000.0 200.0 64.11 54.50  0.85 TC 
C-S-2 20 30 0.29 27.5 2000.0 200.0 44.28 43.68  0.99 TC 
C-C-3 20 30 0.52 23.6 2000.0 200.0 44.76 43.30  0.97 TC 
C-C-4 20 30 0.52 27.2 1000.0 200.0 60.66 54.87  0.90 TC 
C-C-5 20 30 0.75 28.0 1000.0 200.0 56.03 54.64  0.98 TC 

[22] 

T/C150-2 20/70 70/15 0.36 37.5 1060.0 200.0 64.89 76.77  1.18 TC 
T/C150-4 20/70 70/15 0.52 37.5 1060.0 200.0 145.69 146.89  1.01 TC 
T/C100-4 20/70 70/10 0.63 37.5 1060.0 200.0 104.63 123.23  1.18 TC 

R/C-2 20 35 0.47 40.5 1060.0 200.0 57.33 71.05  1.24 TC 
R/C-4 20 35 0.79 40.5 1060.0 200.0 124.60 136.60  1.10 TC 

[23] 

II 20 21 2.70 31.3 700.0 35.6 34.19 36.84  1.08 CC 
III 20 26 0.98 31.3 886.0 43.4 45.13 47.67  1.06 CC 
IV 20 30 0.95 40.7 700.0 35.6 59.19 69.84  1.18 CC 
V 20 25 2.27 40.7 700.0 35.6 57.00 63.54  1.11 CC 

[24] 

C-212-D1 14 19 0.85 59.8 1353.0 63.3 38.20 27.13  0.71 CC 
C-216-D1 14 19 1.51 56.3 995.0 64.2 45.06 34.09  0.76 CC 
C-316-D1 14 19 2.27 55.2 995.0 64.2 49.38 39.75  0.80 CC 
C-212-D2 16 19 0.74 39.6 1353.0 63.3 27.69 21.64  0.78 CC 
C-216-D2 16 19 1.32 61.7 995.0 64.2 42.15 29.17  0.69 CC 
C-316-D2 16 19 1.98 60.1 995.0 64.2 43.20 34.07  0.79 CC 

[25] 
GS1 20 30 1.65 28.0 736.0 46.0 60.20 62.59  1.04 CC 
GS2 20 30 1.65 26.0 736.0 46.0 49.00 50.70  1.03 CC 
CS1 20 30 0.59 26.0 1392.0 116.0 51.80 58.99  1.14 CC 

[26]* 

B4 15.24 15.24 0.27 51.7 1899.9 140.0 12.60 13.84  1.10 TC 
B5 15.24 15.24 0.27 48.0 1899.9 140.0 10.15 13.76  1.36 TC 
B6 15.24 15.24 0.27 45.9 1899.9 140.0 12.87 13.73  1.07 TC 
B7 15.24 15.24 0.43 49.3 1899.9 140.0 17.10 18.49  1.08 CC 
B8 15.24 15.24 0.43 51.1 1899.9 140.0 16.92 18.45  1.09 CC 
B9 15.24 15.24 0.43 53.3 1899.9 140.0 16.58 18.21  1.10 CC 
B10 15.24 15.24 0.61 53.4 1899.9 140.0 17.85 20.74  1.16 CC 
B11 15.24 15.24 0.61 55.0 1899.9 140.0 17.61 20.59  1.17 CC 
B12 15.24 15.24 0.61 43.9 1899.9 140.0 17.51 19.52  1.12 CC 

[27] 

AF2T1 15 30 0.35 42.8 1759.6 53.0 44.17 46.58  1.05 CC 
BF3T1 15 30 0.52 85.8 1759.6 53.0 59.46 60.81  1.02 CC 
CF3T1 15 30 0.52 85.6 1759.6 53.0 67.21 60.75  0.90 CC 
DF2T1 15 30 0.35 84.5 1759.6 53.0 48.06 50.28  1.05 CC 
DF3T1 15 30 0.52 84.5 1759.6 53.0 62.77 60.40  0.96 CC 
DF4T1 15 30 0.70 84.5 1759.6 53.0 60.02 62.06  1.03 CC 
DF3T2 15 30 0.52 84.5 1759.6 53.0 62.41 60.40  0.97 CC 
DF3T3 15 30 0.52 84.5 1759.6 53.0 60.80 60.40  0.99 CC 
DS4T2 15 30 1.79 84.5 1759.6 53.0 107.20 89.01  0.83 CC 

[28]* 

B1T1 15/91 46/7.6 1.07 38.6 620.0 40.0 111.85 106.63  0.95 TC 
B2T1 15/76 46/7.6 1.17 35.2 620.0 40.0 107.79 106.58  0.99 TC 
B3C1 15/46 45/6.4 4.31 21.4 620.0 40.0 203.37 208.13  1.02 CC 
B4T1 15/107 45/6.4 1.27 18.6 620.0 40.0 156.60 144.44  0.92 TC 
B3C2 15/61 37/6.4 3.73 21.4 620.0 40.0 223.71 198.51  0.89 CC 
B1T2 15/91 38/7.6 1.83 38.6 620.0 40.0 213.54 248.59  1.16 TC 
B2C1 15/76 38/7.6 2.57 35.2 620.0 40.0 244.05 297.66  1.22 CC 
B4C1 15/107 37/6.4 3.31 18.6 620.0 40.0 244.05 275.70  1.13 CC 

Table 1 – Continued… 

 



F. A. S. Barbosa, T. N. Bittencourt, G. R. Boriolo, F. R. André, and M. M. Frutai 

Rev. IBRACON Estrut. Mater., vol. 16, no. 4, e16403, 2023 18/20 

Ref. Beam Geometrical features Materials (MPa)  Ultimate Moments (kNm) Failure b (cm) h(cm) ρf (%) f'c ffu 10-3 Ef Mexp Mth  Mth/Mexp 

[29] 

GB1-1 18 30 0.47 35.0 695.0 40.0 60.00 44.82  0.75 TC 
GB1-2 18 30 0.47 35.0 695.0 40.0 59.00 44.82  0.76 TC 
GB2-1 18 30 0.71 35.0 695.0 40.0 65.00 60.69  0.93 CC 
GB2-2 18 30 0.71 35.0 695.0 40.0 64.30 60.69  0.94 CC 
GB3-1 18 30 0.94 35.0 695.0 40.0 71.00 63.27  0.89 CC 
GB3-2 18 30 0.94 35.0 695.0 40.0 70.50 63.27  0.90 CC 

*Direct tensile tests not performed by the authors, FRP properties provided by the manufacturer, TC = Tension-controlled; CC = Compression-controlled 

8.3 Examples considering different design scenarios 
Since there are several approaches to compute the required FRP area, Table 2 describes the design of the same T-

shape section illustrated in Figure 12, considering all the possibilities presented in Section 4. The approach 1A and 1B 
refer to the first scenario, considering the concrete linear and non-linear behavior, respectively. In turn, 2A indicates 
concrete linearity and x < hf, whereas 2B, non-linearity. Additionally, both 2C and 2D refer to x ≥ hf with concrete 
behaving linear and non-linear, respectively. Regarding the third scenario, the approaches 3A and 3B refer to λux < hf 
and λux ≥ hf, respectively; whereas the only possibility for the fourth scenario, 4A, corresponds to λuxb ≥ hf and Md ≥ 
Mb. 

Table 2. Definition of the failure mode corresponding to all design approaches previously described 

Case FRP ffu* (MPa) Exposition Ef (GPa) fck (MPa) Md (kNm) xb (cm) Mb (kNm) Failure Mode 
1A Aramid 2540 No 125 80 2100 14.1 5276.5 TC 
1B Carbon 3690 No 150 60 1820 11.9 4088.2 TC 
2A Glass 683 Yes 51 65 962.7 24.8 5144.1 TC 
2B Glass 600 No 51 40 759.4 29.3 3575.6 TC 
2C Carbon 1300 Yes 145 90 1820 26.6 6142.7 TC 
2D Aramid 2300 Yes 100 20 1582 17.8 1629.0 TC 
3A Carbon 3000 No 120 80 4340 10.7 4149.0 CC 
3B Carbon 3690 Yes 180 90 5670 13.9 5444.6 CC 
4A Aramid 1800 Yes 70 20 1820 16.3 1606.2 CC 

Regarding the cases 1A and 1B, the results showed that the balanced block is located on the flange when high-
performance concretes are used in conjunction with FRP rebars exhibiting large ultimate strains. If the cross-section is 
tension-controlled, the concrete linear stress-strain relationship is more likely to apply if the applied bending moment 
is considerably lower than the balanced one, especially if high-performance concretes are used. 

In contrast, the second scenario is characterized by the use of FRP with low deformability compared to first scenario. 
As a result, the balanced block reached the web. However, since the design bending moments regarding 2A and 2B are 
significantly lower than the balanced ones, their respective stress blocks fell on the flange. Even though the design 
moments corresponding to 2C and 2D are lower than the balanced ones, their respective neutral axes are positioned on 
the web. However, the linear approach applied only for 2B. 

Alike the possibilities 1A and 1B, the association of high-performance concretes with large deformability FRP 
caused the balanced block to reach only the flange for cases 3A and 3B. In contrast, the applied moments are higher 
than the balanced ones, making stresses blocks fall on the flange and web, respectively. Regarding 4A, the association 
of concrete and FRP is similar to that of scenario 2, with the balanced block reaching the web. 

The design for the ultimate limit state and verification for creep rupture are described in Table 3. The adjustments 
in AFRP and GFRP areas for 1A, 2A and 2B resulted in deeper neutral axes xadj and increased top concrete strains εc, 
not reducing the reinforcement strains εf. As a result, the cross-section curvatures φ slightly increased, improving 
ductility. The CFRP RC compression-controlled sections 3A and 3B, in turn, exhibited the largest curvatures while the 
tension-controlled 2C, the smallest. 

Since the cross-sections 2A, 2B and 2C are tensile-controlled with small curvatures, the designer may either increase 
the amount of reinforcement up to the balanced area Ab or decrease the compressive strength fck, which would lead to 
larger curvatures. However, if the section becomes compression-controlled, a further increase in Af or decrease in fck 
would deepen the neutral axis and reduce the FRP strain, leading to smaller curvatures. 

Table 1 – Continued… 
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Table 3. Design for the ultimate limit state and checking for creep rupture for all approaches 

Case x (cm) Af (cm2) Mapc (kNm) ffs (MPa) Aadj (cm2) Ab (cm2) Failure xadj (cm) εc (‰) εf (‰) Mr (kNm) 103φ (rad/m) 
1A 5.3 13.0 1010 841.4 16.7 35.3 TC 6.8 1.10 14.1 2678.3 0.17 
1B 5.1 7.3 810 1244 7.3 16.9 TC 5.1 1.15 18.9 1820.0 0.22 
2A 8.6 30.0 325 122 38.7 166.5 TC 9.7 0.87 7.21 1233.4 0.09 
2B 2.9 23.2 360 175.5 43 116.4 TC 5.5 0.47 7.24 1394.4 0.09 
2C 11.6 23.5 880 431 23.5 81.2 TC 11.6 0.92 6.21 1820.0 0.08 
2D 14.7 13.2 549 477 13.2 13.6 TC 14.7 2.76 14.15 1582.0 0.19 
3A 11.3 23.1 1700 841.9 23.1 20.9 CC 11.3 2.60 18.22 4340.0 0.23 
3B 16.3 31.5 3350 1307.4 31.5 25.0 CC 16.3 2.6 11.78 5670.0 0.16 
4A 31.9 49.2 1090 279 49.2 17.1 CC 31.9 3.5 6.39 1820.0 0.11 

9 CONCLUSIONS 
This paper implemented the FRP mechanical properties provided by ACI 440.1R-15 [3] to the Brazilian code NBR 

6118:2014 [9], developing the equations for the design of T-shape sections reinforced by FRP rebars. The deduced 
formulations accounted for all possibilities of neutral axis position, failure mode and concrete behavior, which resulted 
in a design applet that calculates the FRP area based on the ultimate limit state for flexure and creep rupture. 

The design procedures were validated by comparing the predicted flexural capacities with experimental results 
available in the literature for 125 beams. The average ratio between computed and experimental ultimate moments 
corresponds to 1.0006 with mean deviation of 0.10 and R2 = 0.962, which suggests efficacy of the proposed 
methodology to compute the required amount of flexural FRP reinforcement given a design bending moment. 

In conclusion, since there is no guideline deeply addressing the design of T-shape beams reinforced by FRP rebars, 
the presented design approaches can help students and engineers to understand how these members behave, considering 
different combinations of FRP and concrete grades. Therefore, they are able to elect the ones that provide the best 
results in terms of ductility, flexural strength and economical solutions. 

ACKNOWLEDGEMENTS 
This study was financed by the Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES) - 

Finance Code 001 and Catedra Under Rail – VALE. 

REFERENCES 
[1] A. M. Neville, "Consideration of durability of concrete structures: past, present and future," Mater. Struct., vol. 34, pp. 114–118, 

2001. 

[2] L. Bertolini, "Steel corrosion and service life of reinforced concrete structures," Struct. Infrastruct. Eng., vol. 4, no. 2, pp. 123–137, 
2008. 

[3] American Concrete Institute, Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced 
Polymer (FRP) Bars, ACI 440.1R-15, 2015, 83 p. 

[4] fib International Federation for Structural Concrete, FRP Reinforcement in RC Structures (Bulletin 40). Lausanne: fib Task-Group 
9.3, Federal Institute of Technology, 2007, 147 p. 

[5] C. Tuakta, “Use of fiber-reinforced polymer composite in bridge structures,” M.S. thesis, Massachusetts Inst. Technol., Cambridge, 
2005, 50 p. 

[6] E. Gudonis, E. Timinskas, V. Gribniak, G. Kaklauskas, A. K. Arnautov, and V. Tamulènas, "FRP reinforcement for concrete 
structures: state-of-the-art review of application and design," Eng. Struct. Technol., vol. 5, no. 4, pp. 147–158, 2013. 

[7] D. H. Tavares, J. S. Giongo, and P. Paultre, "Behavior of reinforced concrete beams reinforced with GFRP bars," Ibracon Struct. 
Mater. J., vol. 1, no. 3, pp. 285–295, 2008. 

[8] F. A. S. Barbosa, “Numerical assessment of concrete flexural members reinforced by FRP rebars,” M.S. thesis, Univ. São Paulo, São 
Paulo, 2020. 

[9] Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto, ABNT NBR 6118, 3ª ed., 2014, 238 p. 

[10] Comitê IBRACON/ABECE, Prática Recomendada CT 303 – Estruturas de Concreto Armado com Barras de Polímero Reforçado 
com Fibras (FRP), 1ª ed. São Paulo: IBRACON, 2021, 63 p. 

[11] A. Ghali and R. Favre, Concrete Structures: Stresses and Deformations, 1st ed. London, UK: Chapman & Hall, 1986, 352 p. 



F. A. S. Barbosa, T. N. Bittencourt, G. R. Boriolo, F. R. André, and M. M. Frutai 

Rev. IBRACON Estrut. Mater., vol. 16, no. 4, e16403, 2023 20/20 

[12] R. C. Carvalho and J. R. Figueiredo Fo., Cálculo e Detalhamento de Estruturas Usuais de Concreto Armado: Segundo a NBR 
6118:2014, 4ª ed. São Carlos: Edufscar, 2014, 415 p. 

[13] C. Kassem, A. S. Farghaly, and B. Benmokrane, "Evaluation of flexural behavior and serviceability performance of concrete beams 
reinforced with FRP bars," J. Compos. Constr., vol. 5, no. 11, pp. 682–695, 2011. 

[14] M. Thériault and B. Benmokrane, "Effects of FRP reinforcement ratio and concrete strength on flexural behavior of concrete beams," 
J. Compos. Constr., vol. 2, no. 1, pp. 7–16, 1998. 

[15] R. Masmoudi, M. Thériault, and B. Benmokrane, "Flexural behavior of concrete beams reinforced with deformed fiber reinforced 
plastic reinforcing rods," ACI Struct. J., vol. 5, no. 6, pp. 665–675, 1998. 

[16] Ridwan and D. T. Putri, "Flexural capacity of concrete beam reinforced with GFRP bars," J. Phys. Conf. Ser., vol. 2049, no. 1, pp. 
012075, 2021. 

[17] B. Benmokrane, O. Chaallal, and R. Masmoudi, "Glass Fibre Reinforced Plastic (GFRP) rebars for concrete structures," Constr. 
Build. Mater., vol. 9, no. 6, pp. 353–364, 1995. 

[18] B. Benmokrane, O. Chaallal, and R. Masmoudi, "Flexural response of concrete beams reinforced with FRP reinforcing bars," ACI 
Struct. J., vol. 91, no. 2, pp. 46–55, 1996. 

[19] A. F. Ashour, "Flexural and shear capacities of concrete beams reinforced with GFRP bars," Constr. Build. Mater., vol. 20, pp. 1005–
1015, 2006. 

[20] J. R. Yost, C. H. Goodspeed, and E. R. Schmeckpeper, "Flexural performance of concrete beams reinforced with FRP grids," J. 
Compos. Constr., vol. 5, no. 1, pp. 18–25, 2005. 

[21] A. F. Ashour and M. N. Habeeb, "Continuous concrete beams reinforced with CFRP bars," ICE Proc. Struct. Build., vol. 161, no. 6, 
pp. 349–357, 2008. 

[22] A. F. Ashour, and M. Family, "Tests of concrete flanged beams reinforced with CFRP bars," Mag. Concr. Res., vol. 58, no. 9, pp. 
627–639, 2006. 

[23] S. H. Alsayed, Y. A. Al-Salloum, and T. H. Almusallam, "Performance of glass fiber reinforced plastic bars as a reinforcing material 
for concrete structures," Compos., Part B Eng., vol. 31, pp. 555–567, 2000. 

[24] C. Barris, L. Torres, A. Turom, M. Baena, and A. Catalan, "An experimental study of the flexural behavior of GFRP RC beams and 
comparison with predicted models," Compos. Struct., vol. 91, pp. 286–295, 2009. 

[25] M. El-Mogy, A. El-Ragaby, and E. El-Salakawy, "Flexural behavior of continuous FRP-reinforced concrete beams," J. Compos. 
Constr., vol. 14, no. 6, pp. 669–680, 2010. 

[26] G. Thiagarajan, "Experimental and Analytical Behavior of Carbon Fiber-based rods as Flexural Reinforcement," J. Compos. Constr., 
vol. 7, no. 1, pp. 64–72, 2003. 

[27] M. A. Rashid, M. A. Mansur, and P. Paramasivam, "Behavior of aramid fiber-reinforced polymer reinforced high strength concrete 
beams under bending," J. Compos. Constr., vol. 9, no. 2, pp. 117–127, 2005. 

[28] R. K. Kalluri, “Bending behavior of concrete T-beams reinforced with glass-fiber reinforced polymer bars,” Ph.D. dissertation, West 
Virginia Univ., Morgantown, 1999, 112 p. 

[29] H. A. Toutanji and M. Saafi, "Flexural behavior of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars," ACI 
Struct. J., vol. 97, no. 5, pp. 712–719, 2000. 

Author contributions: FASB: conceptualization, writing, data curation, formal analysis and methodology; TNB and MMF: conceptualization, 
funding acquisition, supervision; FRA: conceptualization and methodology; GRB: conceptualization 

Editors: Rebecca Gravina, Guilherme Aris Parsekian. 


