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Abstract: Global second order effects in reinforced concrete buildings can be estimated using numerical or 
simplified methods, such as the γz coefficient, presented in the Brazilian standard. This paper proposes a new 
simplified parameter, which is deduced by the Galerkin’s Method by Weighted Residuals. In order to evaluate 
the accuracy of the proposed methodology, 42 planar frames (21 framed system structures and 21 dual system 
structures) were analysed in terms of internal forces and displacements. Such results were compared to those 
obtained by the γz coefficient and to the reference results obtained throughout a geometric nonlinear elastic 
finite element program. The precision of the results was defined by statistical analyses, which showed that the 
results using the proposed parameter were closer to the reference ones, even in the recommended range for 
using the γz coefficient. 

Keywords: global second order effects, reinforced concrete structures, weighted residuals, Galerkin’s method. 

Resumo: Efeitos globais de segunda ordem em edifícios de concreto armado podem ser estimados por 
métodos numéricos ou procedimentos simplificados, como o coeficiente γz, apresentado na norma brasileira. 
Neste artigo propõe-se um novo parâmetro simplificado, que é deduzido pelo Método de Galerkin por 
Resíduos Ponderados. De modo a avaliar a acurácia do modelo proposto, 42 pórticos planos (21 com 
contraventamento por pórticos e 21 com contraventamento por elementos rígidos) foram analisados em termos 
de esforços internos e deslocamentos. Tais resultados foram comparados aos obtidos pelo coeficiente γz e a 
resultados de referência obtidos por um programa de elementos finitos com análises de não linearidade 
geométrica. A precisão dos resultados foi definida por parâmetros estatísticos, que mostram que os resultados 
obtidos utilizando o parâmetro proposto estavam mais próximos dos resultados de referência, mesmo na faixa 
recomendada para a utilização do parâmetro γz. 

Palavras-chave: efeitos globais de segunda ordem, estruturas de concreto armado, resíduos ponderados, 
Método de Galerkin. 
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1 INTRODUCTION 

The design of tall buildings must take into account several factors, such as structure dimensions, wind velocity, 
terrain, nearby buildings and others ones that may increase lateral loads. Moreover, according to Khanduri et al. [1], 
for small buildings that have tall buildings nearby, the pressure gradient may induce a downward draft of air, which 
may cause high velocities and pressures. 

International codes present ways to determine equivalent static lateral loads and suggest their application for 
building design [2]–[5]. These loads may be used to estimate lateral displacements, interstorey drift ratio and internal 
forces [6]–[8]; these variables can also be evaluated with computational methods [9]. 

The effects of lateral loads are very important to the design of buildings. Those loads increases the horizontal 
displacements and, therefore, the internal forces. Franco and Vasconcelos [10] discussed the criteria that structures may 
be classified as sway or non-sway, according to the increase of bending moments due to horizontal displacements. 
These displacements also must be considered correctly due to serviceability limit analysis and to an economic point of 
view. According to Algan [11], the relative displacement between storeys is also an important variable to be evaluated, 
because if interstorey ratio reaches the order of 0.5%, the repair cost may reach approximately half the price for the 
construction of new elements (partitions). 

The increase of internal forces and displacements is called global second order effects. These effects must be 
considered in the structural design in order to evaluate the structural elements under maximum internal forces and to 
verify the displacements conditions. 

There are several ways to consider the influence of global second order effects. NBR 6118 [12] suggests nonlinear 
or simplified procedures to estimate those effects, as the P-Delta method or α instability parameter, respectively. The 
latter option verify the necessity of consider the global second order effects. Beck and König [13] proposed the α 
instability parameter from the solution of an ordinary differential equation, using Bessel’s functions. Other way to 
estimate those effects is to utilise amplification factors, which take into account the increase of the internal forces due 
to second order effects [12], [13]. NBR 6118 [12] suggests the use of the γz parameter, which was proposed by Franco 
and Vasconcelos [10]. That parameter was deduced using an incremental-iterative process, so it is a simplified method, 
and allows the estimation of global second order effects using only a first order analysis. This method is recommended 
only for the range 1.10 < γz ≤ 1.30 and achieves a good approximation for the global second order effects [14], [15]. 

Researches on sway analysis often propose improvements of existing parameters e.g., Ellwanger [16] that adjusted 
the α instability parameter and Souza et al. [17] that adjusted the γz coefficient by an amplification factor. Other ones 
propose new simplified parameters, such as Tekeli et al. [18], Cunha et al. [19] and Andrade and Nóbrega [20]. Several 
researchers study the α instability parameter, the γz coefficient as well as stability in general [21]–[36]. 

Therefore, the objective of this paper is to verify the quality of the criterion proposed by Cunha et al. [19] when 
analysing displacements of framed structures systems and internal forces of framed systems (resistance against 
lateral forces is formed only by beams and columns) and dual system structures (resistance against lateral forces is 
formed mostly by shear-walls). Note that the work presented by Cunha et al. [19] was published as an advance in 
the theme, but the results are limited to dual system structures and only assesses the horizontal displacement of the 
buildings. Now, the proposed formulation, which was developed with Galerkin’s method by weighted residuals, is 
applied to 21 framed system structures and 21 dual system structures on the software MASTAN2 [37] to analyse 
displacements and internal forces. 

2 SIMPLIFIED SWAY ANALYSIS BY THE ΓZ COEFFICIENT 

The γz coefficient was proposed by Franco and Vasconcelos [10] and it is presented in the Brazilian standard code 
[12]. The application of this parameter allows a simplified sway analysis of reinforced concrete buildings, and the 
estimation of global second order effects of these structures. Note that this was an important advance in the field, since 
Franco and Vasconcelos [10] stated: “The designer needs a simple method to decide whether a particular structure 
should be considered ‘sway’, without performing a second order analysis”. Despite the previous existence of the 
instability parameter α [13], the γz coefficient is a clear improvement since it is calculated using the whole structure and 
it can be applied to estimate the global second order effects. 

Consider that a building is represented by a simple vertical bar, whose length is 𝐿𝐿, and subjected to vertical and 
transversal uniform loads, equal to 𝑝𝑝 and 𝑞𝑞, respectively (Figure 1). Moreover, consider that the bar properties have 
constant values: Young’s modulus 𝐸𝐸, cross section area 𝑆𝑆 and inertia moment 𝐼𝐼. 
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Figure 1. Vertical bar. 

It is possible to define the first (𝑀𝑀1) and second order (𝑀𝑀2) bending moments at the clamped end of the vertical bar. 
Then, the γz parameter definition is: 

𝛾𝛾𝑧𝑧 = 𝑀𝑀2
𝑀𝑀1

  (1) 

The second order bending moment may be calculated by the application of an incremental-iterative procedure, with 𝑛𝑛 steps: 

𝑀𝑀2 = 𝑀𝑀1 + ∆𝑀𝑀1 + ∆𝑀𝑀2 + ∆𝑀𝑀3 + ⋯+ ∆𝑀𝑀𝑛𝑛  (2) 

where 𝛥𝛥𝛥𝛥 is the increment of bending moments at each step of the incremental-iterative procedure. 
Franco and Vasconcelos [10] admit that the increment rate of the bending moments (𝑟𝑟 < 1) is constant until 

convergence, which is achieved by a geometric progression, which 𝑛𝑛 is a high number i.e. 𝑛𝑛 → ∞: 

𝑟𝑟 = ∆𝑀𝑀1
𝑀𝑀1

= ∆𝑀𝑀2
∆𝑀𝑀1

= ∆𝑀𝑀3
∆𝑀𝑀2

= ⋯ = ∆𝑀𝑀𝑛𝑛
∆𝑀𝑀𝑛𝑛−1

 <  1  (3) 

Equation 2 may be rewritten by applying Equation 3: 

𝑀𝑀2 = 𝑀𝑀1 + ∆𝑀𝑀1 + ∆𝑀𝑀2 + ∆𝑀𝑀3 + ⋯+ ∆𝑀𝑀𝑛𝑛 = 𝑀𝑀1 + 𝑟𝑟𝑀𝑀1 + 𝑟𝑟2𝑀𝑀1 + 𝑟𝑟3𝑀𝑀1 + ⋯+ 𝑟𝑟𝑛𝑛𝑀𝑀1 = 
 (1 + 𝑟𝑟 + 𝑟𝑟2 + 𝑟𝑟3 + ⋯+ 𝑟𝑟𝑛𝑛)𝑀𝑀1  (4) 

Equation 4 may be mathematically rearranged by multiplying it by (1 − 𝑟𝑟): 

(1 − 𝑟𝑟)𝑀𝑀2 = (1 − 𝑟𝑟𝑛𝑛+1)𝑀𝑀1  (5) 

The convergence is only obtained with many steps i.e., 𝑛𝑛 → ∞ ⇒ 𝑟𝑟𝑛𝑛+1 → 0, therefore Equation 5 may be simplified: 

𝑀𝑀2 = 1
(1−𝑟𝑟)

𝑀𝑀1  (6) 

The γz coefficient can be defined by substituting Equations 6 and 3 in (1), as shown in Equation 7: 

𝛾𝛾𝑧𝑧 = 1

1−∆𝑀𝑀1
𝑀𝑀1

  (7) 

being ∆𝑀𝑀1the first increment of the nonlinear analysis, that can be calculated by a linear or first order analysis. 
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According to CEB/FIP [38], if the second order bending moments are 10% higher than the first order bending 
moments, the structure can be defined as a sway building and global second order effects must be considered. The 
Brazilian Standard Code NBR 6118 [12] defines a criteria based on the γz parameter: if its value are lower than 1.10, 
global second order effects can be neglected; if 1.10 < γz ≤ 1.30, global second order effects must be considered in the 
analysis and may be calculated by a first order analysis, by multiplying the lateral loads by 0.95 γz; for γz values higher 
than 1.30, NBR 6118 [12] does not recommend this simplified analysis and the second order global effects must be 
considered by others procedures, as a nonlinear analysis. 

3 GALERKIN’S METHOD BY WEIGHTED RESIDUALS 
The weighted residuals are a set of methods that are applied to solve differential equations in their week form, using 

any function as potential solution. Each method differs from the others by the chosen weight function. The criterion 
proposed in this paper is based on the Galerkin’s method, by weighted residuals, since is a method that provides good 
results with simple equations. 

3.1 Strong form 
Consider a structure represented by a vertical bar, whose length is 𝐿𝐿, submitted to vertical and transversal loads 

equal to 𝑝𝑝 and 𝑞𝑞, respectively (Figure 1). Moreover, consider that the bar has constant properties: Young’s modulus 𝐸𝐸, 
cross section area 𝑆𝑆 and inertia moment 𝐼𝐼. Admitting that the axial stiffness (𝐸𝐸𝐸𝐸) of the bar is high, the axial field 
displacement can be described, according to Equation 8, as: 

𝑢𝑢(𝑥𝑥) = − 𝑝𝑝𝐿𝐿2

2𝐸𝐸𝐸𝐸
�2𝑥𝑥
𝐿𝐿
− �𝑥𝑥

𝐿𝐿
�
2
�  (8) 

According to Powell [39], the bending moment field along the bar (𝑀𝑀(𝑥𝑥)), considering second order effects, may be 
described by: 

𝑀𝑀(𝑥𝑥) = −𝐸𝐸𝐸𝐸 𝑑𝑑
2𝑣𝑣(𝑥𝑥)
𝑑𝑑𝑥𝑥2

+ 𝐸𝐸𝐸𝐸 �𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

+ 1
2
�𝑑𝑑𝑑𝑑(𝑥𝑥)

𝑑𝑑𝑑𝑑
�
2
� 𝑣𝑣(𝑥𝑥)  (9) 

where 𝐸𝐸𝐸𝐸 is the flexural stiffness of the bar and 𝑣𝑣(𝑥𝑥) is the horizontal displacement field. 
The bending moment field are related to the transversal load: 𝑑𝑑2𝑀𝑀/𝑑𝑑𝑥𝑥2 = −𝑞𝑞. Therefore, Equation 9 may be 

rewritten as: 

−𝐸𝐸𝐸𝐸 𝑑𝑑
4𝑣𝑣(𝑥𝑥)
𝑑𝑑𝑥𝑥4

+ 𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) �𝑑𝑑
2𝑣𝑣(𝑥𝑥)
𝑑𝑑𝑥𝑥2

�
2

+ 𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

𝑑𝑑3𝑣𝑣(𝑥𝑥)
𝑑𝑑𝑥𝑥3

+ 2𝑝𝑝 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

+ 2𝐸𝐸𝐸𝐸 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥2

�𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

�
2
− 𝑝𝑝𝑝𝑝 �1 − 𝑥𝑥

𝐿𝐿2
� 𝑑𝑑

2𝑣𝑣(𝑥𝑥)
𝑑𝑑𝑥𝑥2

+
1
2
𝐸𝐸𝐸𝐸 𝑑𝑑2𝑣𝑣(𝑥𝑥)

𝑑𝑑𝑥𝑥2
�𝑑𝑑𝑑𝑑(𝑥𝑥)

𝑑𝑑𝑑𝑑
�
2

= −𝑞𝑞  (10) 

Note that the differential equation depends only of 𝑣𝑣(𝑥𝑥) and its derivatives. With the purpose of avoiding an 
iterative incremental procedure, the terms that depends more than once on 𝑣𝑣(𝑥𝑥) and its derivatives, are eliminated 
of the equation: 

−𝐸𝐸𝐸𝐸 𝑑𝑑
4𝑣𝑣(𝑥𝑥)
𝑑𝑑𝑥𝑥4

+ 2𝑝𝑝 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

− 𝑝𝑝𝑝𝑝 �1 − 𝑥𝑥
𝐿𝐿2
� 𝑑𝑑

2𝑣𝑣(𝑥𝑥)
𝑑𝑑𝑥𝑥2

= −𝑞𝑞  (11) 

The biggest advantage of that simplification is the viability for design procedures, as Equation 11 does not need an 
incremental procedure. However, as some of the terms were removed from the equation that governs the problem, the 
equation also lost accuracy. Therefore, there is need of a correction factor to adjust the solution and compensate for the 
removed terms. This procedure is presented in section 4. 
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3.2 Weak form 
The week form of a problem may be written using its strong form. Thus, from Equation 11, it is possible to define 

the residual function 𝑅𝑅(𝑥𝑥) (Equation 12). By definition, the residual function must be minimized along the problem 
domain to obtain accurate results. 

� 𝑅𝑅(𝑥𝑥)𝜔𝜔(𝑥𝑥)𝑑𝑑𝑑𝑑
𝐻𝐻

0

= 0 ∀𝜔𝜔(𝑥𝑥) 

∴ 𝑅𝑅(𝑥𝑥) = 𝑞𝑞 − 𝐸𝐸𝐸𝐸 𝑑𝑑
4𝑣𝑣(𝑥𝑥)
𝑑𝑑𝑥𝑥4

+ 2𝑝𝑝 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

− 𝑝𝑝𝑝𝑝 �1 − 𝑥𝑥
𝐿𝐿2
� 𝑑𝑑

2𝑣𝑣(𝑥𝑥)
𝑑𝑑𝑥𝑥2

  (12) 

being 𝜔𝜔(𝑥𝑥) the weight function that must be continuous and homogeneous in the essential boundary conditions and 
𝑣𝑣(𝑥𝑥) must obey the boundary conditions of the problem. 

The transversal displacement field may be approximated by any function. In this paper, consider that 𝑣𝑣(𝑥𝑥) may be written, 
in indicial notation, as: 

𝑣𝑣(𝑥𝑥) = 𝛼𝛼𝑖𝑖𝜙𝜙𝑖𝑖(𝑥𝑥) {𝑖𝑖 = 1, … ,𝑛𝑛}  (13) 

being 𝛼𝛼𝑖𝑖 the constants to be determinate, 𝜙𝜙𝑗𝑗(𝑥𝑥) the adopted functions and n the number of terms adopted in the 
approximation. 

It is possible to assume any functions for 𝜔𝜔(𝑥𝑥). The Galerkin’s methods applied for weight residuals proposed that 
the weight function is defined as: 

𝜔𝜔(𝑥𝑥) = 𝛽𝛽𝑗𝑗𝜙𝜙𝑗𝑗(𝑥𝑥) {𝑗𝑗 = 1, … ,𝑛𝑛}  (14) 

where 𝛽𝛽𝑗𝑗 are the constants of the 𝜔𝜔(𝑥𝑥) function and 𝜙𝜙𝑗𝑗(𝑥𝑥) are the same functions adopted for 𝑣𝑣(𝑥𝑥). 
Therefore, substituting Equations 13-14 in Equation 12, for any values of 𝛽𝛽𝑗𝑗, it is possible to define the following 

system of linear equations: 

𝑲𝑲𝑻𝑻𝜶𝜶 = 𝑭𝑭 

∴ �
𝐾𝐾𝑖𝑖𝑖𝑖 = ∫ �𝐸𝐸𝐸𝐸 𝜕𝜕

4𝜙𝜙𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑥𝑥4

𝜙𝜙𝑗𝑗(𝑥𝑥) + 2𝑝𝑝 𝜕𝜕𝜙𝜙𝑖𝑖(𝑥𝑥)
𝜕𝜕𝜕𝜕

𝜙𝜙𝑗𝑗(𝑥𝑥) − 𝑝𝑝𝑝𝑝 �1 − 𝑥𝑥
𝐿𝐿
� 𝜕𝜕

2𝜙𝜙𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑥𝑥2

𝜙𝜙𝑗𝑗(𝑥𝑥)� 𝑑𝑑𝑑𝑑𝐿𝐿
0

𝐹𝐹𝑗𝑗 = ∫ 𝑞𝑞𝜙𝜙𝑗𝑗(𝑥𝑥)𝑑𝑑𝑑𝑑𝐿𝐿
0

  (15) 

4 PROPOSED CRITERION 
Cunha et al. [19] presented a criterion for dual system frames, inspired in the γz parameter, which was deduced by 

the ratio of the second order and first order bending moments (Equation 1). The proposed criterion continues the 
research initially developed by Cunha et al. [19], by using the same concepts, and for application on framed system 
structures, as presented in Equation 16: 

𝜁𝜁𝑔𝑔 = 𝜅𝜅 𝑀𝑀2
𝑀𝑀1

  (16) 

being ζg the proposed coefficient, 𝑀𝑀1 is the first order moment for a vertical bar (Figure 1), equal to 𝑞𝑞𝐿𝐿2/2, 𝑀𝑀2 is the 
second order moment and 𝜅𝜅 is a parameter used to compensate the eliminated terms of Equation 10. 

The Equation 15 was solved, adopting a complete fourth degree polynomial function as a potential solution for the 
approximation of the horizontal displacement field (𝑣𝑣(𝑥𝑥)). Based on the 𝑣𝑣(𝑥𝑥) result and knowing that the bending 
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moment field for the vertical bar (Figure 1) is defined by 𝑀𝑀 = −𝐸𝐸𝐸𝐸(𝑑𝑑2𝑣𝑣(𝑥𝑥)) ⁄ (𝑑𝑑𝑥𝑥2), it is possible to define the 
bending moment field along the vertical bar. Therefore, the second order bending moment at the base (𝑥𝑥 = 0) is 
presented in Equation 17. 

𝑀𝑀2 = −108𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿2�−21𝐿𝐿9𝑝𝑝3+8215𝐸𝐸𝐸𝐸𝐿𝐿6𝑝𝑝2−638550(𝐸𝐸𝐼𝐼)2𝐿𝐿3𝑝𝑝+9147600(𝐸𝐸𝐼𝐼)3�
259𝐿𝐿12𝑝𝑝4−140352𝐸𝐸𝐸𝐸𝐿𝐿9𝑝𝑝3+18993312(𝐸𝐸𝐼𝐼)2𝐿𝐿6𝑝𝑝2−632681280(𝐸𝐸𝐼𝐼)3𝐿𝐿3𝑝𝑝+1975881600(𝐸𝐸𝐼𝐼)4

  (17) 

The proposed criterion can be applied for any frame, where 𝐿𝐿 is the height of the building, 𝑞𝑞 and 𝑝𝑝 are the sum of all 
horizontal and vertical loads, respectively, distributed along the height 𝐿𝐿 and 𝐸𝐸𝐸𝐸 is the equivalent stiffness of the frame. 

The ζg parameter is applied in a similar way to the γz, aiming to obtain the second order results (internal forces and 
displacements) in a simplified way. For practical applications, the first order lateral loads must be multiplied by ζg, then 
applying the new loads at the structure and solving a first order analysis to get the approximated second order results. 

5 METHODOLOGY 
The present paper measured the displacement and internal forces (normal force, shear force and bending moment) 

of 21 framed system structures and 21 dual system structures, with different values of the γz parameter. For the first 
group of frames it is also proposed an analytical equation for the κ, based on the displacement results, by using the 
software Past! [40], which is an education statistical software, that provides a wide range of tools and visualizations 
for data exploration and visualization. All the simulations were made on the software MASTAN2, which is an 
interactive structural analysis program that provides preprocessing, analysis, and postprocessing capabilities, similar 
to today's commercially available structural analysis software. The program's linear and nonlinear analysis routines 
are based on the theoretical and numerical formulations presented by McGuire et al. [37]. Thus, for the second order 
analysis, it was used a prediction-correction algorithm [37], which provides results with high accuracy. The physical 
nonlinearity of the reinforced concrete was considered in a simplified way, according to item 15.7.3 of 
NBR 6118 [12], that suggests a reduction of the stiffness of the beams and columns in 60% and 20%, respectively. 
The frames were modelled according two different models: Type 1 (Figure 2a and Figure 3a) and Type 2 (Figure 2b 
and Figure 3b), being h the height of each story, adopted equal to 3 m. The properties of all the frames, the γz values 
and the parameters for the proposed model are presented in Table 1 and Table 2, for dual system and framed system 
structures, respectively, and the elasticity modulus was equal to 24 GPa. The sections of the structural elements were 
defined in order to have a set of different values for the γz parameter, even γz ≥ 1.30, and check the quality of the 
proposed model also for this condition. 

 
Figure 2. Frames models: dual system structures. 



R. N. Cunha, C. S. Vieira, R. S. Gomes, L. D. Silva, L. A. Mendes, and D. L. N. F. Amorim 

Rev. IBRACON Estrut. Mater., vol. 17, no. 6, e17603, 2024 7/19 

 
Figure 3. Frames models: framed system structures. 

Table 1. Dual system structures properties [19]. 

Frame Type Height 
Cross-Section 

γz 𝑴𝑴𝟐𝟐/𝑴𝑴𝟏𝟏 𝜿𝜿𝒐𝒐 
Beam Column Shear-Wall 

1 2 48 0.20×0.60 0.20×0.50 4.00×0.20 1.1150 1.48 0.78 
2 1 24 0.15×0.40 0.25×0.30 1.50×0.25 1.1871 1.67 0.73 
3 1 30 0.15×0.40 0.25×0.30 1.50×0.25 1.3225 2.67 0.53 
4 2 54 0.20×0.60 0.20×0.50 4.00×0.20 1.1515 1.71 0.69 
5 2 51 0.20×0.60 0.20×0.50 4.00×0.20 1.1325 1.58 0.72 
6 1 36 0.15×0.40 0.25×0.30 2.00×0.25 1.2934 2.49 0.55 
7 1 42 0.15×0.40 0.25×0.30 2.00×0.25 1.4587 6.46 0.24 
8 2 66 0.20×0.60 0.20×0.50 4.00×0.20 1.2360 1.96 0.65 
9 2 75 0.20×0.60 0.20×0.50 4.00×0.20 1.3287 2.81 0.50 
10 2 81 0.20×0.60 0.20×0.50 4.00×0.20 1.4063 4.20 0.36 
11 2 78 0.20×0.60 0.20×0.50 4.00×0.20 1.3656 3.34 0.43 
12 2 84 0.20×0.60 0.20×0.50 4.00×0.20 1.4513 5.75 0.27 
13 1 39 0.15×0.40 0.25×0.30 2.00×0.25 1.3626 3.40 0.43 
14 2 69 0.20×0.60 0.20×0.50 4.00×0.20 1.2642 2.16 0.59 
15 2 78 0.20×0.60 0.20×0.50 4.00×0.25 1.3344 2.96 0.48 
16 2 81 0.20×0.60 0.20×0.50 4.00×0.25 1.3716 3.58 0.41 
17 2 84 0.20×0.60 0.20×0.50 4.00×0.25 1.4127 4.62 0.33 
18 2 81 0.20×0.60 0.20×0.50 4.00×0.29 1.3493 3.26 0.44 
19 2 84 0.20×0.60 0.20×0.50 4.00×0.30 1.3823 3.95 0.37 
20 2 87 0.20×0.60 0.20×0.50 4.00×0.30 1.4242 5.26 0.29 
21 2 78 0.20×0.60 0.20×0.50 4.00×0.23 1.3459 3.10 0.46 
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Table 2. Framed system structures properties. 

Frame Type Height 
Cross-Section 

γz 𝑴𝑴𝟐𝟐/𝑴𝑴𝟏𝟏 𝜿𝜿𝒐𝒐 
Beam Column 

1 2 48 0.20×0.60 0.20×0.50 1.1690 1.537 0.77 
2 1 24 0.15×0.40 0.25×0.30 1.3767 2.128 0.68 
3 1 30 0.15×0.40 0.25×0.30 1.5432 3.185 0.52 
4 1 36 0.15×0.40 0.25×0.45 1.4735 2.757 0.57 
5 2 51 0.20×0.60 0.20×0.50 1.1850 1.615 0.74 
6 1 39 0.15×0.40 0.25×0.45 1.5496 3.617 0.46 
7 1 42 0.15×0.40 0.25×0.45 1.6440 4.458 0.40 
8 2 57 0.20×0.60 0.20×0.50 1.2201 1.815 0.69 
9 1 27 0.15×0.40 0.25×0.30 1.4526 2.547 0.61 
10 1 33 0.15×0.40 0.25×0.30 1.6575 4.132 0.44 
11 2 45 0.20×0.60 0.20×0.50 1.1562 1.445 0.81 
12 2 60 0.20×0.60 0.20×0.50 1.2481 1.640 0.77 
13 2 63 0.20×0.60 0.20×0.45 1.3169 1.922 0.7 
14 2 69 0.20×0.60 0.20×0.45 1.3738 2.252 0.63 
15 2 69 0.20×0.60 0.20×0.40 1.4704 2.935 0.53 
16 1 33 0.15×0.40 0.20×0.35 1.5836 3.376 0.5 
17 1 36 0.15×0.40 0.20×0.35 1.6849 4.661 0.4 
18 1 36 0.15×0.40 0.25×0.35 1.6226 3.838 0.46 
19 1 39 0.15×0.40 0.20×0.60 1.4640 2.712 0.57 
20 1 39 0.15×0.40 0.20×1.00 1.2887 1.949 0.68 
21 2 60 0.20×0.60 0.20×0.55 1.2196 1.545 0.8 

The proposed procedure is applicable for any type of lateral loads, as wind or the equivalent static load for 
earthquakes. In this paper, wind loads were adopted accordingly to the Brazilian Standard Code NBR 6123 [2], 
considering basic velocity (V0) of 40 m/s, topography with slightly uneven terrain, on an urbanized area, with many 
residential or hotel buildings, which coefficients are shown in Equation 18: 

𝑆𝑆1 = 1.0 

𝑆𝑆2 = �0.6374𝑧𝑧0.125, if L < 50m 
0.6156z0.135, if L ≥ 50m

 

𝑆𝑆3 = 1.0  (18) 

where z is the height of the analysed story. 
For the sake of simplicity, the wind load calculated using the NBR 6123 [2] is given in Appendix A. 
The vertical loads were determined accordingly NBR 6120 [41] for the occupation of offices and considering dead 

and live loads. The self-weight of the structural elements was also included in the analysis. 
For the framed system structures, the simulations were performed with the aim to determine the best value of κ, in 

order to guarantee that the horizontal displacements obtained by the proposed procedure were closer to the reference ones, 
which were obtained with MASTAN2 by running a second order elastic analysis. All presented results were compared 
between the proposed procedure, the γz procedure and the MASTAN2 methods, being the latter adopted as reference. 
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The displacement results were analysed in a qualitative (displacement field behaviour) and quantitative (statistic methods) 
way. The results of maximum displacement, maximum positive bending moment, maximum negative bending moment 
and maximum shear force (for the beams) and maximum bending moment (for the columns) were compared by using 
statistical tests. It was applied the percent bias (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃), the mean absolute error (𝑀𝑀𝑀𝑀𝑀𝑀) and the mean absolute percentage 
error (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) tests (Equation 19-21) for a global characterization of samples. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�1)𝑛𝑛
𝑖𝑖=1
∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1

  (19) 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�1|𝑛𝑛
𝑖𝑖=1   (20) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝑦𝑦𝑖𝑖−𝑦𝑦�1|

𝑦𝑦𝑖𝑖
𝑛𝑛
𝑖𝑖=1   (21) 

where 𝑦𝑦𝑖𝑖 is the reference value, 𝑦𝑦�1 is the simulated value and 𝑛𝑛 is the sample size. 

It was also verified the hypothesis of the average values of the analysed results being from the same population. 
Before running this mean test, it was verified the hypothesis of normal distribution of the samples (i.e., the normality 
of the samples), by Shapiro-Wilk test. If the p-values were higher than the level of significance, the homoscedasticity 
test (which tests the hypothesis of the samples have the same finite variance) were performed using the Bartlett’s 
test, otherwise, it was used the Levene’s test. If the p-values of both tests did not allow rejecting the null hypothesis, 
the t-test were performed to verify if the samples are from the same population. Otherwise, it was performed the 
Mann-Whitney test (for a detailed review of the statistical tests see [42]). For all tests, it was adopted a level of 
significance of 5%. 

Cunha et al. [19] evaluated previously the dual system structures in terms of displacements. The present paper also 
compared the values of internal forces for this structural system, similar to the framed system structures, added the 
maximum bending moment at the shear-wall. Also, it was performed the same statistical tests used for the framed 
system structures. 

6 RESULTS AND DISCUSSIONS 

6.1 Framed system structures 

6.1.1 Nonlinear regression 

Twenty-one framed system structures were solved by a first order analysis with the goal of define an equation 
that describes the behaviour of the κ coefficient, according to the value of 𝑀𝑀2/𝑀𝑀1. It was chosen the best value of κ 
that leads to the closest fit of the Horizontal displacement vs. Storey of the frames to the reference results 
(MASTAN2 results). These Horizontal displacement vs. Storey curves are presented for all frames in Figure 4, with 
the values of κ and a direct comparison with the first order analysis, γz analysis and MASTAN2. The values of κ and 
𝑀𝑀2/𝑀𝑀1 are also presented in Table 1 and Table 2, for the dual system and framed structures, respectively. Based in 
the values for all framed structures (Table 2), it was performed a nonlinear regression, using the software Past! [40], 
which results is the Equation 22: 

𝜅𝜅𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = −0.95743 + 1.9154 �𝑀𝑀2
𝑀𝑀1
�
−0.22608

  (22) 
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Figure 4. Horizontal displacements results. 
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The behaviour observed in proposed equation is quite similar to the one previously presented by Cunha et al. [19] 
for dual system structures (Equation 23). 

𝜅𝜅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = −0.3864 + 1.3644 �𝑀𝑀2
𝑀𝑀1
�
−0.4205

  (23) 

To verify the quality of the adjust that Equation 22 provides, it was made the Nash-Sutcliffe coefficient [43], 
according to the Equation 24: 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑ (𝜅𝜅𝑝𝑝𝑡𝑡 −𝜅𝜅𝑜𝑜𝑡𝑡 )2𝑛𝑛
𝑡𝑡=1

∑ (𝜅𝜅𝑜𝑜𝑡𝑡−𝜅𝜅𝑜𝑜
𝐴𝐴𝐴𝐴𝐴𝐴)2𝑛𝑛

𝑡𝑡=1
  (24) 

where 𝜅𝜅𝑝𝑝𝑡𝑡  is the predicted coefficient by Equation 22, 𝜅𝜅𝑜𝑜𝑡𝑡  is the observed coefficient and 𝜅𝜅𝑜𝑜
𝐴𝐴𝐴𝐴𝐴𝐴 is the average of the 

observed coefficients. The Nash-Sutcliffe coefficient determines the magnitude of the residual variance in relation to 
the observed data variance, which values are in the range -∞ < 𝑁𝑁𝑁𝑁𝑁𝑁 ≤ 1. The unitary value means a perfect fit of the 
points to the model; 𝑁𝑁𝑁𝑁𝑁𝑁 = 0 means that the values obtained by Equation 22 are as precise as the mean of the observed 
data; and 𝑁𝑁𝑁𝑁𝑁𝑁 < 0 indicates that the mean of the observed data provides a better prediction than the Equation 22 [43]. 
For the proposed model, the 𝑁𝑁𝑁𝑁𝑁𝑁 efficiency coefficient was equal to 0.9901. 

Many assumptions are made when a regression analysis is performed, as the normality of the errors (i.e., the sample 
follows a normal distribution) and that the random variables are uncorrelated [42]. To check the normality hypothesis, 
the Shapiro-Wilk test was used on the residuals from the regression. The p-value for this test was equal to 0.65, higher 
than the level of significance. Therefore, it is not possible to reject the hypothesis that the sample follow a normal 
distribution and corroborate that the proposed model did not present inconsistences. 

6.1.2 Displacement analysis 
The Horizontal displacement vs. Storey curves of the structures (Figure 4) provide an initial supposition that the 

results obtained by the proposed criterion leads to better results along all structure, than the γz ones, compared to the 
MASTAN2. One way to verify this hypothesis is performing a series of statistical analysis. As the NBR 6118 [12] 
indicates that the γz parameter only is recommended for the range 1.10 < γz ≤ 1.30, the analysis were made for two 
samples: all frames and the frames whose value of γz are in the recommended range. The basic statistics parameters and 
the PBIAS, MAE and MAPE results are presented in Table 3. 

Table 3. Basic statistics of displacements. 

 All frames 1.10 < γz ≤ 1.30 
γz ζg MASTAN2 γz ζg MASTAN2 

Mean (m) 0.913 1.016 0.984 0.643 0.689 0.679 
Standard deviation (m) 0.353 0.408 0.384 0.176 0.192 0.186 

PBIAS (%) -7.726 3.191 - -5.704 1.463 - 
MAE (m) 0.071 0.032 - 0.037 0.010 - 

MAPE (%) 7.493 2.799 - 5.680 1.387 - 

The results presented in Table 3 shows that the γz model leads to values of displacement lower than the reference 
ones, while the proposed model, higher and closer displacements for the two samples analysed. The PBIAS parameter 
also indicates that the ζg model presents lowers absolute bias. The MAE e MAPE parameters indicate that the results 
of the proposed model are in favour of security and with errors lower than the γz model, in comparison to the second 
order results. The mean tests were also performed for the two samples, which results are presented in Table 4. Based 
on the p-values, it is not possible to reject the hypothesis of normal distribution of the models (normality). Moreover, 
it was also verified the hypothesis of homoscedasticity, which p-value increases for the range 1.10 < γz ≤ 1.30. 
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The results of the t-test did not allow the rejection of the hypothesis that both models have means statistical equals to 
the reference values. Although, there is greater certainty in affirm that proposed model is more similar to the reference 
values, as shown by the p-values results. Therefore, it is possible to conclude that the proposed model leads to better 
results and in favour of security, in terms of displacement. This analysis is important to better conclusions for the 
serviceability limits analysis or interstorey drift ratio that may cause high increase in the repair costs [11]. 

Table 4. p-values of the statistical tests of displacements. 

 All frames 1.10 < γz ≤ 1.30 
Normality Homoscedasticity Mean test Normality Homoscedasticity Mean test 

MASTAN2 0.7032 
0.8134 

- 0.8476 
0.9792 

- 
γz 0.6920 0.5389 0.8261 0.7118 
ζg 0.6426 0.7922 0.8119 0.9222 

6.1.2 Internal forces analysis 

In a sway analysis is also important to analyze the results in terms of internal forces. Then, the same tests made for 
the displacement were made for beams: positive bending moment, negative bending moment and shear force (Table 5 
and Table 6) and for the columns: bending moments (Table 7 and Table 8). 

Table 5. Basic statistics of internal forces for the beams. 

 
All frames 1.10 < γz ≤ 1.30 

γz ζg MASTAN2 γz ζg MASTAN2 

Positive 
bending 
moments 

Mean (kNm) 346.957 391.210 420.686 371.514 402.443 422.000 
Standard deviation (kNm) 171.925 187.554 191.702 134.868 147.031 157.716 

PBIAS (%) -21.250 -7.535 - -13.589 -4.860 - 
MAE (kNm) 73.729 29.600 - 50.486 19.929 - 
MAPE (%) 18.161 7.454 - 11.464 4.294 - 

Negative 
bending 
moments 

Mean (kNm) -558.924 -604.748 -641.229 -589.743 -622.229 -653.500 
Standard deviation (kNm) 176.326 190.243 198.959 142.792 153.055 162.840 

PBIAS (%) -14.726 -6.032 - -10.811 -5.026 - 
MAE (kNm) 82.305 36.481 - 63.757 31.271 - 
MAPE (%) -12.765 -5.652 - -9.445 -4.521 - 

Shear 
forces 

Mean (kN) 336.957 356.690 370.257 374.314 389.600 399.643 
Standard deviation (kN) 99.926 106.168 109.858 79.871 85.037 89.500 

PBIAS (%) -9.883 -3.803 - -6.767 -2.578 - 
MAE (kN) 33.300 13.567 - 25.329 10.043 - 
MAPE (%) 8.911 3.642 - 6.099 2.366 - 

Table 6. p-values of the statistical tests of internal forces for the beams. 

 
All frames 1.10 < γz ≤ 1.30 

Normality Homoscedasticity Mean test Normality Homoscedasticity Mean test 
Positive 
bending 
moments 

MASTAN2 0.4929 
0.8805 

- 0.8157 
0.9341 

- 
γz 0.2294 0.1970 0.8077 0.5319 
ζg 0.2686 0.6173 0.8600 0.8144 

Negative 
bending 
moments 

MASTAN2 0.7066 
0.8657 

- 0.3461 
0.9531 

- 
γz 0.5465 0.1637 0.7491 0.4511 
ζg 0.5631 0.5471 0.8146 0.7177 

Shear 
forces 

MASTAN2 0.3809 
0.9146 

- 0.4611 
0.9645 

- 
γz 0.2537 0.3103 0.3867 0.5867 
ζg 0.1434 0.6862 0.4641 0.8332 
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The basic statistical parameters (Table 5) provide an initial idea about the behaviour of the internal forces. 
It is possible to note that, for all analysis, the results obtained by the proposed model (ζg) are closer to the 
reference ones (MASTAN2) than the γz model, even in the range recommended by the NBR 6118 [12]. This 
conclusion can be reached by the mean and standard deviation or by the PBIAS, MAE and MAPE parameters, 
which errors with the γz model are, at least, twice the values of the proposed parameter. Moreover, it is not 
possible to reject the hypothesis of normal distribution and homoscedasticity of the models, for the two samples 
analysed, and it was possible to apply t test (Table 6). The p-values did not allow to reject the hypothesis of 
both simplified models are equal to the reference one. However, as observed for the displacement results, the 
p-values for the proposed model are higher than the γz model and, therefore, there is a lower chance of 
committing an error in this affirmation. 
 

Table 7. Basic statistics of bending moments for the columns. 

 All frames 1.10 < γz ≤ 1.30 
γz ζg MASTAN2 γz ζg MASTAN2 

Mean (kNm) 648.105 715.810 651.852 714.771 766.500 718.900 
Standard deviation (kNm) 276.276 302.021 277.736 377.730 412.326 386.295 

PBIAS (%) -0.578 8.935 - -0.578 6.210 - 
MAE (kNm) 9.576 63.957 - 17.014 47.600 - 
MAPE (%) 1.782 9.830 - 2.979 6.785 - 

 

Table 8. p-values of the statistical tests of bending moments for the columns. 

 All frames 1.10 < γz ≤ 1.30 
Normality Homoscedasticity Mean test Normality Homoscedasticity Mean test 

MASTAN2 0.0084 
0.9511 

- 0.0059 
0.9942 

- 
γz 0.0106 0.8999 0.0056 0.7983 
ζg 0.0160 0.3924 0.0055 0.6093 

 

The results for the bending moments in the columns of the framed structures indicates that the proposed 
model presents higher errors than the γz model, in comparison to the reference ones (Table 7). However, it is 
possible to note that the errors of the proposed model are positive i.e., the bending moments are in favour of 
the security, while the ones by the γz model are lowers (negative PBIAS). It is important to note that, for the 
range of 1.10 < γz ≤ 1.30, the results obtained by the proposed model got an improvement, while the ones 
achieved by the γz model worsened. The same conclusion can be reached by the analysis of the mean tests 
(Table 8). 

6.2 Dual system structures: internal forces analysis 
Cunha et al. [19] previously studied dual system structures focusing on the displacement of the structures. 

These authors concluded that the results in terms of displacement of the proposed model was better than the 
ones by the γz model, similar to the conclusions reached for the framed system structures (section 6.1). This 
paper focuses on the analysis of the internal forces of the beams: positive bending moment, negative bending 
moment and shear force (Table 9 and Table 10) and of the columns: bending moments (Table 11 and Table 12) 
and of the shear-walls (Table 13 and Table 14). 
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Table 9. Basic statistics of internal forces for the beams. 

 
All frames 1.10 < γz ≤ 1.30 

γz ζg MASTAN2 γz ζg MASTAN2 

Positive 
bending 
moments 

Mean (kNm) 624.443 671.376 675.586 722.986 777.829 784.086 
Standard deviation (kNm) 325.409 357.521 360.394 264.453 296.758 300.973 

PBIAS (%) -8.190 -0.627 - -4.261 0.230 - 
MAE (kNm) 51.143 6.419 - 16.943 5.671 - 
MAPE (%) 6.735 1.122 - 4.107 1.440 - 

Negative 
bending 
moments 

Mean (kNm) -510.548 -552.362 -552.129 -561.014 -605.871 -604.171 
Standard deviation (kNm) 153.271 173.281 171.044 130.558 154.080 151.865 

PBIAS (%) -8.144 0.042 - -5.211 -0.293 - 
MAE (kNm) 41.581 5.919 - 20.586 2.414 - 
MAPE (%) -7.214 -0.999 - -5.012 -0.657 - 

Shear 
forces 

Mean (kN) 336.167 355.490 355.310 369.357 390.471 389.629 
Standard deviation (kN) 86.734 96.241 95.223 61.981 73.026 71.925 

PBIAS (%) -5.694 0.051 - -3.375 -0.183 - 
MAE (kN) 19.143 2.771 - 9.471 1.071 - 
MAPE (%) 5.096 0.719 - 3.241 0.404 - 

Table 10. p-values of the statistical tests of internal forces for the beams. 

 
All frames 1.10 < γz ≤ 1.30 

Normality Homoscedasticity Mean test Normality Homoscedasticity Mean test 

Positive 
bending 
moments 

MASTAN2 0.0127 
0.8679 

- 0.2628 
0.9914 

- 
γz 0.0110 0.3924 0.3457 0.8770 
ζg 0.0124 0.8405 0.3257 0.9932 

Negative 
bending 
moments 

MASTAN2 0.1858 
0.8410 

- 0.3583 
0.9924 

- 
γz 0.1873 0.4117 0.3234 0.7469 
ζg 0.2498 0.9965 0.3315 0.9851 

Shear 
forces 

MASTAN2 0.0475 
0.8889 

- 0.1229 
0.9946 

- 
γz 0.0345 0.2683 0.1049 0.8080 
ζg 0.0655 0.9599 0.1147 0.9894 

Similar to the observed in the framed structures, the results obtained for the beams, applying the proposed model, 
are closer to the reference ones, in comparison to the ones achieved by the γz model. In terms of errors (Table 9), the 
internal forces obtained by the proposed model are, at least, almost three times lower than the ones by the γz model, 
even in the recommended range of this parameter. The mean test also corroborates this analysis, which p-values are 
near to 1.0 (perfect correlation between the samples). 

Table 11. Basic statistics of bending moments for the columns. 

 All frames 1.10 < γz ≤ 1.30 
γz ζg MASTAN2 γz ζg MASTAN2 

Mean (kNm) 486.852 523.933 526.638 533.157 576.557 581.957 
Standard deviation (kNm) 220.585 241.850 247.061 205.253 230.338 235.291 

PBIAS (%) -8.172 -0.516 - -4.973 -0.032 - 
MAE (kNm) 40.024 6.438 - 14.914 2.814 - 
MAPE (%) 6.751 1.460 - 4.674 0.880 - 
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Table 12. p-values of the statistical tests of bending moments for the columns. 

 All frames 1.10 < γz ≤ 1.30 
Normality Homoscedasticity Mean test Normality Homoscedasticity Mean test 

MASTAN2 0.0085 
0.8306 

- 0.7764 
0.9893 

- 
γz 0.0089 0.3143 0.8326 0.8185 
ζg 0.0099 0.8209 0.8149 0.9988 

The results for the columns are similar to that observed in the beams, which errors with the proposed parameter 
are quite lower than the γz model. The Brazilian normative parameter leads to internal forces lower than the reference 
values (PBIAS) and higher errors (MAE and MAPE) for all structures. For the recommended range of γz parameter, 
the results are better, although with higher errors, which may also be concluded by the p-values of the mean test. 
The p-value improved in the second sample (0.3143 to 0.8185), however lower than the value of the proposed 
parameter for all structures (0.8209), which achieved the value of 0.9988 for the range 1.10 < γz ≤ 1.30. 

Table 13. Basic statistics of bending moments for the shear-wall. 

 All frames 1.10 < γz ≤ 1.30 
γz ζg MASTAN2 γz ζg MASTAN2 

Mean (kNm) 3.37E+04 3.75E+04 3.41E+04 3.83E+04 4.25E+04 3.89E+04 
Standard deviation (kNm) 1.83E+04 2.07E+04 1.83E+04 1.54E+04 1.79E+04 1.53E+04 

PBIAS (%) -1.253 9.094 - -2.850 4.439 - 
MAE (kNm) 5.65E+02 3.41E+03 - 5.73E+02 9.60E+02 - 
MAPE (%) 2.204 8.806 - 3.223 4.608 - 

Table 14. p-values of the statistical tests of bending moments for the shear-wall. 

 All frames 1.10 < γz ≤ 1.30 
Normality Homoscedasticity Mean test Normality Homoscedasticity Mean test 

MASTAN2 0.2215 
0.8118 

- 0.3108 
0.9879 

- 
γz 0.2072 0.9407 0.4249 0.9213 
ζg 0.2032 0.5744 0.4019 0.8725 

The results for the shear-walls are similar to that observed in the columns of the framed system structures. The 
proposed parameter leads to higher errors than the γz model, however, with values above the reference ones, while 
the γz model, lower. Moreover, for the recommend range of the γz parameter, the results by this model worsened, 
while the proposed model improved for all evaluated parameters, also observed by the p-values of the mean tests. 

7 CONCLUSIONS 
The present paper proposed a simplified method to estimate the global second order effects in reinforced concrete 

structures, especially the framed system ones, and made a review of the method for dual system structures. The 
procedure was deduced using Galerkin’s method by weighted residuals and has applicability similar to the γz parameter, 
proposed in the NBR 6118 [12]. 

Twenty-one 21 framed system structures were evaluated to define an analytical equation for the ζg parameter, whose 
quality was verified by the Nash-Sutcliffe coefficient [43] and obtained a quality of 0.9901, being 1.00 a perfect 
adjustment. The results of the structures using the proposed model and the γz model were compared to the reference 
values (MASTAN2) in terms of displacement and internal forces. The comparisons were made by using visual and 
statistical parameters (PBIAS, MAE, MAPE, normality, homoscedasticity, and mean test). Based on the analysed 
structures, the proposed model leads to responses closer to the reference values than the γz coefficient, even in the range 
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recommended by the NBR 6118 [12]. The results of PBIAS, MAE and MAPE for the proposed model reached values 
of, at least, half of the γz model. The normality of the samples was verified by using the Shapiro-Wilk Normality test 
and the Bartlet test for the homoscedasticity test, before applying the mean test. The results observed by the PBIAS, 
MAE and MAPE were corroborated by these tests, which p-values for the proposed model were higher than the ones 
for the γz model. Therefore, for the analysed examples, the proposed model is more similar to the reference values. This 
conclusion was made for displacement and internal forces in the beams. For the bending moments in the columns, the 
proposed model leads to results higher than the reference ones, in favour of security, which errors reduce when the 
analysed structures are in the 1.10 < γz ≤ 1.30 range, while the γz coefficient leads to worst results. 

The same analyses were made for the dual system structures, in terms of internal forces. The conclusions were 
similar to those observed for the framed system structures, which errors were quite lower for the proposed model, than 
the γz model, and the p-values, in certain cases, reaching values near to 1.0. These conclusions concern all internal 
forces of beams columns. For the internal forces in the shear-wall, it was observed a behaviour similar to the columns 
in the framed system, which the proposed model leads to higher values of bending moments, that reduces when analysed 
in the 1.10 < γz ≤ 1.30 range, reaching to errors and p-values near to the γz model. 

In sum, for the analysed examples, the proposed model is more accurate than the one that uses the γz coefficient. 
Moreover, the proposed model maintains its accuracy even when the γz coefficient range is violated in its upper limit 
(γz ≤ 1.30). For future researches, it is recommended to verify the accuracy of the proposed model for three-dimensional 
structures. If these models were appropriately tested, it might be considered as another simplified method to assess the 
stability of buildings in a future update of the NBR 6118 [12]. 
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APPENDIX A – WIND LOADS 
The wind loads were calculated according to the NBR 6123 [2] recommendations, which are presented in Tables A1 

and A2, for structures lower and higher than 50 m, respectively. If the storey is the last one of the structures, the wind 
load should be half of the presented value due to the wind influence area. 

Table A1. Wind loads for structures lower than 50 m. 

Storey Load (kN) Storey Load (kN) 
1 36.00 9 65.15 
2 43.41 10 67.03 
3 48.43 11 68.78 
4 52.34 12 70.42 
5 55.59 13 71.95 
6 58.40 14 73.41 
7 60.88 15 74.79 
8 63.11 16 76.10 

Table A2. Wind loads for structures higher than 50 m. 

Storey Load (kN) Storey Load (kN) Storey Load (kN) Storey Load (kN) 
1 35.40 9 61.31 17 71.88 25 79.16 
2 42.10 10 62.95 18 72.92 26 79.94 
3 46.59 11 64.47 19 73.91 27 80.69 
4 50.06 12 65.89 20 74.86 28 81.43 
5 52.94 13 67.22 21 75.78 29 82.15 
6 55.40 14 68.48 22 76.67   

7 57.58 15 69.67 23 77.52   

8 59.54 16 70.80 24 78.35   
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