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ABSTRACT 
Objective: To analyze the ability of saliva in controlling the growth and the biofilm formation of 
Streptococcus mutans (S. mutans) as well as the effect of histatin-5 anti-biofilm relate to pH and saliva 
viscosity. Material and Methods: The S. mutans biofilm assayed by crystal violet 1% and its growth 
measured by spectrophotometer. The saliva viscosity was analyzed by viscometer, and pH of saliva was 
measured by pH meter. Results: Based on the optical density values, growth of S. mutans in saliva ranged 
<300 CFU/mL (0.1 nm) at concentrations of 25%, 12.5% and 6.25% for 24 hours. Whereas at the 48 h and 
72 h period of incubation shown an increase in growth of S. mutans ranged 300-600 CFU/mL (0.2-0.36 nm). 
The inhibitory biofilm formation of S. mutans in saliva was significantly higher at concentrations of 12.5% 
and 6.25% at 24 h incubation times on a moderate scale, whereas the histatin-5 was effective to inhibit S. 
mutans biofilm on the 50 and 25 ppm. The saliva possessed a higher inhibitory of biofilm S. mutans than 
histatin-5 and good level viscosity (0.91-0.92 cP). Conclusion: The saliva was able to control the growth of 
S. mutans, and histatin-5 can inhibit the biofilm formation S. mutans. Furthermore, the saliva was also able to 
respond to the pH change with good viscosity of saliva. 
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Introduction 

The saliva contains 99% of water, inorganic and organic compounds. It has produced in glandular of 

the parotid, sub-mandibular, and mandibular. The cholinergic receptor controls the secretion of them through 

the stimulation of mechanical [1]. The Saliva harbour sIgA, histatin, lactoferrin, polypeptide, and oligopeptide. 

These protein roles in maintaining the oral mucosa and dental pellicle [2]. The saliva has effect antifungal and 

antibacterial because it has lysozyme, lactoperoxidase, lactoferrin, and histidine riched polypeptide, which plays 

a role in controlling the oral pathogen and salivary pH change [3]. At the lower salivary pH, it could support 

the colonization of pathogen to encourage interaction with mucosal epithelial cells [4] regarding the increase 

of salivary glycosylated haemoglobin. These changes contribute to the growth in the colonization of S. mutans 

as one of the oral pathogens that mainly involved in the pathogenesis of dental caries [5]. It was reported that 

positive dental caries is associated with S. mutans saliva scores [6]. The activity is influenced by some S. mutans 

virulent factors. In addition to growth factors, the ability to form biofilms in dental pellicles is one of the 

destructive factors of S. mutans to be aware of [7], because it has related the biofilms formation and oral 

bacteria quorum sensing that involved in caries pathogenesis.  

The saliva serves to maintain the biological balance of the oral cavity and generally controls the 

development of oral pathogens and prevents the interaction of S. mutans with dental pellicles and caries [8,9]. 

Dental caries caused by multiple cariogenic agents like mutans streptococci, lactobacilli, Scardovia wiggsiae, 

and Actinomyces species [10]. Human salivary protein or histatin-5 to be bacteriocidal against some oral 

bacteria such as E. faecium, E. cloacae, A. baumannii, and C. albicans [11]. Besides, the response to changes in pH 

and viscosity of saliva is a determinant of the development of S. mutans [12]. Animireddy et al. reported that 

caries could reduce the salivary flow rate, salivary pH, salivary buffer capacity, and can significantly increase 

salivary viscosity. Physiochemically shows that it has a close relationship with the prevalence of caries [13]. 

This study evaluated the function of saliva as a control for S. mutans growth, and together with histatin-5 

assessed the sensitivity of S. mutans biofilm formation, which was confirmed by an adaptation response to 

changes in pH and viscosity of saliva. 

 

Material and Methods 

Laboratory Procedures 

The critical saliva was obtained from children unstimulated and stored in phenylmethylsulfonyl 

fluoride (1%) 1:10 to avoid damage to salivary protein, then diluted to a concentration of 50%, 25%, 12.5%, and 

6.25%. Salivary histatin-5 (Invitrogen, Thermo Fisher Scientific Inc., Waltham, MA, USA) was used as an in-

vitro model of one salivary protein with a concentration (ppm). The critical saliva and histatin-5 were 

employed to evaluate their effectiveness in controlling the growth and biofilms formation of S. mutans and the 

effect of interactions between S. mutans and saliva to the adaptation response to pH changes and viscosity of 

saliva. Bacteria of S. mutans ATCC 25175 was obtained from glycerol 50% stock, refreshed by re-culture on 

Tryptic soy broth (TSB) media (Merck KGaA, Darmstadt, Germany. Then it was synchronized with McFarlan 

0.5 (1.5x108). 

 

Streptococcus mutans Growth Assessment 

The spectrophotometric assessment of S. mutans growth initiated with the preparation of critical saliva 

at concentrations of 50%, 25%, 12.5% and 6.25% with Chlorhexidine (CHX) 0.2% as a positive control. In the 

96-well plate, 50 µL of TSB medium was added to each well and incubated for 15 min and then washed twice 
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with PBS (pH 7.0). Subsequently, S. mutant was prepared into a 25 µL well in the medium and incubated at 

room temperature (27oC) for 15 min. Critical saliva was added with a predetermined concentration into each 

well of 100 µL (1: 4) and then was incubated in the anaerobic atmosphere for 24 h, 48 h, and 72 h. The growing 

quantity of S. mutans was read based on its vigour by spectrophotometry-Elisa Reader (Bio-Rad Laboratories, 

Inc., Hercules, CA, USA) with Optical density (OD) 620 nm. OD 0.08-0.1 similar to Mc. Farland 0.5 (1.5x108) 

or equivalent to <300 CFU [14]. 

 

Biofilm Assay 

According to the method conducted previously, the formation of the S. mutans biofilm was carried out 

by the 1% violet crystal method [15]. The saliva test material was prepared at various concentrations of 50%, 

25%, 12.5%, and 6.25%, while the histatin-5 was prepared in 50 ppm, 25 ppm, 12.5 ppm, and 6.25 ppm 

consecutively. 96-well plate was coated by 100 µL TSB medium, incubated for 15 min, rinsed by using PBS 

(pH 7.0) and to each well, 25 µl S. mutant was added followed by adaptation at ambient temperature for 15 min. 

Subsequently, both saliva and histatin-5 were added to each well with a different test (triple serial), then 

homogenized on the shaker at 1000 x g for 5 min, incubated anaerobically for 24 h, 48 h, and 72 h. The 

assessment of S. mutans biofilms formation was initiated by removing all the solutions in wells and then 

washing them with PBS and dishwasher at 1000 g for 5 m (repeated twice). Subsequently, into each well plate, 

150 µL of 1% violet crystal was injected, and then the crystalline violet dye and biofilm protein were 

homogenized by using a shaker at 100 x g for 10 min. Each well was then washed with 150 µL PBS for 5 min, 

then discarded and resumed with 150 µL of 70% ethanol for 1 min. 96-well plates containing biofilms were 

then marked based on the absorption of violet crystalline dyes and incubated at room temperature for 15 min. 

The biofilm mass of S. mutans measured by spectrophotometer at 560 nm. The Anti-biofilm assessment 

according to OD spectrophotometry, OD≥0.4 (strong); OD=0.2-3.9 (moderate); OD=0.05-0.1 (low); OD<0.05 

(no biofilm formation). 

 

Saliva pH Measurement 

The measurement of salivary pH adaptation response to S. mutans begins by preparing saliva 

concentrations of 50%, 25%, 12.5%, and 6.25%. 500 μL S. mutans was adapted in 10 mL of saliva on the shaker 

at 1000 x g at the room temperature then incubated anaerobically for 24 h, 48 h and 72 h. Then, the salivary 

pH change was checked (3 repetitions) using a pH meter (Eutech Instruments Pte Ltd, Singapore). 

 

Saliva Viscosity Measurement 

Saliva viscosity was examined using Ostwald viscometer [13]. The saliva density was measured using 

a pycnometer, an empty pycnometer, and the lid were weighed using an analytical balance. Then, 5 ml of saliva 

was added to the pycnometer re-weighed with three replications to obtain a constant weight. 

 

Statistical Analysis 

Data on differences in growth of S. mutans with the biofilms formation in both saliva and histatin-5 

were analyzed by paired T-test. The correlation with the incubating time variable was analyzed by One-Way 

ANOVA and Kruskal-Wallis, with p<0.05 as a significant reference. 

 

Ethical Aspects 
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The research was approved by the Ethics Committee of Medical Faculty, Universitas Sumatera Utara, 

Medan, Indonesia (No.41/TGL/KEPK FK USU-RSUP HAM/2018). 

 

Results 

Figure 1 illustrates that the incubation time of   hours showing the intensity of S. mutans growth with 

an average OD of 0.1 nm (<300 CFU). One-Way ANOVA analysis showed no significant difference in the 

growth of S. mutans among the incubation times of 24 h, 48 h, and 72 h (p>0.05). Meanwhile, the varied 

concentration contributed to the difference in S. mutans growth for each saliva (p<0.05). Optical Density 0.08-

0.1 nm (Mc Farland 0,5; <300 CFU), OD 0.11-0.29 nm (Mc Farland 1; 300-600 CFU); OD 0.3-0.49 nm (Mc 

Farland 2; 600-1200 CFU). 

 

 
Figure 1. The growth of S . mutans  in critical saliva at various concentrations. The graph depicted that 
the concentrations of saliva determined the population of S . mutans  (CFU/ml). CHX 0.2% was able to 
inhibit the growth of S . mutans  greater compared to the saliva at various concentrations. Bar (S . 
mutans  growth (CFU/ml) and bar error (standard deviation). 
 

Figure 2 shows the salivary concentration provides a varied response to the S. mutans biofilm 

formation. On the 24 and 48 h have a hight effect to adherence the biofilm formation of S. mutans at 12.5% and 

6.25% salivary concentrations compared 50% and 25%. ANOVA analysis did not show significant differences 

(p>0.05), but the intensity of biofilm formation changed between incubation times of 24 h, 48 h, and 72 h 

(p<0.05).  Figure 3 depicted that histatin-5 at concentrations of 50 ppm and 25 ppm has a moderate effect of 

anti-biofilm formation on S. mutans. The distribution and frequency of histatin-5 anti-biofilm formation of S. 

mutans in Table 1, both at the incubation times of 24 h, 48 h, and 72 h (p>0.05; One Way ANOVA), but 

increase as respect to the concentration (p>0.05; Kruskal-Wallis). 

Figure 4 shows that saliva in each concentration has good viscosity (0.91-0.92 cP) based on the 

growth and biofilm inhibition of S. mutans in all of the concentrations of saliva. This viscosity value illustrates 

that protein components in saliva can respond to S. mutans activities that indicate the minimum damage to 

salivary proteins that correlate with lower the saliva's viscosity. Table 2 shows that all salivary concentrations 

can respond to pH changes after 24 h, 48 h, and 72 h of incubation; on the concentration of 50% salivary shown 

the best interaction with S. mutans and lower pH change of saliva. Kruskal-Wallis analysis showed no 
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significant difference (p>0.05) with a moderate correlation (r = 0.5). While the incubating time variable also 

shows insignificant changes in the pH of saliva (p>0.05) with a weak correlation (r=0.2). 

 

 
Figure 2. The biofilm formation of S . mutans . Generally, the saliva at the concentration of 50%, 25%, 
and CHX 0.2% show the more significant effect in decreasing S . mutans  biofilm compared to the 
concentrations of 12.5% and 6.25%. Bar (Biofilm formation and bar error (standard deviation). 
 

 

 
Figure 3. Histatin-5 anti-biofilm formation of S . mutans . The varying concentrations have shown the 
anti-biofilm effect against S . mutans , 50 ppm, and 25 ppm showed better results according to a positive 
reference (CHX 0.2%). Bar (histatin-5 anti-biofilm) and bar error (standard deviation). 
 

Table 1. Distribution and frequency of histatin-5 anti-biofilm formation of S . mutans . 

Histatin-5 
(ppm) 

24 h 48 h 72 h 
OD Anti-
Biofilm 

SDV % Scala 
OD Anti-
Biofilm 

SDV % Scala 
OD Anti-
Biofilm 

SDV % Scala 

50 0.29 0.00 43% Moderate 0.30 0.00 39% Moderate 0.35 0.01 36% Moderate 
25 0.22 0.09 32% Moderate 0.25 0.07 33% Moderate 0.31 0.02 32% Moderate 

12.5 0.09 0.01 13% Low 0.13 0.15 17% Low 0.17 0.12 18% Low 
6.25 0.08 0.03 12% Low 0.09 0.09 11% Low 0.13 0.02 14% Low 
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Figure 4. The viscosity of saliva at various concentrations after interacted with S . mutans . Saliva 25% 
has the best viscosity compared others concentrations: line (saliva viscosity) and bar error (standard 
deviation). 
 

 

Table 2. The pH saliva adaptation after interacted with S . mutans . 

Sample Analyses 
Salivary Response of pH Changes After Interacted with S. mutans  

pH SD Quantity pH Changes % 
Saliva pH Response 
% Categories 

24 hours       
Saliva 50% 6.41 ±0.15 0.97 19.1% 80.9% Good 
Saliva 25% 6.62 ±0.05 1.00 19.8% 80.2% Good 
Saliva 12.5% 6.80 ±0.06 1.03 20.3% 79.7% Moderate 
Saliva 6.25% 6.83 ±0.04 1.03 20.4% 79.6% Moderate 
CHX 0.2% 6.81 ±0.11 1.03 20.4% 79.6% Moderate 

48 hours       
Saliva 50% 6.26 ±0.32 1.05 19.6% 80.4% Good 
Saliva 25% 6.80 ±0.10 1.14 21.2% 78.8% Moderate 
Saliva 12.5% 5.40 ±0.26 0.90 16.9% 83.1% Moderate 
Saliva 6.25% 6.88 ±0.03 1.15 21.5% 78.5% Moderate 
CHX 0.2% 6.66 ±0.21 1.11 20.8% 79.2% Moderate 

72 hours       
Saliva 50% 5.96 ±0.32 0.89 17.7% 82.3% Good 
Saliva 25% 6.83 ±0.12 1.02 20.3% 79.7% Moderate 
Saliva 12.5% 7.10 ±0.10 1.06 21.1% 78.9% Moderate 
Saliva 6.25% 6.98 ±0.07 1.04 20.7% 79.3% Moderate 
CHX 0.2% 6.80 ±0.10 1.02 20.2% 79.8% Moderate 

 

Discussion 

Theoretically, saliva has the role to preventing dental caries which acts as a mechanical cleaning agent 

that (A) reduces plaque accumulation, as well as (B) reduces enamel solubility through calcium, phosphate, and 

fluoride, and (C) neutralizes acids generated by carcinogenic organisms or as a result of carbohydrate 

glycolysis and has an antibacterial role [3]. S. mutans in saliva caused the aciduric and acidogenic conditions as 

a result of glycolysis of glucose that impacted acid production. Furthermore, the saliva viscosity to determine 

of S. mutans development in dental caries pathogenesis [16]. The carious lesion is caused by the oral ecosystem 

diversity in saliva, where the S. mutans slightly contribute to the quorum-sensing bacterium. As the 

commensal, S. mutans present in saliva does not mean that the patient will have dental caries [17]. 

As can be seen in Figure 1, the research finding shows that salivary concentration could affect the 

growth of S. mutans, even though there was no significant difference between the incubating time of 24 h, 48 h, 
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and 72 h (p>0.05). At 50% salivary concentration, the growth of S. mutans was in line with the incubation time, 

when the incubation time of 72 h, it exhibits a slow growth, while at other concentrations, the longer the 

incubating time (72 h), the more rapid the growth of S. mutans according to spectrophotometry measurement. 

It can be assumed that the high concentration of saliva directly proportional to the protein quantity of saliva 

till stable up to 72 hours. It phenomena line with the result, where the concentration of saliva influenced the 

inhibition of S. mutans growth (p<0.05). Generally, the concentration of 50% and 25% with the incubating time 

of 24 hours was able to take control on the growth of S. mutans with an average OD 0.1, which equal to 

McFarlan 0.5 (<300 CFU) based on Mc Farland Standard for in vitro use only [14]. As a comparison, it was 

reported that the utilization of xylitol could inhibit the growth of S. mutans, which is dictated by the 

concentration of the xylitol [18]. 

When confirmed with dental caries, the results of this study show that at the saliva concentration of 

50% and 25% could control the growth of S. mutans. Theoretically, it has been reported that saliva plays an 

essential role in controlling the growth of oral bacteria, especially S. mutans, by inhibiting the synthesis of 

some glucans from sucrose by S. mutans. As a result, the colonization in oral pellicle is prevented. Moreover, it 

also avoids acidogenic and aciduric [19]. Previous authors reported that using 1% sucrose in-vivo, the 

colonization of S. mutans in modelled rats significantly increase when the rats were pretreated by critical saliva; 

meanwhile, sIgA saliva specifically capable decreasing the growth S. mutans [20]. According to research, the 

critical saliva utilized in this research was indirectly related to maintaining S. mutans growth, which probably 

due to sIgA saliva but not limited to other components such as salivary peroxidase and catalase. While, in the 

saliva, S. mutans exhibit several sucrose catabolism pathways that produce acids [21], with the support of 

glycosyltransferase (Gtfs) through the conversion of sucrose to polymeric glucans leading to the biofilm 

formation by interacting and communicating with other oral pathogens [22]. The S. mutans has been reported 

as active bacteria in producing biofilm protein on the dental surface, which relayed on the synthesis of sucrose 

to be conducted by interaction with pellicle saliva deposited on the dental surface [23]. 

Figure 2 illustrated that S. mutant was capable of forming the biofilm in saliva at a medium and low 

level. It was indicated that several concentrations of saliva in this work affected S. mutans capability of forming 

the biofilm. The concentration of 50% and 25% shows better degradation of biofilm formation of S. mutans as 

respect to the incubating times compared to the concentration of 12.5% and 6.25%. Therefore, it is assumed 

that both incubating times and concentrations are associated with the quality of biofilm proteins production by 

S. mutans. It can be furthered presumed that the proteins content of saliva has the ability to prevent the 

enzymatic activity of glycosyltransferase (Gtf) of S. mutans, thus inhibiting the synthesis of sucrose, which 

support the bacterial colonization [24]. It was reported that Gtf has a special role in the formation of S. mutans 

biofilm and the increase in biofilm formation associated with the decrease in pH at the area of colonization of S. 

mutans with other oral pathogens [25]. This scientific information indicates that individual with a neutral pH 

of saliva (6-7) dental caries is not likely to be found [26]. 

Saliva contained some specific proteins that play a crucial role in preventing bacterial growth or 

controlling the oral cavity's biological balance. Histatin-5 is a histidine cation-rich peptide produced from 

human saliva and primates. Histatin-5 has 85% saliva protein and has strong antibacterial effects acquired 

enamel pellicle component (AEP) [27]. The research findings have a good agreement with our work as depicted 

by Figure 3, where both saliva and histatin-5 at each concentration has anti-biofilm formation against S. mutans 

with varied frequency and distribution (Table 1). The concentration of 50 ppm and 25 ppm showed better anti-

biofilm of S. mutans, as referred to the positive control (CHX 0.2%). These findings were coherent with the data 
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depicted in Figures 1 and 2, the concentration of 50% and 25% of saliva was the optimum concentration to 

inhibit the S. mutans biofilm formation. This phenomenon implies that both saliva and histatin-5 play an 

important role in the cycle of infection initiation of caries by S. mutans, even though at a moderate level. 

Histatin-5 is very likely to have higher antifungal activity against Candida albicans. He stated that the 

antibiofilm activity occurs via non-lytic depending on the energy [11]. Furthermore, previous authors found 

that histatin-5 was able to inhibit the growth of S. mutans at the concentration of 27.2 μg/mL and 54.4 μg/mL, 

either individually or when mixed with lysozyme (in a total concentration of 54.4 μg /mL) [28]. Helmerhorst 

et al. stated that synthetic histatin was able to decrease the biofilm in several oral bacteria significantly [29]. 

As a comparison, histatin-5 was also able to prevent the transition of blastospore hyphae of C.albicans and also 

contributes to reducing biofilm thickness. Combined histatin-5 and lactoferrin saliva has shown in vitro 

cytotoxicity against Candida albicans biofilm [30]. 

The capability of histatin inhibiting S. mutans biofilm in this research indicated the tendency of 

histatin-5 to change the amino acids generated by bacteria in developing biofilm through the elimination of N-

terminal of four frequently used amino acids by anti-bacteria due to bacteriocidal properties [31]. Besides, as a 

synthetic peptide, histatin-5 could interfere with the interaction with cell membranes of bacteria by inhibiting 

PtxA blocking system of Phosphotransferase Streptococcus mutans. As a result, the peptide translocation like L-

ascorbate, which aimed to interfere with the biofilm formation of S. mutans can be bothered [32]. As cellular 

response strategy, histatin act to stabilize the bacterial cell membranes assimilated with the surface of bacterial 

cells, thus promoting cell damage through interaction with the bacterial cell membrane to generate a 

hydrophilic channel [33]. 

In this study, we also measured the saliva viscosity upon the interaction with S. mutans for 72 h 

(Figure 3). The viscoelastic property was essential for lubrication and humidity to promote mucosa integrity. 

However, the increase of the saliva's viscosity probably associates with the rise of dental caries risk and 

periodontal disease [34]. Moreover, the saliva's viscosity was important to predict the tendency of S. mutans 

to initiate dental caries [35]. The low viscosity, however, indicated that several saliva glycoproteins have a 

better ability to responding the S. mutans. Dental caries prevalence in 7-8-year-old children was in line with 

saliva viscosity [36]. 

Figure 4 depicted the lowest viscosity of saliva at a concentration of 25% compared to other 

concentrations, but according to viscosity value (cP) in each concentration and CHX 0.2% showed a good level 

after being interacted with S. mutans, it means that both saliva and CHX 0.2% were able to control the 

biological activity of S. mutans growth, biofilm formation and the response to the change in pH of saliva. The 

viscosity range of the saliva in this research was 0.90-0.96 cP. On the 6.25% of saliva presents a viscosity value 

more similar to saliva at 25%, not 12.5%, and It has related to the intensity of S. mutans when interacting with 

active components of saliva. It has assumed that the concentration does not determine the changes in salivary 

viscosity. However, all saliva concentrations have relatively good viscosity values. The value confirmed that 

some protein in saliva gave a positive response to the S. mutans, thus minimizing the damage of saliva protein, 

which correlated to the viscosity. The viscosity of saliva shows an insignificant correlation to dental caries 

(p>0.05) as well as an insignificant correlation, also showed between gingiva inflammation and the viscosity of 

saliva [36]. In a previous study, saliva's viscosity in both working men and women were 1.05 cP and 1.29 cP, 

respectively, while in the depressed condition was 1.3 cP-1.5 cP [37]. There was no significant effect of the 

addition of amyl α-amylase or saliva with the suspension of bacteria [38]. 
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Saliva viscosity is always associated with changes in pH as an indicator of increasing or decreasing 

salivary pH. At low salivary pH indicates changes in the structure of salivary proteins after being influenced by 

S. mutans and vice versa if the viscosity of saliva is low, then some salivary protein components can control the 

cellular regulation of S. carbohydrate receptor S. mutans. The results in Table 2 show that 50% and 25% of 

salivary concentrations have a better pH change response to S. mutans activity than other concentrations, 

especially at 24-hour incubation times. There is a possibility that incubation time shows the limitation of the 

ability of salivary protein components to work, more than 24 hours, a higher protein decomposition response 

occurs by S. mutans even though in this study it still shows a reasonable level and is responding to changes in 

salivary pH after being influenced by S. mutans. Cell density and increased biofilm growth could modulate S. 

mutans to adapt to acid changes and improve communication between bacterial biofilm cells [39]. 

Other findings from this study are that the smaller the change in salivary pH, the better the salivary 

response of S. mutans (Table 2), so it is possible to interpret that the concentration of saliva affects the intensity 

of the response to the growth of S. mutans, the ability to form biofilms in saliva and histatin-5. Biologically, it 

can be stated that the saliva and histatin-5 can interfere with the acid-tolerant response produced by S. mutans. 

This phenomenon can be justified that not all S. mutans that grow in the oral cavity can undergo pathogenesis 

of infection; normally, bacterial colonization was always limited with other pathogen populations so that not all 

growing bacteria tend to form biofilms and affect salivary conductivity and response to changes in changes 

salivary pH. The findings from these results can be explained that the biofilms formation of S. mutans is always 

influenced by environmental factors such as pH and temperature; in general, saliva has an excellent pH change 

response after being interacted with S. mutans that influenced by salivary carbohydrate receptors. S. mutans 

adhesion on the surface of dental pellicles is an essential step in the development of the concept of acid 

tolerance in the quorum sensing-biofilm of S. mutans to prevent dental caries [40]. 

 

Conclusion 

Saliva can control the growth of S. mutans and together with histatin-5 inhibited the biofilm formation 

of S. mutans while stabilizing saliva viscosity and response to changes in salivary pH after being interacted with 

S. mutans. Salivary and histatin-5 concentrations, which have a better effect on the biological activity of S. 

mutans, are 50 and 25 (% and ppm). 
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