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ABSTRACT: The nonlinear unscented Kalman filter (UKF) 
is evaluated for the satellite orbit determination problem, 
using Global Positioning System (GPS) measurements. 
The  assessment is based on the robustness of the 
filter. The main subjects for the evaluation are convergence 
speed and dynamical model complexity. Such assessment 
is based on comparing the UKF results with the extended 
Kalman filter (EKF) results for the solution of the same 
problem. Based on the analysis of such criteria, the 
advantages and drawbacks of the implementations are 
presented. In this orbit determination problem, the focus is 
to analyze UKF convergence behavior using different sampling 
rates for the GPS signals, where scattering of measurements 
will be taken into account. A second aim is to evaluate how 
the dynamical model complexity affects the performance 
of the estimators in such adverse situation. After solving the 
real-time satellite orbit determination problem using actual 
GPS measurements, through EKF and UKF algorithms, the 
results obtained are compared in computational terms such 
as complexity, convergence, and accuracy.

KEYWORDS: Orbit determination, Nonlinear Kalman filters, 
GPS measurements, Real time.
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INTRODUCTION

This work points out the nonlinear unscented Kalman 
filter (UKF) robustness assessment for a real-time satellite 
orbit determination problem, using Global Positioning 
System (GPS) measurements. This evaluation is based on 
comparing the UKF performance with the extended Kalman 
filter (EKF) for different sampling rates of the measurement 
from GPS signals. One-second analysis takes into account 
the dynamical model complexity effects on the performance 
of the two estimation techniques. The main subjects for the 
comparisons between the estimators are: convergence speed, 
divergence occurrence, faults, and statistical shortcomings. 
Based on the analysis of such criteria, the advantages and 
drawbacks of each estimator are exhibited.

The orbit determination of an artificial satellite is 
done using real data from the GPS receivers. In the orbit 
determination process of artificial satellites, the nature of 
both the dynamic system and the measurements equations 
are nonlinear. As a result, here it is necessary to manage 
a fully nonlinear problem in which the disturbing forces 
as well as the measurements are not easily modeled. This 
orbit determination problem lies in estimating the variables 
that completely specify a satellite trajectory in the space, 
processing a set of information (in this case, pseudo-range 
measurement) related to such body. As far as this work is 
concerned, the more accurate GPS phase measurements 
are not used here, because the main goal is not the search 
for accuracy, but a comparison of performance under 
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different sampling rates of the measurements from GPS. 
Furthermore, if carrier phase measurements were used, 
the ambiguity resolution algorithm or any other artifacts to 
overcome such hindrance could eventually mask the results, 
misguiding the conclusions.

A spaceborne GPS receiver is a powerful resource to 
determine orbits of artificial Earth satellites by providing 
many redundant measurements which ultimately 
yields high degree of the observability to the problem. 
The  Topex/Poseidon (T/P) satellite is a nice example of 
using GPS for space positioning. Through an onboard 
GPS receiver, the pseudo-ranges (error corrupted distance 
from satellite to each of the tracked GPS satellites) can be 
measured and used to estimate the full orbital state.

The EKF is very likely the most widely used real-
time estimation algorithm for nonlinear systems 
(Maybeck, 1982). However, the experience from the 
estimation community has shown that the EKF is 
difficult to implement, requiring some skill to get tuned 
since depends very much on the nearness of the initial 
conditions to the true values; and the linearity on the 
time scale of the filter working updates. Many of these 
difficulties arise from the linearization required by the 
EKF method. Specifically for the orbit estimation problem, 
under inaccurate initial conditions (Pardal et al., 2011) 
and scattered measurements, the EKF implementation can 
lead to unstable or diverging solutions. Therefore, there is 
a strong need for a method that is probably more accurate 
than linearization, but that does not be liable to neither 
the implementation nor additional computational costs 
of other higher order filtering schemes. To overcome this 
limitation, the unscented transform (UT) was developed 
as a technique to propagate mean and covariance 
information through nonlinear transformations. The 
UKF is one of the sigma-point Kalman filters (SPKF), a 
new family of estimators that claims to yield equivalent or 
better performance than the EKF and elegantly to extend 
to nonlinear systems, without the linearization steps (van 
der Merwe, 2004; Julier and Uhlmann, 1997, 2004). This 
family of algorithms presents a new approach to generalize 
the KF for nonlinear dynamics and observation models.

Assessment between EKF and UKF was studied before 
by these and other authors, with different focus. Soken 
and Hajiyev (2011) compared two different robust Kalman 

filtering algorithms: Robust EKF and Robust UKF for 
the case of measurement malfunctions. In both filters, 
by the use of defined variables named as measurement noise 
scale factor, the faulty measurements were taken into the 
consideration with a small weight and the estimations were 
corrected without affecting the characteristic of the accurate 
ones. Proposed robust KFs were applied for the attitude 
estimation process of a pico satellite and the results are 
compared. El-Sheimy  et  al. (2006) studied which Kalman 
filtering design works best for GPS and micro-electro-
mechanical (MEMS) inertial systems, since both have 
complementary qualities that make integrated navigation 
systems more robust. Jose (2009) implemented an UKF for 
integrating inertial navigation system (INS) with GPS and 
compared the results with the EKF approach, in performance 
and robustness. In a loosely coupled integrated INS/GPS 
system, inertial measurements from an inertial measurement 
unit IMU (angular velocities and accelerations in body 
frame) were integrated by the INS to obtain a complete 
navigation solution and the GPS measurements were used 
to correct for the errors and avoid the inherent drift of the 
pure INS system. Pardal et al. (2011) compared between 
the EKF and the nonlinear SPKF for a real-time satellite 
orbit determination problem, using GPS measurements 
for degraded initial conditions. The main subjects for the 
comparison between the estimators are convergence speed 
and computational implementation complexity. The aim 
was: to analyze the filters robustness; and to know the way 
such inaccuracies affect the performance of the estimators.

In this orbit determination problem the core is to 
analyze the convergence behavior for each filter in 
situations where there are different sampling rates of 
the measurement. Indeed there are small up to larger 
intervals between the processing of two GPS signals, and 
such intervals affect the performance of the estimators. 
A second goal evaluates the dynamical model complexity 
effects in the performance of the estimators for this case, 
especially during the adverse situations of larger reception 
intervals between two measurements. Therefore, the 
performance evaluation of the EKF (the most widely 
used estimation algorithm) and the UKF (supposedly 
the most appropriate estimation algorithm for nonlinear 
problems) to orbit determination problems in real time is 
due and justified.
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SIGMA-POINT KALMAN FILTERS

When the system dynamics and the observation model are 
of linear nature, the conventional KF is the optimal solution 
and must be used fearlessly. However, not rarely, the system 
dynamics and/or the measurement models are nonlinear, and 
convenient extensions of the KF, like the EKF, have been used. 

Th e SPKF is a new family of estimators that allows 
similar performance to the KF for linear systems and 
elegantly extends to nonlinear systems, without need of 
the linearization procedures. Th is family of algorithm is 
a new approach to generalize the KF for nonlinear process 
and observation models (Julier and Uhlmann, 1997, 2004; 
van der Merwe et al., 2004). A set of weighted samples, the 
sigma-points, is used for computing mean and covariance of 
a probability distribution. Such algorithms include the UKF 
that is based on the UT, which is a nonlinear transformation 
of mean and covariance.

Th e SPKF represents a technique claimed as to lead to a 
more accurate and easier way to implement fi lter than the EKF 
or a second order Gaussian fi lter. Its approach is described, as 
follows (van der Merwe, 2004):
• A set of weighted samples is calculated deterministically 

based on the decomposition of the covariance and mean 
of a random variable.

• Th e sigma-points are propagated through the real 
nonlinear function, using only functional estimation, 
that is, analytical derivatives are not used to generate a 
posteriori set of sigma points.

• Th e later statistics are calculated using propagated 
sigma-points functions and weights. In general, they 
assume the form of a simple weighted average of the 
mean and the covariance.

Following, it will be separately explained the UT and the 
UKF, the fi lter stemming from this transformation.

UNSCENTED TRANSFORM
Essentially this is a manner of calculating the statistics of a 

random variable that passes through a nonlinear transformation. 
Th e UT approach is illustrated in Fig. 1 (Julier and Uhlmann, 
1997; van der Merwe, 2004): select a suitable set of points 
(sigma-points) so that their mean and covariance are x and 
Pxx, respectively (Julier and Uhlmann, 1997, 2004). In turn, the 

Figure 1. Unscented transform.

non linear
transformation

nonlinear function is applied to each point of the set to yield a 
cloud of transformed points. Th e statistics of the transformed 
points (mean y and covariance Pyy) can then be calculated 
to form an estimate of the nonlinearly transformed mean 
and covariance.

Th e sigma-points are carefully and deterministically 
chosen so that they exhibit certain specifi c properties, that 
is, they are not drawn at random like common Monte Carlo 
methods. Besides, they can be weighted in ways that are 
inconsistent with the distribution interpretation of sample 
points like in a particle fi lter (Julier and Uhlmann, 1997; van 
der Merwe, 2004). 

Th e n-dimensional random variable x, with x mean and 
Pxx covariance, is approximated by 2n+1 weighted points, the 
so known sigma-points, given by:

χi+n = x -    (n+λ) Pxx  i√

χi = x +    (n+λ) Pxx  i√

χ0 = x

 (1)

in which λ=α2(n+k)-n includes scaling parameters. Th e 
constant parameter α controls the size of the sigma-points 
distribution (0≤α≤1), and k provides an extra degree of 
freedom used to fi ne-tune the higher order moments; k = 3 -n 
for a Gaussian distribution (Wan and van der Merwe, 2001). 
In Eq. 1, each element of the n-dimensional random variable 
x is replaced by a set of sigma-points generated from the 
mean and the covariance of x. Th us, the vector variable x has 
become a matrix of n x i dimension.

Th e transformation occurs as follows:
• Transform each point through the nonlinear function to 

yield the set of transformed sigma-points:
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 yi = f [χi] (2)

• Th e observations mean is given by the weighted average 
of the transformed points:

 y = ∑ Wi  yii=0

2n

 (3)

• Th e covariance is the weighted outer product of the 
transformed points:

 Pyy = ∑ Wi [yi - y][yi-y]T

i=0

2n
 (4)

 Wi is the weight associated to the i-th point given by:
 

 

 

W0 = (n + k)
k

Wi = 2(n + k)
1 , i = 1,..., n

Wi+n = 2(n + k)
1 , i = 1,..., n

 (5)
 

 

UNSCENTED KALMAN FILTER
Using UT, the following steps are processed in the KF:

• Predict the new state system and its associated covariance, 
taking into account the eff ects of the Gaussian white 
noise process.

• Predict the expected observation and its residual innovation 
matrix considering the eff ects of the observation noise.

• Predict the cross correlation matrix.

In order to lead to the new fi lter, the UKF, these steps are 
arranged in the EKF, re-structuring: the dynamics; the state 
vector; and the observations model.

Table 1 presents an algorithm for the UKF. In the fi lter 
initialization, the mean, xk-1

^ , and the covariance matrix, Pk-1
^

 , 
of the state vector x are calculated, in reference to the prior 
instant, tk-1. Following, the set of sigma-points is generated, 
from the mean and the covariance matrix, previously 
calculated. In the propagation step, the generated state 
sigma-point set is propagated to the instant tk, using the 
nonlinear dynamics equation (a), and the predict mean and 
covariance matrix are calculated (b). During the update cycle: 
the observations sigma-points are generated (a), propagated 
through the nonlinear observations equation (b), and its 
mean is obtained (c); the predict matrices of innovation, Pk 

vv, 
and correlation, Pk 

xy, are computed (d); and fi nally the Kalman 
gain is calculated, in order to update the state xk

^ , and the 

covariance matrix, Pk
^ . Th ey are used as a priori information in 

the next instant, tk+1, to generate the new set of sigma-points.

EXTENDED KALMAN FILTER

If the dynamical system and the observations model 
are linear, the KF is the recursive estimator most used at 

Table 1. Unscented Kalman fi lter algorithm.

1. Initialization (t = k–1):

2. Sigma-points:

3. Propagation:

a

b

4. Update:

a

b

c

d

e



399
Analyzing the Unscented Kalman Filter Robustness for Orbit Determination through Global Positioning System Signals

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 4, pp.395-408, Oct.-Dec., 2013

the present day since it is easy to implement and to use on 
digital computers.  Its recursiveness leads to lesser memory 
storage, which makes it ideal for real-time applications. 
The EKF is a nonlinear version of the KF that generates 
reference trajectories which are updated at each measurement 
processing, at the corresponding instant (Maybeck, 1982; 
Brown and Hwang, 1985).

Because it is very difficult to accurately model the artificial 
satellites orbit dynamics, the EKF is generally used in works 
of such nature. Its algorithm always brings updated reference 
trajectory around the most current available estimate.

Exploiting the assumption that all transformations 
are quasi-linear, the EKF simply linearizes all nonlinear 
transformations and substitutes the Jacobian matrices for the 
linear transformations in the KF equations. The EKF consists 
of phases of time and measurement updates. In the first one, 
state and covariance are propagated from one precedent 
instant to a posterior one, which means that they are 
propagated between discrete instants of the system dynamics 
model. In the second one, state and covariance are corrected 
from the measurement obtained in the posterior instant of 
time, through the observations model. Therefore, the method 
nature is recursive, so it does not need to store previously the 
measurements in large matrices. 

Following, the step for the EKF time update (or 
propagation) cycle is presented:

xk = f(xk-1)
^

Pk = φk,k-1Pk-1φk,k-1 + Qk
^

T

.

� (6)

where f is a nonlinear vector function modeling the orbit motion, 
xk and Pk are respectively the propagated state and the covariance 
for tk; φk,k-1 is the state transition matrix between tk-1 e tk; Qk is  the 
dynamics noise matrix given in Eq. 7. It is required the Jacobian 
matrix (∂f/∂x) for the transition matrix computation, which can 
be either simplified or very difficult to obtain.

Qk = ʃt    φ(t, tk-1)G(t)Q(t)GT(t)φT(t, tk-1)dtt

k-1
k � (7)

The equations for the EKF measurement update cycle are:

Kk = PkHk (HkPkHk +Rk)
-1T T

^Pk = (I-KkHk) Pk

x̂k = xk + Kk [yk-hk(xk)]

� (8)

In Eq. 7, G(t) is the white noise addition matrix. In Eq. 8, 
hk is a nonlinear vector function modeling the measurements; 
Hk is the corresponding partial derivative matrix ∂x∂hk ;Kk  
is the Kalman gain; Rk is the observations noise matrix; xk

^  and 
Pk
^  are respectively the state vector and the covariance updated 
for the instant k; yk is the observations vector corresponding 
to the instant k.

Notwithstanding, the EKF has limitations. First: 
linearization can produce highly unstable filters if the 
assumptions of local linearity are violated; second: the derivation 
of the Jacobian matrices is nontrivial in most applications, and 
often leads to significant implementations difficulties (Julier 
and Uhlmann, 1997); third: analytical Jacobian matrices can be 
a very difficult and error-prone process.

Summarizing, linearization, as applied in the EKF, is 
widely recognized to be inadequate, but the alternatives incur 
substantial costs in terms of derivation and computational 
complexity. Hence, there is a strong need for a method that 
is probably more accurate than linearization but does not 
incur costs of implementation and computational of higher 
order than the other filters. The sigma-point algorithms were 
developed to meet these needs (Julier and Uhlmann, 1997).

ORBIT DETERMINATION

The orbit determination process consists of obtaining 
values of the parameters that completely specify the motion 
of an orbiting body (here, an artificial satellite), based on a 
set of observations of the body. It involves nonlinear dynamics 
and nonlinear measurement systems, which depends on the 
tracking system, and estimation technique (for instance, KF 
or least squares (Maybeck, 1982; Brown and Hwang, 1984)). 
The dynamical system model consists of the description for 
the dynamics of the satellite orbital motion, measurements 
models, Earth’s rotation effects, and perturbation models. 
Furthermore the state variables defining the initial conditions, 
these models depend on a variety of parameters which 
affect both the dynamic motion as the measurement process 
(Montenbruck and Gill, 2001). Due to the complexity of the 
applied models it is hardly possible to solve such models 
equations directly for any of these parameters from a given set 
of observations.
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The observation may be obtained from the ground 
station  networks using laser, radar, Doppler, or by space 
navigation systems, as the GPS. The choice of the tracking 
system depends on  a compromise between the goals 
of the mission and the available tools. In the case of the 
GPS, the advantages are global coverage, high precision, 
low cost, and autonomous navigation resources. The GPS 
may provide orbit determination with accuracy at least as 
good as methods using ground tracking networks. The 
later provides standard precision around tens of meters 
and the former can provide precision as tight as some 
centimeters. The GPS provides, at a given instant, a set of 
many redundant measurements, which makes the orbit 
position observable geometrically. 

After some advances of technology, the single 
frequency GPS receivers provide a good basis to achieve 
fair precision at relatively low cost, still attaining the 
accuracy requirements of the mission operation. The GPS 
allows the receiver to determine its position and time 
geometrically anywhere at any instant with data from at 
least four satellites. The principle of navigation by satellites 
is based in sending signals and data from the GPS satellites 
to a receiver located onboard the satellite that needs to 
have its orbit determined. This receiver measures the travel 
time of the signal and then calculates the distance between 
the receiver and the GPS satellite. If  the  clocks are not 
synchronized, four measurements are required to obtain 
its position. Those measurements of distances are called 
pseudo-ranges. 

The instantaneous orbit determination using GPS 
satellites is based on the geometric method. In such method, 
the observer knows the set of GPS satellites position 
in a reference frame, obtaining its own position in the 
same reference frame.

However, sequential orbit determination makes 
use of the orbital motion modeling to predict between 
measurement times and measurement model to update the 
orbit by processing of measurements from GPS. This gives 
rise to recursive and real-time KF estimator for the orbit 
determination (Brown and Hwang, 1985).

FILTER DYNAMIC MODEL
In the case of orbit determination via GPS, the ordinary 

differential equations which represent the dynamic model are 
in its simplest form, given traditionally as follows:

r = v

v = -μ
r3
r + a + wv

b = d
d = 0 + wd

.

.

.

.

� (9)

wherein the variables are placed in the inertial reference 
frame. In Eq. 9, r is the vector of the position components 
(x, y,  z); v is the velocity vector; a represents the modeled 
perturbing accelerations; wv is the white noise vector with 
covariance Q; b is the user satellite GPS clock bias; d, the user 
satellite GPS clock drift; and wd the noise associated with 
the GPS clock. The GPS receiver clock offset was not taken 
into account, so as not to obscure the conclusions drawn 
in this paper due to introduction of clock offset models in 
the filters. Indeed, the receiver clock offset was beforehand 
obtained and used to correct the GPS measurements, so 
that the measurements are free from the error derived from 
receiver clock offset.

FORCE MODEL
The main disturbing forces of gravitational nature that 

affect the orbit of an Earth’s artificial satellite are: the non-
uniform distribution of Earth’s mass; ocean and terrestrial 
tides; and the gravitational attraction of the Sun and the 
Moon. There are also the non-gravitational effects, such as: 
Earth atmospheric drag; direct and reflected solar radiation 
pressure; electric drag; emissivity effects; relativistic effects; 
and meteorites impacts.

The disturbing effects are in general included according 
to the physical situation presented and to the accuracy that is 
intended for the orbit determination. Here, we include only a 
minimum set of perturbations which enable us to assess the 
performance of both filters, namely geopotential and third 
body point mass effect of Sun and Moon. 

The Earth is not a perfect sphere with homogeneous mass 
distribution, and cannot be considered as a material point. 
Such irregularities disturb the orbit of an artificial satellite 
and the keplerian elements that describe the orbit do not 
behave ideally. The geopotential function can be given by 
(Kaula, 1966):

∑ ∑
n=0

∞

U(r, ϕ, λ) = r
μ n

m=0 r
RT

n

Pnm (sin ϕ)(Cnm cos mλ + Snm sin mλ)� (10)

where µ is Earth gravitational constant; RT is mean Earth 
radius; r is the spacecraft radial distance; ϕ is the geocentric 
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latitude; λ is the longitude on Earth fixed coordinates system; 
Cnm and Snm are the harmonic spherical coefficients of degree 
n and order m; Pnm are the associated Legendre functions. The 
constants µ, RT, and the coefficients Cnm, and Snm determine a 
particular gravitational potential model.

Another gravitational perturbation source is due to 
the Sun and Moon attraction. They are more meaningful 
at larger distance from Earth. As the orbital variations are 
of the same type, be the Sun or the Moon the attractive body, 
they are normally studied without distinguishing the third 
body. The Sun–Moon gravitational attraction mainly acts 
on node and perigee, causing precession of the orbit and on 
the orbital plane. The general three-body problem model is 
here simplified to the circular restricted three-body problem, 
where the orbital motion of a third body (satellite), which 
mass can be neglected, around two other massive bodies is 
studied. The force acting on the third body (the satellite) in 
the inertial reference frame can be expressed as (Prado and 
Kuga, 2001; Guan, 2013):

r3 = -Gm1 r3

r13 -Gm2
13 r3

r23

23

:
� (11)

where r13  =  r3  -r1, r23  =  r3  -r2, and ri,  i=1,2,3 corresponds 
to the i-th body distance vector to the center of mass of 
the system; and m1 and m2 are the masses of the Sun and the 
Moon, respectively.

OBSERVATIONS MODEL

The nonlinear equation of the observation model is:

yk = hk (xk, t) + vk � (12)

where, at time tk, yk is the vector of m observations; hk(xk) is 
the nonlinear function of state xk, with dimension m; and vk 

is the observations errors vector, with dimension  m and 
covariance Rk. For the present application, one only uses 
the ion-free pseudo-range measurements from the GPS 
receiver of T/P satellite. Also, the receiver clock offset was 
computed before and used to correct the pseudo-range 
measurements. In addition, the nonlinear pseudo-range 
measurement was modeled according to Chiaradia et al. 
(2003).

MEASUREMENTS SAMPLING 
RATES IMPACT IN THE ORBIT 
DETERMINATION

Previous presented studies (Pardal et al., 2009b, 2010 and 
Pardal, 2011) showed that the accuracy improvement for the 
dynamics models did not better the errors resulting between 
the references from precise orbit ephemeris from JPL/NASA 
(POE/JPL) and the values stemming from filters estimation process.
This means that the magnitude of the errors obtained through 
the UFK or EKF is not reduced when increasing the complexity 
of the dynamic model: from a model for the geopotential with 
high degree and order to a complex model containing the three 
major disruptive effects of the orbit. Further, such results showed 
an equivalent competitiveness between the estimators, since the 
errors are of the same order of magnitude. It might have occurred 
because, in those results, the orbit determination process was done 
for small sampling intervals of the measurements.

Taking this into account, before concluding that a simpler 
dynamics modeling can be indiscriminately adopted, there is 
a need for another test (Pardal et al., 2010). Such test has two 
well determined purposes: to examine carefully the benefits 
of increasing the adopted dynamics model accuracy; and to 
investigate the apparent competitiveness between the estimators. 
This test rested in executing the orbit determination process 
considering different intervals between the GPS observations 
(pseudo-range) sampling. The intervals of sampling were 10, 30, 
60, 300, 600, 1200, and 1800 seconds, in other words, conditions 
were swept from one very small range (10 seconds) to a range 
extremely high (1800 seconds) between the prediction and the 
subsequent correction of the predicted values to complete 
the cycle of the estimation process. With the gradual spacing of the 
interval between two measurements, the intention was to verify 
the dynamics models complexity, and the application of each 
filter in the time update cycle. In such situation, the propagation 
has it effects raised and the modeling accuracy becomes more 
significant in the accuracy of both filters estimative.

RESULTS

The tests and the analysis for the EKF and the UKF 
algorithms are presented. To validate and to analyze 
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the methods, real GPS data from the T/P satellite are used. The 
filters estimated position and velocity are compared with T/P 
POE from JPL/NASA. The test conditions consider real ion-free 
pseudo-range data, collected by the GPS receiver onboard T/P, 
on November 19, 1993, at different sampling rates, presenting 
on average between 5 and 6 GPS satellites tracked. The GPS 
data were previously preprocessed to remove the outliers so 
they cannot mislead the filters or mask different data rejection 
policies of each filter. The  tests have covered a long one day 
period of orbit determination.

The force model goes from a simple geopotential up to 
order and degree (2×2), with harmonic coefficients from 
JGM-2 model, to a model including perturbations due to 
geopotential up to order and degree (28×28) and due to the 
Sun–Moon gravitational attraction (Pardal et al., 2009a, 2010, 

2011). The pseudo-range measurements were corrected to the 
first order with respect to ionosphere.

As already pointed, this work is not a search for results 
accuracy. It aims at UKF robustness assessment, which is 
done through the comparison of performance between 
UKF and EKF estimators under different sampling rates. 
There are peculiar interest for speed convergence, and 
divergence occurrence. 

Table 2 shows the analysis for the predicted pseudo-range 
residuals convergence, which is measured in terms of time span, 
Dtsam, of data processed. The convergence is assumed when 
the residuals achieve similar statistics of the reference solution 
residuals. When small samplings intervals, such as 10, 30, and 
60 seconds are used, convergence occurs instantaneously after 
the estimation process starts, for both UKF and EKF algorithms, 

Table 2. Pseudo-range residuals convergence speed.

Model ∆tsam (s)
UKF EKF

convergence time (h) convergence time (h)

Geo2

10-30-60 0 0
300 no convergence observed no convergence observed
600 – –

1200 – –
1800 – –

Geo5

10-30-60 0 0
300 0 no convergence observed
600 no convergence observed –

1200 – –
1800 – –

Geo10

10-30-60 0 0
300 0 no convergence observed
600 0 –

1200 0 –
1800 2 –

Geo28

10-30-60 0 0
300 0 0
600 0 1.5

1200 0 5
1800 2 no convergence observed

S-M

10-30-60 0 0
300 0 0
600 0 1.5

1200 0 5
1800 2 no convergence observed
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and for any dynamics model adopted. For this reason, results 
obtained for 10, 30, and 60 seconds of sampling interval will be 
placed in the same line of Table 1. The model of geopotential 
up to low order and degree 2×2 (Geo2) starts diverging for 
300  seconds of sampling interval, regardless of the estimator 
applied. The improved geopotential up to order and degree 
5×5 (Geo5) dynamics model stops converging when UKF is 
the filter for 600 seconds, while EKF is not able to converge at 
all since 300  seconds. From an improved geopotential model 
and on, there is always occurrence of divergence when EKF is 
the algorithm, and convergence keeps occurring if UKF is the 
chosen algorithm. That is to say: for geopotential up to order and 
degree 10×10 (Geo10), divergence is detect at 300 seconds; and for 
geopotential up to high order and degree 28×28 (Geo28), and 
for a model that compounds geopotential up to order and degree 
28 with Sun-Moon gravitational attraction (S-M), there is 
occurrence of divergence at 1800 seconds. The convergence time 
(consequently the convergence speed) is the same for the Geo28 

and the S-M models up to 300 seconds of sampling interval, for 
both estimators, as shown in Table 1. The  filters convergence 
time starts to be different at 600 seconds of interval between two 
measurements, and this difference keeps the same for each test 
case (600, 1200, or 1800 seconds), whether the model is Geo28 
or S-M. At this point it is possible to pinpoint a model limitation 
for convergence analysis.

Table 3 shows the convergence analysis for the position RNT 
(radial, normal, and along-track) components error, which is 
again measured in terms of data time of processing. When small 
intervals of sampling are used, such as 10, 30, and 60 seconds, 
convergence is detected instantaneously after the starts of the 
estimation process, for the two estimators, and for any choice 
of dynamics model. From 300 seconds on, the behavior is the 
same described in Table 2. The Geo2 model errors start diverging 
for 300 seconds of sampling interval, regardless of the estimator 
applied. The improved Geo5 dynamics model errors stop 
converging when the UKF is the filter for 600  seconds, while 

Table 3. Errors in position convergence speed.

Model ∆t sam (s)
UKF convergence time (h) EKF convergence time (h)

R N T R N T

Geo2

10-30-60 0 0 0 0 0 0
300 no convergence observed no convergence observed
600 – –

1200 – –
1800 – –

Geo5

10-30-60 0 0 0 0 0 0
300 0 0 0 no convergence observed
600 no convergence observed –

1200 – –
1800 – –

Geo10

10-30-60 0 0 0 0 0 0
300 0 0 0 no convergence observed
600 0 0 0 –

1200 0 0 0 –
1800 1 1 0 –

Geo28

10-30-60 0 0 0 0 0 0
300 0 0 0 0 0 0
600 0 0 0 0.5 0.2 0.3

1200 0 0 0 1 3.5 3.2

1800 1 1 0 9 9.3 no convergence 
observed

S-M

10-30-60 0 0 0 0 0 0
300 0 0 0 0 0 0
600 0 0 0 0.5 0.2 0.3

1200 0 0 0 1 3.5 3.2

1800 1 1 0 9 9.3 no convergence 
observed
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the EKF is not able to converge at all since 300 seconds. For the 
Geo10 dynamic model, divergence is detected at 300 seconds; 
and for the Geo28, and S-M models, there is occurrence of 
divergence at 1800 seconds. Again, for models Geo28 and S-M, 
it can be noticed that fi lters convergence time diff erence starts 
at 600 seconds of sampling interval, and this diff erence keeps 
the same for each test case (600, 1200, or 1800 seconds), no 
matter the model. So far, a model limitation for convergence 
analysis might be clear.

Another statistical check is done, in order to confi rm that 
the algorithms eff ectively reached convergence. Th e  reference 
pseudo-range residuals statistics (mean and standard deviation) 
for each model and fi lter are available in the yellow lines 
of Table  4. As the three most improved dynamics models 
(Geo10, Geo28, and S-M) statistics for 10, 30, and 60 seconds 
considerably resemble (Pardal et al., 2009b, 2010), “reference” in 
Table 4 refers to a 60-s sampling interval, and is representative 
of the three intervals. Now,  in the analysis of the two poorest 
dynamics models (Geo2 and Geo5), all the sampling intervals 
are explicit in Table 4 in order to show poor dynamics behavior 
as the sampling intervals increase. It is clear that poor dynamics 
models are more sensitive to the intervals enlargement, since 
Geo2 model stops converging at 300 seconds, and Geo5, at 300 
or 600 seconds, depending on the estimator applied. Th rough 
Table 4 it is also noticeable that if the model is too poor (e.g., 
Geo2), neither UKF nor EKF are able to keep convergence for 
larger sampling intervals, and divergence behavior is detected at 
300 seconds for both. However, if the model is slightly improved 
(for instance, Geo5), UKF implementation shows more 
robustness than EKF one, because still converges at 300 seconds, 
while EKF starts diverging. From Table 3, it becomes evident that 
the estimators really reached convergence, since their statistical 
values remain nearly the same as the reference ones. 

In order to portray such fi ndings, Fig. 2 illustrates the 
reference residuals (small sampling intervals of 60 seconds) 
behavior, and the 1800 seconds sampling interval case behavior 
for both the EKF and the UKF estimators, using S-M as the 
dynamics model. It clearly indicates clues of EKF’s divergence 
for such larger sampling intervals of measurements.

Proceeding the investigation, Table 5 shows total Root 
Mean Square (RMS) position error, where the reference 
values are again listed in the fi rst row (yellowed). Again, in 
the analysis of the two poorest dynamics models (Geo2 and 
Geo5), all the sampling intervals are registered in Table 5 
in order to show poor dynamical behavior as the sampling 

Figure 2. Pseudo-range residuals convergence and 
divergence occurrences.
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intervals increase. It  is clear that poor dynamics models are 
more responsive to the intervals increasing: the Geo2 model 
results stop converging at 300 seconds while the Geo5, at 
300 or 600 seconds, according to the estimator applied. 
Th rough Table 5 it is also perceptible that for an excessively 
poor model (Geo2, for example), UKF and EKF are unable to 
converge for larger sampling intervals, and divergence occurs 
at 300  seconds for both. However, if the model is slightly 
improved (for instance, Geo5), UKF implementation still 
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converges at 300 seconds, while EKF starts diverging, which 
indicates more robustness of UKF when compared to EKF. 
UKF and EKF resulting RMS errors are only computed aft er 
assumed convergence time. For Table 5, it is also verifi able 

that the estimators really reached convergence, since their 
RMS values remain nearly close to the reference ones.

Next, Fig. 3 depicts a particular case where a relatively 
poor Geo5 dynamics model is adopted. While the UKF fi lter 

Table 4. Pseudo-range residual statistics, after convergence. 

Model ∆tsam (s)
UKF residuals EKF residuals
mean±SD (m) mean±SD (m)

Geo2

10 0.218±18.504 0.155±18.531
30 0.081±26.992 -0.003±27.103
60 -0.091±37.687 -0.276±37.916

300 to 1800 no convergence observed no convergence observed

Geo5

10 0.138±13.064 0.076±13.133
30 -0.007±14.602 -0.087±15.058
60 -0.251±16.575 -0.426±17.914

300 -1.604±25.216 no convergence observed
600 to 1800 no convergence observed –

Geo10

reference -0.187±14.690 -0.277±16.221
300 -1.272±18.766 no convergence observed
600 -2.401±19.786 –

1200 -4.193±23.873 –
1800 -7.714±33.229 –

Geo28

reference -0.091±14.363 -0.180±15.942
300 -1.234±17.489 1.861±45.886
600 -2.379±18.242 -3.557±27.425

1200 -4.216±22.295 -19.831±90.423
1800 -7.929±32.163 no convergence observed

S-M

reference -0.109±14.021 -0.201±15.639
300 -1.294±15.872 -1.021±43.197
600 -2.397±16.542 -3.6126±25.945

1200 -4.163±20.518 -19.814±91.237
1800 -7.641±31.156 no convergence observed

Figure 3. Convergence and divergence behavior for Geo5 dynamics model.
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remains converging, a divergence behavior is shown in the EKF 
implementation, for 300 seconds of sampling interval between 
two measurements. This result indicates that even if the model 
is not adequately chosen, the EKF believes that the model and 
linearization are correct. The UKF does not have linearizations 
and, in adverse situations, such as the ones of larger sampling 
intervals between two data samples or inaccurate initial 
conditions (Pardal et al., 2011), behaves more adequately. 
However, if the dynamics model is extremely truncated, such as 
the Geo2 analyzed in this work, neither the UKF nor the EKF 
will reach convergence for large sampling intervals, as shown 
in Tables 1–4. In Fig. 3, ∆r and ∆v represents, respectively, the 
absolute value of the errors in position and in velocity, in 
the inertial reference frame coordinates.

Figure 4 shows the errors in the RNT components for the 
UKF and EKF reference cases (small 60-s sampling interval, 
left side) and the larger 1800 seconds error case results for the 

EKF and the UKF estimators (right side). The outstanding 
behavior in the right side happens again in any “no convergence 
observed” case pointed out in Table 4. It  indicates signs of the 
EKF divergence for such a very large sampling interval, while 
UKF reaches the convergence zone, not much later than the left 
side results. So far, the results showed that the performance of the 
filters decreases as increasing the sampling intervals (according 
to assays of the error in position, the pseudorange residuals, and 
the convergence presented previously). These results point to 
the advantage of using the nonlinear theory for orbital dynamics, 
in small intervals of the UKF and the EKF algorithms.

In order to finish the results analysis, it is to be said 
that even considering the convergence for small sampling 
intervals, where UKF and EKF present similar performance, 
the algorithm is very sensitive to the initialization of the 
covariance matrix. This means that the algorithm convergence 
depends on the proper choice of such matrix. Therefore, the 

Table 5. Error in position total Root Mean Square, after convergence.

Model ∆tsam (s)
UKF EKF 

total RMS(m) total RMS(m)

Geo2

10 34.336 34.391
30 49.834 49.703
60 68.774 69.837

300 to 1800 no convergence observed no convergence observed

Geo5

10 20.521 20.642
30 20.050 20.301
60 22.481 27.303

300 35.562 no convergence observed
600 to 1800 no convergence observed –

Geo10

reference 18.150 23.953
300 22.273 no convergence observed
600 22.658 –

1200 24.000 –
1800 28.962 –

Geo28

reference 17.135 23.159
300 19.217 21.798
600 19.386 29.487

1200 20.943 no convergence observed
1800 26.420 –

S-M

reference 16.253 22.520
300 15.437 18.416
600 15.398 26.489

1200 16.403 no convergence observed
1800 23.990 –
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Figure 4. Convergence and divergence behavior of the errors in RNT (radial, normal, and along-track) components.
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results are not general, and the algorithm was adjusted for this 
type of orbit determination application.

CONCLUSIONS

Th e robustness to increasing sampling intervals of two 
nonlinear estimators, namely the EKF and UKF was assessed 
for a real-time satellite orbit determination problem using 
real GPS measurements. One day (24h) of GPS receiver 
measurements of T/P satellite at diff erent sampling rates 
were processed. Th e emphasis was to characterize each fi lter 

convergence behavior in situations where the sampling 
rates vary from small to larger intervals between two 
measurements. Diff erent dynamical models were analyzed, 
in order to establish the modeling eff ects in the orbit 
determination process.

Results showed that when small sampling intervals are 
used, UKF and EKF yield similar performance, with high 
performance, for almost all dynamics models. Th e exception 
is made if the model is extremely truncated (Geo2) or slightly 
improved (Geo5), where in the later Geo5 case, UKF maintains 
convergence and in the former Geo2 case, none of the 
estimators reach convergence even for 60-s sampling interval. 
As expected, increasing the sampling intervals decreases the 
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filters performance. As larger is the interval more difficult is for 
EKF and UKF to reach convergence. When UKF is compared 
with EKF, in all cases of larger intervals, the UKF always attains 
convergence first. The rupture threshold for this application in 
particular occurs to all modeling complexities if EKF was the 
used algorithm. Only in two situations (the two poorest models 
adoption) for the UKF implementation, divergence occurred. 
Therefore it is to be said that the UKF is more robust than the 
EKF for larger sampling interval between measurements, for 
this type of orbit determination application.
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