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Abstract − In this letter, a methodology is proposed for automatically (and
locally) obtaining the shape factor c for the Gaussian basis functions, for each
support domain, in order to increase numerical precision and mainly to avoid
matrix inversion impossibilities. The concept of calibration function is introduced,
which is used for obtaining c. The methodology developed was applied for a 2-D
numerical experiment, which results are compared to analytical solution. This
comparison revels that the results associated to the developed methodology are
very close to the analytical solution for the entire bandwidth of the excitation
pulse. The proposed methodology is called in this work Local Shape Factor
Calibration Method (LSFCM).

Index Terms − improved numerical precision, matrix inversion difficulties, optimum
shape factor calculation, radial point interpolation method (RPIM).

I. INTRODUCTION

One of the most used numerical methods for solving Maxwell’sequations in time domain is the finite-difference

(FD) technique, on which the finite-difference time-domainmethod (FDTD) is based [1], [2]. Meshless methods,

such as the Radial Point Interpolation Method (RPIM), have become an important alternative to solve numerically

problems involving partial differential equations [3], [4], [5], [6], due to the fact it provides greater geometric

flexibility [7], [8] than FD-based methods. This kind of methdology employs a set of points for representing the

analysis region, instead of grids. The field components are locally interpolated by using subgroups of points, called

support domains [3] (Fig. 1).
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Figure 1. Support domainΩ with eight nodes (k = 8).

As it is well known, Gaussian, multiquadrics, logarithmic and splines functions are used in RPIM method

as basis functions that depend on an arbitrary parameters [9]. In particular, Gaussian basis depends on a free

parameterc, known as the shape factor, which affects the accuracy of theinterpolation of functions of interest in

a particular support domain. In previous works [3], [8], theparameterc is defined globally usually asc = 0.01.

However, this value is not adequate for every support domain, due to loss of accuracy and especially due to matrix

inversion impossibilities [9]. This issue has been treatedin literature by using methods such as the leave-one-out-

cross-validation algorithm (LOOCV) [9], [10], [11], whichcalculates a optimum global shape parameter by using

statistical analysis.

In order to improve the accuracy of the RPIM method, this paper presents a formulation for computingc in

an automatic way, locally for each support domain (Fig. 1), in such way reduced interpolation errors are obtained

and matrix inversion difficulties are avoided. This is accomplished by using a high frequency signal, called here

calibration function. This way, the proposed method is named Local Shape Factor Calibration Method(LSFCM).

Excellent agreements to analytical solution were observed.

II. REVIEW OF THE RPIM METHOD

Consider a functionu(x) in space. This function can be interpolated in a support domain Ω centered atx by

u(x) =
k

∑
i=1

r i(x)ai +
M

∑
j=1

p j(x)b j = RT(x)a+PT(x)b, (1)

in which r i(x) = e−c(r/rmax)
2

is the Gaussian radial basis function,r =
√

(x−xi)2 +(y−yi)2, c> 0 is the shape factor

and rmax is the maximum value assumed byr in Ω. Here,xi is the ith node of Ω, i = 1,2, ...,k and PT(x) is a

polynomial function withM terms. In this work,PT(x) is given by[1,x,y] andM = 3.

When (1) is considered for all nodes inΩ, one obtains the matrix equation

Us = Roa+Pob, (2)
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where,Ro = [RT(x1),RT(x2), ...,RT(xk)]
T andPo = [PT(x1),PT(x2), ...,PT(xk)]

T , with xi ∈Ω, i = 1...k andUs contains

all the values assumed byu(xi) in Ω.

In order to ensure that a unique solution is obtained fora and b in (2), the conditionPT
o a = 0 is imposed [3].

With some algebra, it can be shown that

b = [PT
o R−1

o Po]
−1PT

o R−1
o Us = SbUs (3)

and

a = (R−1
o −R−1

o PoSb)Us = SaUs. (4)

This way, (1) can also be written as

u(x) = [RT(x)Sa +PT(x)Sb]Us = Ψ(x)Us, (5)

in which Ψ(x) is a vector containing samples of shape functions associated to each nodei in Ω. It is important to

mention that the shape functions inΩ must satisfy the Kronecker delta property [3], [9].

As far asSa and Sb are constant matrices (because the nodes’ coordinates are fixed), the partial derivative of

Ψl (x) with respect tov is given by
∂Ψl

∂v
=

k

∑
i=1

∂Ri

∂v
Sa

i,l +
M

∑
j=1

∂Pj

∂v
Sb

j ,l , (6)

where l = 1...k, ∂Ψ
∂v = [ ∂Ψ1

∂v , ∂Ψ2
∂v , ..., ∂Ψk

∂v ], Sa
i,l is the element of matrixSa indexed by(i, l), Sb

j ,l is the element ofSb

indexed by( j, l) andv = x or v = y. Finally, the partial derivative ofu with respect tov can be expressed by

∂u
∂v

=
∂Ψ
∂v

Us =
k

∑
i=1

∂Ψi

∂v
us,i. (7)

In this work, Maxwell’s equations are solved in 2-D space, byconsidering the TMz mode [1]. The associated

spatial derivatives are approximated by (7) and the field updating equations

H
n+ 1

2
x,i = H

n− 1
2

x,i −
∆t
µ

(

∑
j

En
z, j∂yΨ j

)

, (8)

H
n+ 1

2
y,i = H

n− 1
2

y,i +
∆t
µ

(

∑
j

En
z, j∂xΨ j

)

, (9)

En+1
z,i = En

z,i +
∆t
ε

(

∑
j

H
n+ 1

2
y, j ∂xΨ j−∑

j

H
n+ 1

2
x, j ∂yΨ j

)

(10)
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are obtained. In (8)-(10), central finite-differences are used to approximate the time derivatives.

Here, the UPML (Uniaxial-Perfectly Matched Layer) formulation developed by Gedney [12] was implemented

for truncating the analysis domain.

III. T HE LOCAL SHAPE FACTOR CALIBRATION METHOD (LSFCM)

Previous works considerc≈ 0 as a global parameter [3], [8] (c= 0.01 is often used). Although small values ofc

can produce highly accurate results, it is not always possible to compute (8)-(10) due to matrix inversion difficulties

[9]. This occurs because when a node is placed close enough toanother inΩ, as illustrated by Fig. 2, andc is

close to zero, the Gaussian basis functions tend to be constant (tend to the unity) between the mentioned nodes

and thus the associated matrices tend to be non-invertible.Mathematically, becauseRo in expanded form is given

by [9]

Ro =



















R1,1
o R1,2

o ... R1,k
o

R2,1
o R2,2

o ... R2,k
o

...
...

. . .
...

Rk,1
o Rk,2

o ... Rk,k
o



















, (11)

in which Ri, j
o = exp

(

−c(r i, j/rmax)
2
)

and r i, j =
√

(xi−x j)2 +(yi−y j)2, it is observable that for the case of Fig. 2,

the distancesr1,n and r2,n (from nodes 1 and 2 to noden, respectively), withn > 2, are approximately equal. This

way, it is evident thatR1,n
o ≈R2,n

o . Additionally, whenc≈ 0, R2,1
o ≈R1,2

o ≈ exp(0) = 1. Observing thatR1,1
o = R2,2

o = 1,

it is easy to see that the situation depicted by Fig.2 makes the lines one and two of (11) almost linearly dependent,

promoting inversion difficulties forRo.

In these cases, the associated Gaussian basis functions should present higher exponential decays as a function

of x̄. On the other hand, the exponential decays (which are associated toc) should be spatially compatible to the

smaller wavelengths present inu(x̄) for obtaining precise interpolations. Even though one can adjust the shape

factors by the trial and error method [9], an automatic procedure is required.
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Figure 2. Example of support domain with two nodes positioned close to each other.

This procedure can be obtained if Fig.3 is carefully observed. It contains plots of the percentage interpolation

error (E%) for a given signalu(x) as a function ofc for three different spatial arrangement of nodes: symmetrical

(even), slightly irregular and irregular arrangements. Asone can observe, asc goes to zero, the interpolation tends

to produce very low percentage errors for every case. However, the curve is discontinuous aroundc = 0 due to the

matrix inversion impossibilities in this range. Additionally, it is possible to observe that, for each case, a second root

Co exists. The core idea of this work is to useCo as the shape factor for avoiding matrix inversion impossibilities

and, in addition, to improve the interpolation precision. In practice, as long asu(x) is not known analytically, the

error functionE cannot be calculateda priori.

Based on the above discussion, an hypothesis has been formulated: given a functionu(x) and its maximum

significative frequencyfmax, the frequencyfmax can be used as a reference parameter for determiningCo for Ω, in

such way the lower frequency components ofu(x) can also be properly interpolated inΩ.
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Figure 3. E% versusc for even, slightly irregular and irregular arrangements ofk = 12 interpolating nodes foru(x̄) = C(x̄) and graphical
definition ofCo.

This hypothesys can be verified if, for given a support domainΩ, a calibration functionC(xi,yi), given by

C(xi) = cos(Kxi)+sin(Kyi), (12)

is calculated for everyxi in Ω. In (12),xi = (xi,yi) represents theith node inΩ andK is the associated wavenumber,

which is expressed by

K =
2π fmax

v0
. (13)

In (13), v0 is the light speed in vacuum. In order to determineCo, the error

E (c) = Ci(c,x)−C(x) (14)

is considered in this work. In (14),Ci(c,x), which is the interpolated version ofC(x), is obtained by using (1) and

(12). From (14), the percentage error can be calculated byE%(c) = 100(Ci(c,x)−C(x))/C(x). Therefore, we can

say thatCo is a root of the percentage error, when the calibration function is considered, in such way thatCo > 0.

In this work, the modifiedregula falsimethod [13] is used for determiningCo from (14), in such way that

C(x)−Emax≤Ci(Co,x)≤C(x)+Emax. (15)

Here, the considered searching range forc is 1≤ c≤ 50. Typically, three to sixregula falsi’s steps are necessary

for obtainingCo which satisfies (15) withEmax= 10−4. The regula falsi algorithm used in this work is illustrated
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by Fig.4.

1: Modified_Regula_Falsi( f (x),xi,x f ,Emax):
{ f (x) is the function which root is to be estimated and[xi ,x f ] is the root search interval}

2: x← a← xi

3: b← x f

4: f a← f (a)
5: f b← f (b)
6: while | f (x)|> Emax and b−a> Emax do
7: x0← x
8: x← (a · f b−b · f a)/( f b− f a)
9: if f (x) f (a) > 0 then

10: a← x
11: f a← f (a)
12: if f (x) f (x0) > 0 then
13: f b← f b/2
14: end if
15: else
16: b← x
17: f b← f (b)
18: if f (x) f (x0) > 0 then
19: f a← f a/2
20: end if
21: end if
22: end while
23: x is the final approximation to the root off .

Figure 4. The modifiedregula falsialgorithm.

In a few cases, it is not possible to determine ifCo exists in the range 1≤ c≤ 50 becauseE (50).E (1) > 0

(in some cases it does not). For these cases, a minimization algorithm is performed for the function|E (c)| in the

referred interval. IfCo can not be found in the initial searching range, a new interval is defined for the investigation

(e.g. 50≤ c≤ 100). Finally, it is of fundamental importance to observe that the spatial derivatives in (8)-(10) are

considered separately for determining the values assumed by Co.

IV. N UMERICAL EXPERIMENTS AND DISCUSSION

The RPIM 2-D meshless method was applied for simulating the electromagnetic scattering of a plane wave by a

metallic cylinder immersed in free space, such as illustrated by Fig.5. Here, the TMz mode is employed [8]. The

parameters of the experiment are: radius of the metallic cylindera= 100 mm; the electromagnetic wave propagates

in vacuum and it is excited by a wideband monocycle pulse (Fig.6a) with maximum significant frequencyfmax= 1.5

GHz (Fig.6b); the dimensions of the analysis region are 3m×7m. The discrete analysis region is partially shown

by Fig.5b.

Amilcar
Typewriter
Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 10, No.2, December 2011            395

Amilcar
Typewriter
Brazilian Microwave and Optoelectronics Society-SBMO   received 15 July 2011; for review 26 July 2011; accepted 12 Dec. 2011

Brazilian Society of Electromagnetism-SBMag                   © 2011 SBMO/SBMag ISSN 2179-1074



For the performed experiments, initially global values ofc were used for testing purposes (c = 0.1, c = 7.4 and

c = 8.5) with k = 12. The average spacing among points is∆a = λ
17 (Fig.5b), whereλ = v0/ fmax. Then,c was

locally calculated (specifically for each support domain) by applying the methodology presented in this paper, and

a new simulation was executed. For this case, the parameters∆a andk were kept unchanged (∆a = λ
17 andk = 12).

The precision and stability criteria of the RPIM algorithm follows [8].

The problem was also solved analytically by using the solution presented by [14], and additional numerical data

were generated by using the FDTD method. The Fourier transform was applyed to the transient signals in order to

make the comparisons to the analytical solution feasible.

Fig.7 shows a graphical comparison among the analytical andnumerical solutions for electric field atℓx = 20

mm, with ∆a = λ
17, for local and global shape parameters. For FDTD, due to the staircase effect, it was necessary

to discretize space with∆ = λ
80 in order to get results closer to that generated with RPIM (∆a = λ

17). Fig.8 shows

similar results forℓx = 38 mm.

In Figs.7 and 8, it is possible to see that the use of local valuesCo produces the closest curves to the analytical

solution for the entire band of frequencies. When the RPIM method employsc = 7.4, for example, it is possible

to see errorsE% of 15.62% for the higher frequency components. However, with the local shape factorsCo, the

RPIM algorithm produces a maximum error of 1.24% for∆a = λ
17 (see Tables I and II for numerical data regarding

ℓx = 20 mm).

For the space discretization illustrated by Fig.5b, it is possible to usec = 0.1 for the entire domain, with no

difficulties for inverting the matrices. It is possible to see from Figs.7 and 8 that the maximum error produced

by the RPIM algorithm in this situation is close to 2%. However, it is worth to emphasize that it is not always

possible to use such small global value forc, specially if highly heterogeneous distributions of points are needed

to represent the analysis region. For the arrangement of points of Fig.5b, it was not possible to setc = 0.01.
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Figure 5. (a) Geometric configuration of the problem and points used for calculatingEz and (b) part of the set of points used for representing
the analysis region (~E and ~H are not calculated at the same points in space [8]).
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Figure 6. Wideband pulse used as the excitation source: (a) time domain, (b) its frequency spectrum.

Fig.5a defines the points where the electric field was calculated in this work, whereℓx is a distance measured

from the right edge of the cylinder surface (parallelly tox).
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17); RPIM (∆a = λ

17, local c and globalc (c= 0.1, c = 7.4
andc = 8.5)).
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Figure 8. Analytical and numerical solutions for~E at ℓx = 38 mm: FDTD(∆ = λ
80); RPIM (∆a = λ

17) with local c.
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Table I
ANALYTICAL AND NUMERICAL RESULTS (ℓx = 20 MILIMETERS)

Frequency (MHz) 256 330 394 399 433

Parameters Ez (V/m)
Analytical Solution

[14] 73.87 81.47 82.30 82.16 80.53
FDTD

∆ = λ
17 81.40 90.15 91.48 91.35 89.72

∆ = λ
80 78.50 86.87 88.07 87.94 86.32

RPIM (globalc andk = 12)
∆a = λ

17; c = 0.1 74.97 82.81 83.80 83.66 82.03
∆a = λ

17; c = 7.4 71.54 78.53 78.95 78.78 67.95
∆a = λ

17; c = 8.5 72.06 79.25 79.84 79.68 79.28
RPIM (local c andk = 12)

∆a = λ
17 74.28 82.13 83.20 83.08 81.53

Table II
PERCENTAGEERRORS OFNUMERICAL METHODS(ℓx = 20 MILIMETERS)

Frequency (MHz) 256 330 394 399 433

Parameters Error(%): (FDTD and RPIM) x Analytical
FDTD

∆ = λ
17 10.19 10.65 11.15 11.19 11.41

∆ = λ
80 6.27 6.63 7.01 7.04 7.19

RPIM (globalc andk = 12)
∆a = λ

17; c = 0.1 1.49 1.64 1.82 1.83 1.86
∆a = λ

17; c = 7.4 3.15 3.61 4.07 4.11 15.62
∆a = λ

17; c = 8.5 2.45 2.72 2.99 3.02 1.55
RPIM (local c andk = 12)

∆a = λ
17 0.56 0.81 1.09 1.12 1.24
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Figure 9. Spatial distribution of log10(Co) for calculating (a)∂Ez/∂x and (b)∂Ez/∂y for the present problem.

Finally, Fig.9 shows the spatial distributions ofCo for the present problem. They were obtained for calculating

∂Ez/∂x (Fig.9a) and∂Ez/∂y (Fig.9b) on (9) and (8), respectively. As previously discussed, it is possible to see in

Fig.9 that most values ofCo is in the initial searching range forc (from 1 to 50). However, in a few cases (mostly

near the cylinder’s border), where points are placed closerto each other, higher values ofCo were obtained (red

points meansCo≈ 100, which is the maximum value assumed byCo in this example).

V. FINAL REMARKS

The results of the performed experiment confirm the hypothesis in this work: a calibration function can be used

for calculatingCo, since it contains the higher frequency component of the signal to be propagated. The developed

methodology was computationally implemented and it was confirmed numerically that the procedure is suitable for

automatically obtaining the shape factors of the Gaussian functions locally (for each support domain). Besides it

makes the RPIM method more autonomic and more accurate for applications that involves multi-scale techniques,

the new methodology prevents difficulties regarding matrices inversions associated to the use of small values ofc.

Although in this paper the developed methodology (LSFCM) has been developed numerically, it could be

improved if analytical calculation ofCo can be performed. This would suppress the necessity of usingroot-finding

algorithms, such as theregula falsimethod used in this paper (the calculation ofCo increased the processing time

in approximately 25% for the numerical examples in this work).

It should by observed that in many applications, such as those involving the heat equation, the maximum

significant frequency is not known straightforwardly. Thisway, further investigation is necessary in this direction.

It is worth to mention that the proposed methodology can be easily extended to 3D problems.
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