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Abstract—We present a general investigation of a Long-Period 

Grating (LPG) for transverse strain measurement. The transverse 

strain sensing characteristics, for instance, the load intensity and 

azimuthal angle, are analyzed with the data set generated by the 

LPG sensor and probed by artificial neural network (ANN). 

Furthermore, we evaluate and compare the predictive performance 

of the interrogation model considering the square correlation 

coefficient (R2), root mean square error (RMSE) and mean 

absolute percentage error (MAPE). The results indicate that the 

ANN model could be successfully employed to estimate the load 

intensity and azimuthal angle using a single LPG sensor.  

  

Index Terms— Artificial neural network, long period grating, optical fiber 

sensor, transverse load  

I. INTRODUCTION 

Long Period Gratings (LPGs) are fiber optic devices, which are extremely important in the field of 

optical communications [1]-[3] and instrumentation [4]-[7]. Concerning sensing applications, the 

transverse load characteristic is an extremely important mechanical feature of LPGs. Some previous 

research focused on the investigation of their behavior under transverse load effect. In this context, 

[8], [9] conducted experiments using LPGs inscribed by UV laser and reported that the attenuation 

band of the grating was split into two sub dips with the increased transverse load. Use of CO2 laser 

induced LPGs are also reported for transverse load [10]. Whereas in [11], the authors showed that the 

sensitivity of the LPGs produced by the CO2 laser technique strongly depends upon load orientation. 

Thus, the intrinsic response of LPGs to transverse load imposes serious implications for the 

discrimination of transverse load and it is important to remark that it is a nonlinear problem, since the 

load orientation affects LPG’s sensitivity to the load itself. 

In order to ensure an appropriate monitoring load and angle, more than just a LPG sensor could be 

required, since this scenario can be interpreted as two-dimensional load sensing. But taking advantage 

Transverse Load Discrimination in Long-

Period Fiber Grating via Artificial Neural 

Network 

F. O. Barino1 , F. S. Delgado1,2 , A. Bessa dos Santos1  
1 Electrical Engineering Department, UFJF, Juiz de Fora, Brazil   

felipe.barino@engenharia.ufjf.br, alexandre.bessa@engenharia.ufjf.br 
2 Electrical Department, CEFET-MG, Nepomuceno, Brazil. felipedelgado@cefetmg.br 

https://orcid.org/0000-0003-3433-0887
https://orcid.org/0000-0002-9779-645X
https://orcid.org/0000-0003-2742-7664


Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 19, No. 1, March 2020 

DOI: http://dx.doi.org/10.1590/2179-10742020v19i11809 

Brazilian Microwave and Optoelectronics Society-SBMO received 19 June 2019; for review 19 June 2019; accepted 29 Oct 2019 

Brazilian Society of Electromagnetism-SBMag © 2020 SBMO/SBMag               ISSN 2179-1074 

 

2 

of dip splitting and orientation dependence on LPG’s sensitivity to load, one can build a single LPG 

sensor for two dimensional load field. Therefore, it is extremely important to couple the LPG sensing 

capabilities with reliable regression methods, in order to determine both the load and its angle of 

incidence. 

In this work, resonant wavelength shifts of an electric arc-induced LPG sensor due to transverse 

load are investigated. We introduce artificial neural network (ANN) to process the LPG spectrum and 

estimate the intensity and angle of an applied force. Therefore, the ANN method establishes a 

relationship between the LPG spectral data and different transverse load conditions. Then, we 

analyzed the results of the developed artificial neural network based on square correlation coefficient 

(R2), root mean square error (RMSE) and mean absolute percentage error (MAPE) and, finally, the 

results indicated that the ANN could be successfully used for estimating load intensity and its angle of 

incidence. 

II. METHODS 

Long Period Gratings are optical devices that promote energy coupling between the fundamental 

core mode and co-propagating cladding modes. The transmission spectrum of those devices contains a 

series of attenuation bands located at different resonant wavelengths
i , which correspond to energy 

coupling to various cladding modes. The phase-matching condition for this energy coupling can be 

expressed as, [12]:   

𝜆𝑖 = (𝑛𝑒𝑓𝑓,𝑐𝑜 − 𝑛𝑒𝑓𝑓,𝑐𝑙
𝑖 )Λ (1) 

where 𝑛𝑒𝑓𝑓,𝑐𝑜 and 𝑛𝑒𝑓𝑓,𝑐𝑙
𝑖  are the effective refractive indices of the core and cladding modes, 

respectively, and Λ represents the period of the grating. Generally, arc-induced LPGs has an 

inhomogeneous refractive index profile within the fiber cross-section, due to grating fabrication 

process [13]-[15], which induces birefringence in the grating structure. Thus, grating properties such 

as resonant wavelength and amplitude peak, for example, depends upon the state of polarization 

(SOP) of light incident on the fiber grating. For a birefringent LPG, we may assume the refractive 

index of birefringence of the optical axes 𝑓 and 𝑠 to be 𝑛𝑓 and 𝑛𝑠, respectively, with 𝑛𝑓 < 𝑛𝑠. Then, 

the corresponding orthogonal polarization propagation constants are given by [16]:   

𝛽𝑓 =
2𝜋𝑛𝑓

𝜆
 

(2) 

𝛽𝑠 =
2𝜋𝑛𝑠
𝜆

 
(3) 

the combination of the propagation constants of these two polarization axes, 𝛽𝑓 and 𝛽𝑠, determines the 

propagation constant of the propagating mode. Thus, it is worth noting that both 𝛽𝑓 and 𝛽𝑠 exerts 

strong influence on mode coupling, which modifies the amplitude and wavelength of resonant dip. 
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Furthermore, the effect of transverse load in LPGs produces a new linear birefringence in the 

optical fiber, due to photoelastic effect [16], which modifies the original fast and slow axes 

propagation constant. Therefore, changes in the phase difference in Eq. (1) and in the coupling 

between waveguide’s core and cladding modes are consequences of the applied transverse load. 

Finally, each resonant peak in transmission spectra are split into two sub peaks, corresponding to two 

principal states of polarization [9]. 

Thus, spectral characteristics of those two principal states of polarization can be used in transverse 

load sensing. In order to resolve the nonlinearities of transverse load and correlate it to the load 

intensity and angle we propose the use of ANN. Although the response of LPGs to transverse load at 

different incidence angles is reported in literature [10], [11], practical means of correlating spectrum 

with the load itself are not addressed in those works.  

The use of ANN in LPG multiple parameter sensing is well described in [17], where the authors 

presents the use of an ANN to probe both curvature and its orientation on a bending sensor, using 

LPG’s spectral data as input of the system. ANNs are suitable for this task due to its ability to map 

input/output from measured data using knowledge acquired in a learning phase [18], [19]. 

There are several types of ANN algorithms, and the back-propagation (BP) multilayer perceptron 

(MLP) is an important type of neural network, capable of performing input/output mapping to achieve 

function regression using a single hidden layer, according to the universal approximation theorem 

[20]. Therefore, two MLPs were developed in this work, one for load intensity estimation (𝐿) and 

another for its incidence angle (𝜃), separately. 

The structure of those ANNs can be seen on Fig. 1 and they were implemented in python with aid 

of scikit-learn library [21]. Both models are three layers perceptron, those layers are: input layer, 

hidden layer and output layer. The input layer has two neurons, for the resonant wavelength of the two 

principal states of polarization, 𝜆𝑝1 and 𝜆𝑝2, and the output layer has a single neuron. Furthermore, 

the number of neurons in the hidden layer was investigated, varying its size from 10 to 200 neurons. 

We performed the model selection by trial and error for 20 different hidden layer sizes, training each 

configuration ten times. Mean error for each one of these configurations was taken into account, to 

reduce initial weights impact on the final result, when choosing the proper hidden layer size. Finally, 

we choose the configuration that presented best generalization, as discussed on section IV. 
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Fig. 1. Structure of a three layer BP neural network. 

The output of the 𝑖𝑡ℎ neuron in the hidden layer (𝐻𝑖) is given by: 

𝐻𝑖 = 𝑓(𝜆𝑝1𝑤𝑖,1 + 𝜆𝑝2𝑤𝑖,2) (4) 

where 𝑤𝑖,1 and 𝑤𝑖,2 are the weight values on the connection between the inputs 𝜆𝑝1 and 𝜆𝑝2, 

respectively, and the  𝑖𝑡ℎ neuron from the hidden layer, and 𝑓(⋅) is the neuron’s activation function,  

Rectified Linear Unit (ReLU) in the case of this work. 

For a regression problem the output values are real valued numbers. Thus, we adopt no activation 

function in the output layer, in order to approximate any possible real value. The values of load 

intensity and angle of incidence in the output layer are related to the 𝑖𝑡ℎ neuron in the hidden layer by: 

𝐿 = ∑𝑤1,𝑖𝐻𝑖 (5)  

𝜃 = ∑𝑤1,𝑖𝐻𝑖 (6) 

where 𝑤1,𝑖 are the weight data between 𝐻𝑖 in the hidden layer and the output from the output layer of 

the ANN. 

In what concerns the training process, two different datasets were used to train the ANNs, with 

input-output pairs {(𝜆𝑝1, 𝜆𝑝2), (𝐿)} and {(𝜆𝑝1, 𝜆𝑝2), (𝜃)}. The former is used to train a network for 

load intensity estimation and the latter to train a model for estimating its incidence angle. 

Furthermore, we split both datasets into two subsets: train and test, for training and evaluating the 

models, respectively. In order to perform the weights optimization, aiming to reduce estimation error, 

we use ADAM optimizer, since it’s reported to have a great performance and fast convergence in 

MLP training [22]. Finally, the nonlinear function can be approximated and, therefore, allowing us to 

recover the intensity and angle of incidence of the LPG sensor applied load. 

III. EXPERIMENTAL SETUP 

Fig. 2 shows the schematic representation of the experimental setup for testing LPG under different 

𝜆𝑃1 

𝜆𝑃2 

𝐿(𝜆𝑝1, 𝜆𝑃2) 

𝜃(𝜆𝑝1, 𝜆𝑃2) 

Input layer Hidden layer Output layer 
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transverse load scenarios. Broadband light source (BBS), with central wavelength near 1550 nm, is 

used alongside with an optical spectrum analyzer (OSA), to acquire the spectrum during the 

transverse load tests. In this experimental configuration, light from the broadband source is polarized 

using a fiber polarizer and the state of polarization (SOP) can be adjusted by the polarization 

controller (PC). Furthermore, a LPG sensor with grating period of Λ= 500 µm, fabricated using the 

electric arc technique [23], is placed with both ends fixed in two fiber rotators between the PC and the 

OSA. 

 

Fig. 2. Experimental configuration of the transverse load sensor. 

 

To characterize LPG’s response to different transverse load directions, the device was 

synchronously rotated around fiber axis, using the fiber rotators. The LPG was laid between two flat 

surface plates with an auxiliary dummy fiber for balance, which is represented in Fig. 2 inset. It is 

worth noting that the dummy fiber ensures that a constant even load is applied to the fiber during the 

experiment, which was performed with constant temperature at 25 ºC. 

The experiment consists in the application of five different loads for 12 different incidence angles. 

We increase the load intensity from 0 kg (free load) to 5 kg in equally spaced steps, whereas its angle 

varied by θ = 30° until a full turn. Under all circumstances LPG is probed with polarized lights, 

defined as Polarization 1 (P1) and Polarization 2 (P2), and with random polarized light, for the sake of 

comparison. Resonant wavelength at both states of polarization (P1 and P2) was recorded to build the 

dataset used in ANN development. 

IV. RESULTS AND DISCUSSION 

During the experimental tests, birefringence in the grating structure induced by the transverse 

loading was immediately observed in the spectrum. Thus, the grating exhibited a pronounced resonant 

band split effect, which resulted in two sub peaks corresponding to the two orthogonal polarization 

states.  

Fig. 3(a) shows the grating response under free load and  

Fig. 3(b) the relationship between load (intensity and angle) and resonant wavelength, for 
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Polarization 1 and Polarization 2, also named 𝜆𝑝1 and 𝜆𝑃2, respectively. 
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Fig. 3. a) LPG’s transmission spectra under free load, b) Resonant wavelength for different load-angle 

combinations. 

Fitting the experimental data as a function of the incidence angle we obtain the blue (dashed) and 

red (dotted) lines in  

Fig. 3(b), which represents 𝜆𝑝1 and 𝜆𝑃2, respectively. The periodic dependence of dips’ position on 

load direction can be easily seen. Note that amplitude grows with load intensity, leading to observed 

sub peaks in spectrum, and that sensitivity is highly influenced by application angle, as shown in Fig. 

4, confirming the system’s nonlinear behavior. 
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Fig. 4. Load sensitivity as function of the incidence angle. 

As discussed in section II, 20 models with different hidden layer sizes we tested to determine the 

best ANN configuration. The result is shown in Fig. 5, where RMSE for train and test sets are 

displayed for both models. In Fig. 5(a) load intensity estimation RMSE for different number of 

neurons is plotted and the selected size highlighted, the same graph is shown in Fig. 5(b), but for 

angle of incidence estimation. 
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Fig. 5. Number of neurons in the hidden layer: a) Load intensity ANN and b) Angle of incidence ANN.  

Note that the choice of hidden layer size is a tradeoff between train and test performance, in order 
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to avoid overfitting. Therefore, we chose 50 neurons for the load estimation model and 120 neurons 

for the angle of incidence ANN, since for those values minimum train RMSE is achieved without a 

trend growth in test RMSE. 

Performance of the final models can be seen in Fig. 6, which ANNs’ response for train and test data 

is presented. The 𝑥-axis shows the target value, while the 𝑦-axis represents the model output. 

Therefore, it is possible to observe the relationship between ANNs output and experimental 

measurements.  

In order to analyze the performance of the proposed models, we consider the RMSE, MAPE and the 

coefficient of determination (R2), for training and test datasets. One can observe that values of R2 

grater that 90% were achieved for both ANN models developed, as shown in Table I. Therefore, 

indicating a good agreement between the estimated and experimental results. We can further observe 

that RMSE for the developed models were found to be low in both models, as well as the MAPE 

(normalized by the maximum value). Thus, confirming that the ANNs could be sucessfully used to 

discriminate the transverse load applied to the optical fiber sensor. Moreover, the proposed method 

can be used in single LPG bidimensional force sensing, since it can estimate load intensity/direction, 

therefore representing a 2D force field in polar coordinates. 
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Fig. 6. Experimental values against ANN prediction for load intensity and angle of incidence. 
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TABLE I. ANN MODELS PERFORMANCE EVALUATION. 

 
Load Intensity Angle of Incidence 

Training Testing Training Testing 

RMSE 0.031 0.047 550.5 586.7 

MAPE 1.724% 3.495% 2.474% 5.055% 

R2 0.984 0.923 0.950 0.935 

V. CONCLUSION 

Two different ANNs were developed to discriminate the complex and nonlinear behavior of the 

transverse load applied to the LPG sensing system. The method is based upon the measurement of the 

resonant wavelength responses of the two principal states of polarization, 𝜆𝑝1 and 𝜆𝑝2, which presents 

different responses to the applied transverse load. Then, we used BP neural networks to realize the 

regression and achieve the prediction of load and intensity and angle of incidence. Finally, results 

showed that using the proposed models coupled to LPG sensor, it is possible to calibrate and monitor 

simultaneously the intensity and angle of incidence of an applied load. Therefore, improving data 

analysis and promoting the development of practical interrogation equipment of optical load sensors. 
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