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Abstract— Microwave pulse bursts were obtained through optical 

domain intensity modulated microwave carriers, sliced by cascaded 

modulator technique, followed by non-linear semiconductor optical 

amplifier (SOA) pre-chirp. After 3 to 18 km of buried fiber 

propagation and photo detection, the microwave signals presented 

increased extinction ratio, up to 36 GHz, with pulse modulation 

windows from 166 to 1000 picoseconds, achieving rise times near to 

10 ps.   
  

Index Terms— electrooptic modulation, microwave photonics, pre-chirped 

pulses, semiconductor optical amplifier.  

I. INTRODUCTION 

The light amplification using semiconductors diodes was proposed by Basov et al. [1], using the 

electromagnetic energy generated by the recombination of electrical carriers in a p-n junction. For 

infrared wavelengths, gallium arsenide (Ga-As) was used for amplification [2]. However, useful 

Semiconductor Optical Amplifiers (SOAs) were achieved with multiple quantum-well (MQW) active 

regions and one-pass traveling wave SOAs were obtained using anti-reflections facets with small mirror 

reflectivity around 10-4 [3], [4]. Theoretical analysis of MQW-SOAs have been performed including 

gain compression in polarization insensitive devices [5], including injected current dynamics effects 

[6], [7]. In particular, when very short pulses are amplified, non-linear SOA effects of self-phase 

modulation (SPM) cause pulse spectral broadening and distortion [8]-[10]. Also, SPM introduces a 

pulse chirp (time-dependent instantaneous optical carrier frequency deviation) related to the SOA 

carrier lifetime, SOA saturation and gain [11]-[14]. The SOA chirping has been recently analyzed [15] 

including experimentally amplified 19 ns width individual pulses. This work introduces SOA 

amplification of fast microwave pulse bursts aiming applications of photonic techniques for arbitrary 

waveform generation (AWG) of microwave and millimetric signals [15]- [19]. They are obtained 

through optical domain amplitude modulated microwave carriers, sliced by a pulse-gated modulator 

technique [16]. The high power of the fast pulse bursts produces SOA gain saturation and chirping. So, 

proper SOA adjusted parameters produced nonlinear amplification of those short pulse’s sequences (up 

to 10 ps rise times), imbedded in an adjustable window (from 333 ps to 1 ns). The SOA amplified 

chirped pulses were transmitted in optical fibers (from 3 up to 18 km) followed by photodetection. The 

tuned SOA and fiber parameters, followed by interaction of the pre-chirped pulses and fiber dispersion 
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enhanced the received signal format, extinction ratio, or rise-time. By adjusting the fiber length, the 

optical input pulse power and width, plus the SOA bias current, an improvement on the output pulse 

shape may be achieved as shown in the following sections. Section II presents a succinct theoretical 

background of the optical fast pulse SOA amplification, highlighting the optical chirp increment 

behavior (during the pulse rise and fall) and its interaction with the fiber dispersion. Section III shows 

the experimental setup description including the employed devices parameters. Section IV presents the 

experimental results with a discussion of how the output pulse shape improvement can be obtained. The 

conclusions are on Section V.  

II. THEORETICAL BACKGROUND 

The SOA amplification of fast pulses reaching the gain saturation produces nonlinear SPM effect. 

The time changing signal being amplified causes a dynamic carrier depletion, changing the SOA gain 

and the active region dielectric constant along the propagation axis (z). Those complex effects were 

simplified by Agrawal and Olsson. For the case of unchirped Gaussian input pulse [8]:  

                                             chirp =  = - ( /  ) . ( 1 / 2  )                                               (1) 

where  is the pulse chirp,  is the optical phase, and  is the time moving with a reference frame. 

After same simplifying assumptions, the chirp increment, after SOA pulse amplification is given 

by [8]: 

outin ( h /  )                                   (2) 

where out is the SOA output signal chirp, in is the SOA input signal chirp,  is the carrier induced 

index-change, h is the SOA gain.   

The derivative of the chirp increment, Cd is given by: 

                                                Cd =  [ /  ] =  ( 2 h /  2)                                      (3) 

At the pulse beginning (zero amplitude), the SOA gain is at the its maximum value, h= G0 , where G0 

is the small signal SOA gain. Assuming instantaneous response of the SOA gain h , as soon as the pulse 

rises, the SOA gain decreases due to saturation. The chirp increment of (2) attains a negative (red-shift) 

value, since the gain time derivative is negative (  h /  . As the pulse continues to rise, the gain 

decreases even more (due to the increased saturation effect). When the maximum pulse intensity is 

reached, the SOA gain attains its minimum value (the gain second derivative  2 h /  2 >0), the first 

derivative is zero (  h /  and no chirp is produced. During the pulse fall, the SOA gain begins 

to increase ( h /  since the pulse signal is dropping, and the SOA saturation is decreasing. So, 

the chirp reaches a positive value.  

However, in practice the SOA behavior is intricate. The SOA gain does not have an instantaneous 

response. The solution of (2) for a pulse rise time much faster than the SOA carrier lifetime, predicts a 

sharper pulse trailing edge, and a slower decay in the remaining pulse [8]. Also, the output pulse 

spectrum has a red shift value whose peak decreases several GHz. At the pulse beginning (SOA bias of 
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70 mA), an experimental chirp value of – 30 GHz was obtained for a 19 ps amplified pulse width 

[15]. Later, the chirp increment reached a value around  -12 GHz at the maximum pulse amplitude 

peak. And at the minimum amplitude (where the pulse ends) the chirp was around  +6 GHz. The 

SOA overall red shift was -12 GHz [15]. Also, the chirp nonlinearity is more intense when the pulse 

intensity and the SOA bias increase [15]. Likewise, the chirp increment and its time variation Cg 

depend on the SOA manufacture parameters, the SOA saturation level and bias current, the relation of 

the pulse width and the SOA carrier lifetime, plus the pulse shape and pre-chirp.  

However, since the chirp increment (frequency variation) changes during the pulse rise and fall, 

the pulse shape can be improved after fiber propagation, since the fiber dispersion also changes with 

the light instantaneous carrier frequency. A standard 10 km fiber at 1550 nm has a dispersion of 170 

ps/nm, or 2.1 ps/GHz of the instantaneous carrier frequency. A typical output SOA pulse has a negative 

chirp  at pulse rising and a positive chirp at pulse decaying. During the hole pulse duration, the total 

chirp variation can be 36 GHz [15] or more, and this frequency change is converted in a signal time 

variation (compression or enlargement) due to the fiber dispersion. Therefore, a 20 GHz chirp 

(frequency variation) during the pulse rising might reach up to 42 ps of pulse format variation in a 10 

km fiber. By adjusting the fiber length, the optical input pulse power and width, plus the SOA bias 

current, an improvement on the output pulse shape may be achieved as shown in the following sections. 

The numerical analysis is out of the scope of this work.       

 

III. EXPERIMENTAL SETUP  

The generation of the embedded optical pulse train employed a cascaded single-drive Mach-Zehnder 

modulators (MZM) [16]. As shown in Fig. 1, the 40 GHz synthesized microwave generator (MG) drives 

(at 17 dBm) the first optical intensity modulator (MZM1), with a 3 dB bandwidth equal to 40 GHz. The 

MZM1 has zero chirp and insertion loss of 5 dB. The technique permits an arbitrary signal instead of 

the sinusoidal signal. However, optical intensity modulated harmonic signals are easier to analyze and 

were chosen here.  

Fig. 1. Block diagram of the setup with external cavity laser (ECL), optical polarization controller (OPC), microwave 

generator (MG), Mach-Zehnder modulator (MZM), non-linear semiconductor optical amplifier (SOA) to produce chirped 

signal, optical isolator (OI), pulse generator (PG), photo receiver (PR), and oscilloscope. Optical paths have thicker lines. 
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The light carrier was provided by a continuous wave (CW) 1550 nm external cavity laser (ECL), 100 

kHz linewidth, followed by an optical polarization controller (OPC). The modulated optical output 

carrier (3 dBm) was amplified by a SOA model XN-OEC-1550, ultra-nonlinear, from CIP (UK), with 

cavity length of 2 mm, optical output saturation power (Psat) of 15 dBm, and maximum gain around 

38 dB (small signals, @500 mA). The device was biased at 220 mA to provide static optical gain around 

12 dB, assuring a SOA operation under saturation regime to provide a proper SPM effect. No optical 

bandpass filter is inserted after the SOA since the chirped pulse could have its bandwidth altered. The 

SOA was followed by an optical isolator (OI), an OPC, and a cascaded second modulator (MZM2), 

zero chirp, with 3 dB bandwidth equal to 40 GHz. A 30 ps rise time pulse generator (PG) drives MZM2 

to a level of 2.5 V (close to Vπ) converting the MZM2 as a gated switch (on-off operation). With a 

proper synchronization of MG and PG, the gated modulator embedded the MG chirped sinusoidal signal 

in a variable length square window. A 50% duty cycle was chosen with a window length of 333 ps up 

to 1 ns.  

The embedded chirped signal was propagated in a test-bed of buried fibers using the “Kyatera 

Network”. This optical buried fiber facility connects optical communication laboratories throughout the 

State of São Paulo, Brazil. The results here employed a 1.5 km cable of 16 standard fibers with 

chromatic dispersion of 17 ps/(nm.km) at 1550 nm, with FC-APC connectors at each end. Finally, an 8 

ps rise-time photonic receiver (PR) followed by a 40 GHz sampling scope was used, for the 

measurements before and after fiber propagation. The optical signal was also tested with an optical 

spectrum analyzer with sub nm resolution.  

IV. EXPERIMENTAL RESULTS 

 
A typical result obtained with the setup of Fig. 1 is shown in Fig. 2, where a 12 GHz microwave 

carrier was embedded in a gate-width of 250 ps with a pulse repetition frequency (PRF) of 2 Gb/s. 

Given a period of 83.3 ps for the 12 GHz sine wave, only 3 RF cycles can fit the 250 ps gate, as noted 

in Fig. 2. Also, the dotted line signal is the chirped pulse just after the SOA. The continuous line of Fig. 

2 shows the same signal after the fiber propagation of 3 km. Note the typical distortion due to SPM [8] 

of the dotted line chirped signal. After 3 km of fiber propagation, a discrete improvement on the signal 

format can be observed.  

The same signals of Fig. 2 are shown in Fig. 3, but the fiber length is now 9 km. A better signal format 

now appears (continuous line) with an improvement on the extinction ratio and on the signal format. In 

addition, a good suppression of the microwave oscillation was obtained outside the 250 ps gate, but 

small microwave energy is still presented. The uncomplete suppression is due to insufficient extinction 

of MZM2. Also, the three pulses did not reach the zero level and the insufficient extinction ratio might 

be related to both MZM1 and MZM2 limited bandwidth. 
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Fig. 2. Photo-detected signals for a 12 GHz microwave carrier after the SOA (dotted line) and after 3 km of fiber 

propagation (continuous line). 

 

Fig. 3. Photo-detected signals for a 12 GHz microwave carrier after the SOA (dotted line) and after 9 km of fiber 

propagation (continuous line). 

The results for the same signals of Fig. 2 are shown in Fig. 4 for an overall fiber length of 18 km. 

Note the higher extinction ratio of the propagated signal (continuous line). However, the received signal 

has distortions during the rising time of the internal pulses, shown by the letters A and B in Fig. 4. This 

behavior might be due to an over correction of the pulse format, since the longer fiber has greater 

dispersion and additional attenuation given by the 18 connectors at the fiber endings.  

Similarly, several results (not shown) present a similar behavior, denoting the existence of an 

interaction of the pulse (with embedded chirp due to the SOA non-linear behavior) and the fiber length, 

since the dispersion at 1550 nm in a standard fiber is around 17 ps/nm.km. Indeed, the SOA chirp can 

reach over 100 GHz for short pulses [8]. However, the SOA chirp behavior is a complex feature and 

the analysis is out of the scope here. In general, the chirp intensity and its time format depend on the 

SOA itself, the bias current, the optical input pulse intensity, width, and format. 
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Fig. 4. Photo-detected signals for a 12 GHz microwave carrier after the SOA (dotted line) and after 18 km of fiber 

propagation (continuous line). 

An experimental result for a 20 GHz microwave carrier and a 250 ps embedding window is shown in 

Fig. 5. The dotted line is the SOA chirped signal and the continuous line after 9 km fiber propagation. 

In this case, the improvement of the extinction ratio can be noted. However, the microwaves outside 

the embedding window were not suppressed entirely. This behavior might be related to the MZM2 

gated switch insufficient action to suppress the higher 20 GHz modulated carrier signal inside it.  

The results for a 12 GHz microwave signal inside an embedded window of 166 ps are shown in Fig.6 

for 9 km of fiber propagation. The dotted line presents pulse distortions, shown by letters C and D. 

Also, the letters A and B represents the 10% and 90% signal levels of the continuous line after 

propagation. Those levels A and B were used to calculate the signal rise time as shown in Fig. 6. Also 

note the half cycle calculation in Fig. 6.  

Several measurements have been made with the microwave signals going from 12 GHz up to 36 GHz, 

including the embedded windows from 166 ps up to 500 ps, for fiber lengths of 3.0 km, 9.0 km, and 18 

km. 

 

Fig. 5. Photo-detected signals for a 20 GHz microwave carrier and 250 ps window after the SOA (dotted line) and after 9 

km of fiber propagation (continuous line). 
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Fig. 6. Photo-detected signals for a 12 GHz microwave carrier in a 166 ps window after the SOA (dotted line) and after 9 

km of fiber propagation (continuous line), with rise time and half cycle estimation. 

The results of the mean rise and fall time of the same pulse are presented in Fig. 7 as a function of 

the half cycle. The theoretical values were calculated for an ideal sinusoidal wave (dotted line). The 

results for the chirped signal (no fiber propagation) is shown by a continuous line. The signal propagated 

mean rise-fall time after 3 km, 9 km, and 18 km are shown by the dotted-point line, the dotted-x line, 

and the dotted-o line, respectively. The 9 km line results showed improvements in relation to the no 

fiber propagation. The 18 km result is worse than no propagation and might be attributed to an over 

correction of the pulse format. The microwave signal and optical spectra were also measured (results 

not shown here).    

 

Fig. 7. Results of the mean rise and fall time of several tested pulses as a function of the half cycle, including theoretical 

results (dotted line), no fiber propagation (continuous line), and after fiber propagation; 3 km (dotted-point line); 9 km 

(dotted-x line); and 18 km (dotted-o line). 

V. CONCLUSION 

A technique for the generation of fast chirped optical pulsed waveforms, including the format and 

extinction ratio measurements after the fiber propagation has been described. The chirped pulses have 

been produced by amplification and proper parameter adjustments of a nonlinear SOA with 2 mm length 

cavity. The experimental setup successfully regenerated gate embedded window microwave signals, 



Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 19, No. 3, September 2020 

DOI: http://dx.doi.org/10.1590/2179-10742020v19i3880                                                                  308       
 

Brazilian Microwave and Optoelectronics Society-SBMO received 11 Feb 2020; for review 13 Feb 2020; accepted 17 June 2020 

Brazilian Society of Electromagnetism-SBMag © 2020 SBMO/SBMag               ISSN 2179-1074 

 

with microwave carriers up to 36 GHz, minimum pulse windows of 166 ps, with reformatted pulse rise 

time approaching 10 ps. Further works are related to the extinction ratio improvement of the microwave 

signal, tests with different dispersions fibers and SOAs, and proper numerical evaluation. 
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