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Abstract− In this work, a new method employs Bioinspired Com-
putational (BIC) optimization from the genetic algorithm, bat al-
gorithm, and flower pollination algorithm. Robust and accurate
modeling of the input parameters adjusts the propagation models
Stanford University Interim, Electronic Communication Commit-
tee, and Floating Interception that consider environments with
characteristics specifically of urban regions in the Amazon. The
lack of research related to the development of propagation mod-
els for Amazonian environments motivated this work. Thus, this
application proves the effectiveness of using BIC techniques for
modeling the communication channel. Measurement campaigns
were carried out in the city of Belem, Brazil, for large-scale channel
modeling on the frequencies of 1.8 and 2.6 GHz, belonging to the
long-term evolution or fourth-generation mobile communications
system (4G). After being adjusted by the optimum values calculated
by the BIC techniques used, the models showed better results
compared to modeling without optimization. Additionally, it was
verified an error reduction of about 80% concerning the metrics
root-mean-square error and standard deviation.

Index Terms− Channel Characterization, Measurement campaigns, Bioin-
spired Computational, Propagation Models.

I. INTRODUCTION

The great benefit that Long Term Evolution (LTE) brought to the new generation of networks was
the increase in data traffic and, consequently, the provision of Quality of Service (QoS) to the customer.
However, to satisfy the growing demand for high data consumption, the aggregation of the LTE cellular
network with Wireless Local Area Network is the proposal that incorporates the 5G network [1]. Experts
say the 4G and 5G need coexist for a while since the characteristics of these generations will help
telecom operators operate both technologies simultaneously [2]. The LTE connection is the basis for
5G. In 2019, in the report of the company GSMA Intelligence, only 15% of the world population will
be using 5G by 2025 [3].

Since LTE operates in different frequency bands, it is possible to activate carrier aggregation, that is,
joining the connections of two frequencies operating only one carrier [4]. With this, the capacity of the
available spectrum is increased, optimizing the network, and giving high speed to the end-user. Another
important point is the signal coverage that is determined using propagation models. The models are
mathematical tools developed with the objective of calculating the average behavior of the signals, the
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reason why it is necessary to know all the factors that influence the signal propagation of the mobile
communication networks. Channel modeling is one of the factors that will provide the best efficiency
of the mobile network, bringing high speed and increasing the number of users connected to the same
transmission antenna. Therefore, some techniques using Bioinspired Computing (BIC) are great helpers
for channel modeling. Through algorithms, the objective is to accelerate the optimization process, to
solve complex optimization problems when compared to classic methods [5]–[9].

Therefore, this work proposes a method to find optimal values for the parameters of classic outdoor
propagation models, since these models originate from environments with different characteristics from
those found in the Amazon region. Using the Genetic Algorithm (GA), Flower Pollination Algorithms
(FPA), and Bat Algorithm (BAT), the following parameters were adjusted: (γ ) representing the loss
with the distance of the Stanford University Interim (SUI) model, (Abm) that defines the average
loss of the Electronic Communication Committee (ECC) model and the parameters α and β of the
Floating Interception (FI) model. Thus, an accurate result is found for modeling in suburban outdoor
environments in the Amazon region. Measurement campaigns were carried out at frequencies of 1.8 and
2.6 GHz to evaluate the applicability of the method. Power values from the Radio Base Station (ERB)
selected along public roads in the city of Belém were collected. Four distinct routes were selected,
representing the characteristic of the environment, which has the presence of vegetation.

The main contributions of this article are: (i) A measurement campaign in real environments (roads in
the city of Belém, representing Amazonian environments); (ii) The use of BIC to optimize large-scale
propagation models; (iii) Calculation of optimal values for models to better characterize the channel;
(iv) Adjustments to the propagation model for the Amazon region; (v) Checking the best algorithm for
adjusting the models, and (vi) A new methodology for the optimization of propagation models.

This study has seven sections. In Section II, there is an analysis of the similar works found in the
literature. The methodology used in this work is in Section III. There is a description of the bioinspired
algorithms used in this work in Section IV. In the following section, there is an explanation of the
propagation models selected in this work. The results obtained in the proposed scenario are analyzed
in Section VI, as well as presents the optimized parameters and the adjusted models, and Section VII
presents the conclusion on the adjustments made.

II. RELATED WORK

Bioinspired computing emerges as a methodology for solving problems in several areas of knowledge,
such as engineering, computer networks, security, etc. The following are some of the works found that
use BIC to solve problems.

In [10], Alcantara applies a hybrid optimization technique using a regression neural network and a
Cuckoo Search algorithm to solve problems in microwave applications. Used of Frequency Selective
Surfaces (FSS) with triangular ring elements printed on fiberglass substrates. Was developed an FSSs
with values bandwidth within the range of 8 to 12 GHz and in a band-stop spatial filter has been
synthesized, built, and measured. The results have shown that the technique generated good results
when compared to the data measured. The technique was fast and accurate, being a viable option for
the development of radio diffusion circuits, including planar FSS, filters, and resonators.

In [11] a bioinspired hybrid optimization technique is presented that associates a General Regression
Neural Network with the Bat Algorithm, for the design and synthesis of FSS, its application in data
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communication systems by diffusion of millimeter waves, in the IEEE 802.15.3c standard. The projected
device was of flat arrangements of metallizations, in the shape of a diamond. The FSS featured operation
with ultra-wideband characteristics, its patch designed to cover a bandwidth of 30.0 GHz. The results
proved to be fast and accurate, which consists of a more viable tool for the development of broadcasting
circuits, including planar FSS, filters, and resonators.

In [12], was developed a BIC to synthesize the geometric dimensions of a diamond-shaped broadband
FSS for filtering electromagnetic waves in satellite communication systems, for X (8-12 GHz) and Ku
(12–18 GHz). A hybrid BIC technique was used, which combines the general regression neural network
with a floral pollination algorithm. The optimization process was to tune the resonance frequency of
the diamond FSS to 15.2 GHz. Thus, the results of an ultra-wideband framework were obtained with
the most suitable dimensions to operate in the frequency bands of the X and Ku bands at the same
time, making it applicable for operation in satellite communication systems.

In [13], Shahid proposed a particle swarm optimization to minimize the overall interference in the
LTE network. A new Component Carrier (CC) selection method is proposed, aiming to converge to a
stable value in hundreds of iterations. The results showed that the new proposed method presents better
results when compared to traditional CC selection methods, i.e., random and round-robin in terms of
throughput and fairness.

Shojafar proposed a new algorithm called P5G based on the particle swarm optimization. The main
goal is to maximize the user’s transfer rate or minimize the number of nodes used in the 5G network
[14] . The results showed a reduction in the computational time and increased the user’s transfer rate.
Moreover, it was capable of better utilizing the network and computational resources.

Jayanthi proposed a new solution for the multi-path routing in Wireless Sensor Networks (WSN), in
[15]. The design is focused on a structure that balances multiple performance metrics by combining a
dynamic programming model of DNA sequence model with existent multi-path routing to find an
optimized balanced routing sequence for real and non-real traffic. The algorithm aims to provide
improved energy and throughput parameters. The results showed a significant improvement in the
transfer and package delivery rates, and also a considerable reduction in the energy consumption when
compared to the standard multi-path routing protocols.

In [16], in order to predict path loss at 800 MHz and 2.600 MHz frequencies, a hybrid model was
developed using a combination of an artificial neural network and some propagation models. The results
showed that the hybrid model based on error was more accurate than the other methods in the tested
scenarios, presenting the lowest Root Mean Square Error.

In [17], a model for heterogeneous networks was created using artificial neural networks to predict
the path loss for bands in frequencies ranging from 450 HMz to 2.600 HMz, using only one formulation.
Through a measurement campaign in Tunis - Tunisia, it was possible to validate the model. The results
of the model demonstrated that the path loss prediction is efficient due to the absolute mean error
approaching zero dB, and the standard deviation (SD) of less than 7 dB.

This work proposes to adjust parameters of the classical propagation models, through measured
data, using bioinspired optimization algorithms. To the best of our knowledge, it is an innovative
methodology, and it was not found in recent literature nor the use of optimization of the parameters of
the propagation models through bioinspired algorithms and also applied in a environment as Amazon
region.
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III. METHODOLOGY

The activities developed in this work were divided into four parts, as follows: measurement campaign,
analysis of the data obtained, calculation of optimization of the parameters of the models using the
BICs, and adjustments of the propagation models. Fig. 1 shows the flowchart of the methodology
developed.

Fig. 1. Flowchart of the proposed methodology.

A. Measurement Campaigns

There were measurement campaigns in the streets of the city of Belém, in Brazil, prioritizing roads
with predominant afforestation. It is important to note that the city is close to the Equator and does
not have four clearly defined seasons during the year. Therefore, the city of Belém has only two
predominant periods: with little rain and another period with a lot of rain.

The city of Belém has a total area of 1,064.918 km2 , and its altitude is ten meters above sea
level. Fig. 2(a) provides an aerial view of the city, which has many buildings in the city center and
the absence in the area considered to be on the periphery, while Fig. 2(b) with the presence of tall
canopy trees creating tunnels of trees, forming a unique environment. In measurement campaigns, the

(a) (b)
Fig. 2. City of Belém.

G-NetTrack application obtained the data. This application uses GPS (Global Positioning System) to
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locate the measured points and generates data in a text file, with information on communication quality
at signal levels. Therefore, G-NetTrack is used to monitor mobile networks and deliver the results of
network evaluation metrics. The application shows basic metrics in real-time, as well as graphs with
recent historical records of the collected metrics [18] [19].

A Mi 5s Plus smartphone (Xiaomi) was used for data collection, and among its main features are
Quad-Core Max 2.3 GHz processor, 6 GB of RAM, 128 GB of internal memory, Kernel 3.18.20, and
Operating System Android 6. G-NetTrack is a software used to measure the signal levels of a given
wireless communication network already implemented, evaluating the quality of service to users of the
channel.

For the treatment and processing of data, implementation of algorithms to adjust the selected models,
a computer was used with the following configuration: Intel i7 processor, 16 GB of RAM, 512 HD
SSD, and iOS operating system using MatLab® development tool.

The smartphone with the G-NetTrack was at 1.6 m on a fixed rod. The rod was inside a car, which
has a constant speed of 30 km / h along the routes. Fig. 3 shows the arrangement of the equipment in
the data collection.

Fig. 3. Methodology measurement campaigns.

During the measurement campaign, it was possible to map the data transmitting antennas (eNodeB)
installed by one of the mobile phone operators in the city. The power data received from the transmitted
signal at 1.800 MHz and 2.600 MHz were stored. The antennas selected in the routes have characteristics
seen in Table I.

TABLE I. PROPERTY OF ANTENNAS OF ROUTES

Route Power Gain Height Frequency Environment
1 40 Watts 15.4 dBi 40 m 2.6 GHz Suburban
2 81.8 Watts 15.4 dBi 50 m 1.8 GHz Urban
3 40 Watts 15.4 dBi 40 m 2.6 GHz Suburban
4 81.8 Watts 15.3 dBi 50 m 1.8 GHz Suburban

It is worth mentioning that the routes were selected according to criteria of tree tunnels (Fig. 2(b))
and buildings around the streets (Fig. 2(a)), obtaining a mix construction and afforestation scenario to
observe the performance of the signal received by the user.
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Fig. 4 shows the geographical positions of each antenna, along with the measured points and received
power levels.

With the received power data, BICs were used to optimize some essential parameters in the models
to adjust the models with the unique characteristics of the environment.

(Route 1) (Route 2)

(Route 3) (Route 4)
Fig. 4. Measurement routes.

IV. COMPUTATIONAL STEP

Bioinspired computing (BIC) has aroused great interest among researchers as they are powerful
methods to tackle a series of engineering and industrial problems, such as the search for optimization
concerning cost and energy consumption, improving network performance and efficiency [20], [21].
Some algorithms stand out, such as Genetic algorithms [22], Artificial neural networks [23], Particle
swarm optimization [24], Flower pollination algorithm [25], and the BAT algorithm [26] and the Cuckoo
Search algorithm [27].

The optimization process involves making an objective assessment of the function through an exten-
sive iterative procedure. Advanced computational tools usually made these assessments, which means
that efficient optimization requires an efficient simulator.

There are several ways to solve optimization dilemmas. However, the best-known formulation is to
write a problem with nonlinear optimization, as expressed below equation 1.

minimize fi(x), i = 1; 2; ...;M

subject to restrictions hj(x), j = 1, 2, ..., J

and gk(x) ≤ 0, k = 1, 2, ...,K

(1)

Where fi, hi and gk are generic nonlinear functions. The vector project x = (x1, x2, . . . , xn) can be
a continuous, discrete, or mixed inn-dimensional space. The fi functions are called cost or objective
functions, and when M > 1 optimizes multi-objective or multi-criteria [26]- [28]. Multiple objectives
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can be combined into a single objective, although multiple objectives can return much more information
about the problem than necessary. Additionally, the equation described above represents a minimization
problem. This problem can also be a maximization problem, just replacing fi(x) by −fi(x).

The use of BIC with increased efficiency is because these algorithms simulate the best resources of
nature, especially selection based on the principle of survival of the fittest in biological systems that
have evolved by natural selection over millions of years.

Two essential characteristics of metaheuristics are intensification and diversification [29]. Intensifica-
tion does local and intensive research, while diversification ensures that the algorithm exploits the entire
research space on a global scale. A suitable balance between the two resources is very considerable
for the efficiency and performance of a given algorithm.

The fact that BICs efficiently solve arbitrary optimization problems and are generally self-organizing,
adaptable, and tolerant of random events [30] explains the growing interest shown by engineering
researchers. Additionally, BICs can provide solutions to real classification problems, such as proximity,
vision, pattern recognition, identification, and control, as well as rigorous analysis of unique applications.

Stochastic optimization studies where the constraint or the parameters depend on random variables,
the metaheuristics are part of the stochastic group, applying algorithms or techniques that use some
level of randomness to find suitable solutions to difficult problems [29]- [31].

The selected algorithms use random values to initialize the solution population. However, the max-
imum and minimum values obtained in real measurements limit these random values, to allow a fair
comparison between the algorithms.

In this study, there is the use of the number of iterations as a stopping criterion. Therefore, every
time in an algorithm execution, it may present differences in the optimized parameters, due to the
diversity found in bioinspired, and the algorithm stores the best solution after the maximum number
of iterations. In this work, there is the use of the Genetic Algorithm, the Flower Pollination Algorithm
(FPA), and the Bat Algorithm (BAT).

A. Genetic Algorithm

Using the AG available in MATLAB by function gaoptimset was used as input parameters: standard
deviation (SD) of 10% concerning the database collected in the measurement, a population with a size
of 100 individuals, a maximum number of 1000 generations, and with a limit of 0, 05 ∗ngeneration (so
as not to have many generations without progress).

B. Bat Algorithm

This algorithm is based on the echo behavior of bats to determine the distance and position of
obstacles using ultrasonic waves and to analyze the time spent by the waves emitted to reflect on the
objective and return to the emission source in the form of an echo [26].

The variation in amplitude and the pulse emission rate makes the control and diversification of the
algorithm. BAT initially generates a population of random solutions, called a group. The characterization
of each member of this group is assigned a vi speed, xi position, and a pulse emission frequency f .

In algorithm operation, there is the update frequency, speed, and position of each particle. β ∈ [0, 1]

is a vector of random numbers with uniform distribution. The frequency will have a random value
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within a uniformly distributed range [fmin, fmax], and X will be the best solution found until the
current iteration, after buying all the resolutions between all bats.

The algorithm can perform a local search by comparing the amount of a random number rand ∈ [0, 1]

with the value of the pulse emission rate ri. If rand > ri, new search will be carried out around the
best current solution. The average pulse emission amplitude of all bats is called Ai and updated for
each iteration. The choice of fmin and fmax requires experience because initially, each bat can have
different amplitudes and pulse emission rate values, achieved due to random initialization.

C. Flower Pollination Algorithm

The Flower Pollination Algorithm (FPA) [25] is inspired in the pollen transference process (pollina-
tion) common in flowers. There are two types of pollination: biotic and abiotic. In the biotic type, the
pollen is transferred by a pollinator such as insects and animals. The abiotic type, on the other hand,
does not require a pollinator and the pollen is transported by other means such as wind and water. The
FPA uses the biotic process to calculate the suitability of the solutions. The code heuristic assumes that
each plant has only one flower and each flower produces only one gamete. The algorithm implements
two types of pollination: global and local.

The algorithm begins by randomly generating a population of flowers and, subsequently, the best
solution in the initial population is selected. The odds ratio is used to choose whether the pollination
applied is global or local. That is how the flower evolution happens throughout time and search space
[25].

V. LARGE-SCALE PROPAGATION MODELS

In telecommunications, propagation models are used to calculate the behavior of signal in different
environments [32]. The models use equation to accurately predict the large-scale propagation loss
curves, which have logarithmic behavior. Also, used are parameters that try to describe the specific
loss behavior for obstructions, something not observed in free space, such as buildings, vegetation,
polarization, height, and situations without direct aim [8].

Large-scale modeling studies analyze the average behavior of the loss of propagation or power
received with the distance and in the variability of the signal strength of a specific location. In this
article, we will be the use of the classic large-scale models SUI, ECC-33, and Floating Intercept.

A. Stanford University Interim Propagation Model

A joint project with Stanford University and the 802.16 IEEE group, after extensive work, to design
a channel model for networks in suburban environments, resulting in the Stanford University Interim
(SUI) propagation loss model [33]. In this model, there is a categorization of the median loss of
trajectory in three different environments, called A, B, and C. Type A environments are associated with
a maximum path loss, used for regions with moderate to intense vegetation and very rugged relief.
Type B is associated with the intermediate terrain between types A and C, with light vegetation density.
Finally, type C is suitable for regions with minimal loss of travel. According to in (2), it is possible to
determine the path loss of the SUI model.

L = A+ 10γ log(
d

d0
) +Xf +Xh + s (2)
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A = 20 log(
4πd0
γ

) (3)

γ = a− bhb +
c

hb
(4)

Xf = 6 log(
f

2000
) (5)

Xh = −10.8 log(hr
2
) (6)

where:
A is the loss in free space in (3);
γ represents the exponent of path loss and is related to the environment in (4);
d is the distance between terminals in meters;
d0 is the initial distance of 100 m;
hb is the height of the base station in meters (10m < hb < 80m);
s is a path loss factor with characteristics of a normal distribution that considers the shading of trees
and structures;
Xf is the correction factor for the transmitting antenna frequency in (5);
Xh is the correction factor for the receiving antenna in (6); in types A and B;
The factors a, b and c depending on the environment under analysis, standardized according to Table
II [34].

TABLE II. MODEL CONSTANTS FOR IEEE 802.16 MODEL FOR 2.5–2.7 GHz BAND

Model constant Terrain Type A Terrain Type B Terrain Type C
a 4.6 4.0 3.6
b 0.0075 0.0065 0.005
c 12.6 17.1 20

B. Electronic Communication Committee Propagation Model

The Electronic Communication Committee (ECC-33) model corresponds to an extrapolation of the
measurements made by Okumura in Tokyo [35], where the classification of large and medium-sized
cities was used, with correction factors for suburban or open areas. The path loss for the ECC-33
model, in dB, is given by (7).

L = Afs +Abm −Gb −Gr (7)

Afs = 92.4 + 20 log(d) + 20 log (f) (8)

Abm = 20.41 + 9.83 log(d) + 7.894 log(f) + 9.56[log(f)]2 (9)

Gb = log(
hb
200

){13.958 + 5.8[log(d)2]} (10)

where:
Afs is the loss in free space in dB in (8);
Abm is the loss of average travel in dB in (9);
d is the distance in km;
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f is the operating frequency in GHz;
Gb is the gain factor by the height of the base station in (10) that depends on hb;
Gr is the gain factor for the height of the receiving antenna that depends on hr.

For medium-sized cities, Gr is given by in (11), and for large cities, it is given by in (12):

∗Gr = [42.57 + 13.7 log(f)][log(hr)− 0.585] (11)

∗ ∗Gr = 0.759hr − 1.862 (12)

C. Floating-Intercept Model

The Floating-Intercept FI is a model part of WINNER II and 3GPP standards (3rd Generation of the
Public-Private Partnership) [36]- [37]. It is a single frequency model with two parameters and it does
not consider a physical anchor based on the transmitted power. FI is expressed in (13).

PLFI(d) = α+ 10βlog10(d) +XFI
σ (13)

the parameter an is the FI in dB, and β is the slope. XFI
σ is the Gaussian shadowing with zero average

value in dB and it describes large-scale signal fluctuations on average propagation loss over distance.
The Least Squares Method is used to turn the parameters of a and β minimizing the standard deviation
(SD) σ. FI model can be used to frequencies above 6 GHz as 5G frequencies, for example [9]. In [38]-
[39], FI models present shading standard deviations similar in mmWave channels outdoors. FI model
also can be used for multi-frequency model and it is called ABG model [40], but if it will be used for
single frequency the parameter (γ), which is frequency dependent, must be set 0 or 2.

D. Parameter Optimization

After data collection and treatment, there was a selection of some parameters to optimize and adjust
the models mentioned in the previous section. The three BICs in this work (the Genetic Algorithm
(GA), Flower Pollination Algorithm (FPA), and Bat Algorithm (BAT)) optimized the chosen parameters.

In the SUI model, the parameters chosen for optimization are γ, which according to in (4), depends
on three variables: a, b and c, well as the frequency parameter and the weight of Xf in (5), referring to
the scalar multiplied by the logarithm and which depends on the frequency of the transmitting antenna,
in this work we adopted to call it x. The γ parameter is the exponent of path loss that will determine
the loss to the distance.

In the ECC-33 model, the optimized parameter was Abm, which represents the average path loss of
over the measured data in (9). Each of the previous values is the weights of the equation and were
replaced by variables to be optimized. The optimized variables refer to distance and frequency, as
the frequencies used in this study do not fit the model, so it would be necessary to optimize these
parameters. With the substitution of the values of in (14), we have (15), wherein each variable is a
parameter to be optimized using BIC.

Abm = 20.41 + 9.83log(d) + 7.83log(f) + 9.56[log(f)2] (14)

Abm = x1 + x2log(d) + x3log(f) + x4[log(f)
2] (15)
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Finally, the parameters chosen to optimize the FI model were α and β (13) , which represent the
intercept coefficient and the slope of the line, respectively. And, the Table III shows all the parameters
chosen for optimization to their respective propagation models.

TABLE III. OPTIMIZED PARAMETERS WITH BICs

Models Parameters
SUI a b c x
ECC-33 x1 x2 x3 x4
FI α β - -

In the next section, there will be a presentation of the optimized values of the parameters and the
adjusted models. Also, there will be a comparison between the classic models and adjusted models.

VI. RESULTS

In this section, there is an explanation and presentation of the optimized values for model adjustments.
Also shown will be the models performed comparing them with classic models and adjusted models,
resulting in three adjustments for each model in each route.

Finally, it is essential to explain that the graphs presented in this section show maximum values of
the average distance of 800 meters because the measurement was in a real environment, and it was not
possible to control the transmitter.

A. Optimized Parameters

The adjusted parameters are calculated by the equations in (4), (5), (9) and (13). The parameters γ
and Xf are in the SUI model in (4) and (5), respectively. The parameter Abm is in the model ECC-33
in (15), and the parameters α and β are given in the model FI in (13).

For all algorithms, the optimization indexes could vary between the minimum and maximum limits,
physically possible for the models studied. For this reason, the parameters found for each route reached
almost similar values. The results are presented below in Table IV, V, and VI, according to the selected
propagation model, RMSE metrics calc, and standard deviation (SD).

B. Analysis of Results

When analyzing these results found in the optimization of the SUI propagation model, it is observed
that for all the algorithms (AG, BAT, and FPA) there were significant adjustments for the presented
routes. In Table IV, it is possible to see that for the RMSE metric it obtained an optimization of
66% for Route1, 40% for Route 2, 68% for Route 3, and 50% for Route 4. Route 3 highlights the
best optimization result found. Thus, it is noted that the propagation model in its classic version does
not apply to the measured data. For all routes, it is possible to check the adequacy of the data after
optimization.
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TABLE IV. RESULTS PARAMETERS SUI

SUI a b c x RMSE SD

Route 1

Literature 4 0.0065 17.1 6 22.08 6.44
AG 6.65 0.0001 14.45 10 7.46 5.28
BAT 6.47 0.0001 21.53 10 7.46 5.28
FPA 7.59 0.0341 31.69 10 7.46 5.28

Route 2

Literature 4 0.0065 17.1 6 14.30 5.71
AG 9.74 0.1056 48.25 1 8.46 4.90
BAT 4.85 0.0001 28.78 1 8.46 4.90
FPA 8.28 0.0615 11.09 1 8.46 4.90

Route 3

Literature 4 0.0065 17.1 6 23.30 5.17
AG 7.58 0.0201 22.98 2.11 4.48 3.22
BAT 6.59 0.0048 33.58 9.10 4.48 3.22
FPA 8.38 0.0437 28.45 2.11 4.48 3.22

Route 4

Literature 4 0.0065 17.1 6 15.87 5.42
AG 5.75 0.0001 18.22 1 7.94 4.52
BAT 5.29 0.0001 36.40 1 7.94 4.52
FPA 5.30 0.0043 42.85 1 7.94 4.52

When analyzing the results found in the optimization with the propagation model ECC-33, the
algorithms optimized the model in order to represent the measured data. In Table V, it is possible to
see that for the RMSE metric it obtained an optimization of 39% for Route1, 52% for Route 2, 52%
for Route 3, and 14% for Route 4. Route 2 and 3 stand out as the best optimization result found. For
all routes, it is possible to check the adequacy of the data after optimization.

TABLE V. RESULTS PARAMETERS ECC-33

ECC-33 x1 x2 x3 x4 RMSE SD

Route 1

Literature 20.41 9.83 7.894 9.56 10.87 4.95
AG 33.36 10 2.840 0.78 6.62 4.18
BAT 23.11 10 1.810 8.50 6.62 4.18
FPA 25.65 10 2.350 6.87 6.62 4.18

Route 2

Literature 20.41 9.83 7.894 9.56 8.13 3.19
AG 28.33 1.27 6.910 1.80 3.87 2.54
BAT 23.62 1.27 7.620 7.12 3.87 2.54
FPA 24.51 1.27 3.810 1.48 3.87 2.54

Route 3

Literature 20.41 9.83 7.894 9.56 12.09 5.25
AG 27.49 10 2.662 7.31 5.79 3.31
BAT 35.59 10 2.630 0.37 5.79 3.31
FPA 21.38 10 0.140 9.98 5.79 3.31

Route 4

Literature 20.41 9.83 7.894 9.56 5.50 3.01
AG 24.73 6.17 9.810 9.31 4.71 2.68
BAT 20.13 6.17 2.700 4.64 4.71 2.68
FPA 28.76 6.17 9.260 4.82 4.71 2.68

When analyzing the results found in the optimization with the FI propagation model, which have
only two parameters to be adjusted, different from the SUI and ECC-33 model, even so, the algorithms
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TABLE VI. RESULTS PARAMETERS FI

FI α β RMSE SD

Route 1

Literature 17.6 3.3 18.95 6.11
AG 21.19 3.82 6.54 4.18
BAT 44.56 2.96 6.61 4.18
FPA 21.02 3.83 6.54 4.18

Route 2

Literature 17.6 3.3 9.49 4.41
AG 63.91 1.92 3.80 2.51
BAT 64.11 1.91 3.80 2.51
FPA 64.14 1.91 3.80 2.51

Route 3

Literature 17.6 3.3 20.38 5.37
AG 1 4.62 4.99 3.07
BAT 17.36 4.03 5.21 3.12
FPA 1 4.62 4.99 3.07

Route 4

Literature 17.6 3.3 11.23 4.51
AG 51.82 2.36 4.76 2.70
BAT 52.77 2.34 4.76 2.70
FPA 52.77 2.35 4.76 2.70

needed to optimize the model in order to represent the measured data. In Table VI, it is possible to
see that for the RMSE metric it obtained an optimization of 65% for Route1, 59% for Route 2, 75%
for Route 3, and 57% for Route 4. Route 3 highlights the best optimization result found.

It is important to note, to analyze the graphs in this section, that the AG, BAT, and FPA algorithms,
for all routes, have similar results in the proposed modeling. Thus, when plotting the lost path data, the
graphical representations with AG (yellow line), BAT (blue line), and FPA (green line) are superimposed.
However, it is possible to state that, in all cases, the RMSE data after optimization, obtained similar
behavior.

Fig. 5 shows all routes with optimization for the propagation models (SUI, ECC, and FI). Comparing
the classical modeling (in red) and the adjusted modeling, Fig. 5(a) with a frequency of 2.6 GHz, it is
possible to verify the convergence of the adjusted model with the measured data from approximately
400 meters away. In the second route, Fig. 5(b), with a frequency of 1.8 GHz, the proposed model
follows the trend of the data measured, after 500 m away from the antenna. On Route 3, with 2.6 GHz
in Fig. 5(c), after optimization, the modeling begins to converge with the data measured after 400 m,
similar to the modeling on Route 1. Finally, on path 4, with a frequency of 1.8 GHz, Fig. 5(d), the
convergence of the modeling starts after about 300 m between the transmitting antenna and receiving
equipment.

The obstructions caused by trees and buildings directly influence the attenuation of the signal received
by the user. According to the calculation of the path loss coefficient, the higher its value, the more
obstructed the environment. In this context, Fig. 6 illustrates the measured data with the four routes of
the LTE system and shows the random variations of the average path loss (in dB) caused by shading
of the woody environment.

Where the dashed black lines represent the modeling using the basic loss due to free space, with
different Path Loss Exponent (PLE) values, and the red line represents the modeling with the free space
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Fig. 5. Optimization results.
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Fig. 6. Scatter plot of measured data and path loss exponent for routes in an arboreous environment.

model with the proposed PLE value. It is also possible to observe that the measured initial loss value
is 116 dB, and the loss value calculated with the free space model is 114.2 dB. Thus, the initial loss
value obtained by linear regression is very close to the value calculated with the free space model, and
this result reduces the deviation between the measured data and the data calculated in the free space
loss model, returning a value for 3.785 dB PLE and 7.65 dB standard deviation.
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Fig.7 presents the modeling using the free-space model with PLE values from the literature (PLE =

2) and the proposed PLE value (PLE = 3.78).
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Fig. 7. Modeling with the free-Space model adopting values of classic PLE and proposed PLE.

This result shows that it is an environment obstructed by buildings above 3 floors, residences below
3 floors, dense vegetation, high flow of cars and people, a characteristic inherent to the Amazon region,
justifying the choice of the routes under study.

This work addresses the need for parameter optimization to characterize the frequency channel studied
with the models chosen to monitor the data found for the Amazon region.

With these results, it is possible to consider [16] that it presented RMSE values for the 2.6 GHz
frequency from 9.09 to 10.33 dB on two routes in suburban environments. It is also possible to analyze
the standard deviation values of the models in [41], which ranged from 7.63 to 9.77 dB in environments
that do not take vegetation and constructions into account. In [17] , the authors showed accuracy results,
with a mean absolute error close to zero [dB] and a standard deviation of less than 7 dB, but in
environments similar to [41]. For the 1.8 GHz frequency, there is the work [42] that presents values of
6.84 dB and 3.7 dB, for RMSE and Standard Deviation, respectively. The studies cited were carried
out in different environments than the study in this work.

When analyzing the behavior of the algorithms, through Fig. 8, for the SUI model, it is possible to
identify that the AG has the worst performance when finding the best result of RMSE. For Route 1,
Fig. 8 (a), for AG, it was necessary more iterations to converge to the optimal solution, while for BAT,
it more quickly, and FPA had a better performance than AG.
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Fig. 8. Plot best fitness.

In Route 2, Fig. 8(b), the AG remains in need of more iterations to achieve the optimal result, since
the BAT algorithms converged before the AG, and FPA obtained an optimal result with a minimum
amount of iteration.

In Route 3, Fig. 8 (c), the AG has the worst performance, when compared to the other routes, as it
converges only close to 30 iterations. BAT achieved a result with the minimum number of iterations
required, and the FPA has a similar performance, but it needs about 20 iterations to obtain the optimal
result.

Finally, on Route 4, Fig. 8(d), the AG algorithm has a worse performance behavior, as it needs almost
30 iterations to obtain the optimal result. While the BAT algorithm has a performance of approximately
20 iterations to achieve convergence to the optimal solution, and the FPA algorithm requires a minimum
of iterations to obtain the optimum result.

It is possible to verify that the AG has the worst performance in all cases when compared to the
BAT and FPA algorithms that were selected by this study, considering the execution of the algorithms.
However, it is possible to verify that the BAT has a better performance in general when comparing
the three algorithms. However, even though the number of iterations does not vary for each algorithm
(1.000 iterations), all the algorithms converged to an optimal result and reached similar RMSE values.

VII. CONCLUSION

This study established a methodology for making adjustments to the classic propagation models
designed for wooded habitats. These adjustments were necessary because models like ECC-33, SUI,
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and FI are for different environments in the Amazon region. There was a demonstration that the use
of BICs in the adjusted models results in lower RMSE when compared to the classic since the studied
environments have trees and buildings that directly interfere in the transmission and reception signal.

In this study, it was possible to identify that for the selected region, the algorithms converge to an
ideal solution after adjusting the propagation models. The methodology proposed in this study applies
in any similar environment for planning telecommunications systems.

The RMSE values for all routes and modeling showed that the lowest solution found was given in
Route 2 of the ECC-33 model with a value of 3.87, a path characterized as a suburban environment
with tall buildings and an extensive green corridor. Conversely, the highest RMSE value was on Route
2 in the SUI model with a value of 8.46 dB.

The results obtained in this study demonstrate that the use of forecasting methods through adjustments
with BICs, in the planning phase of the communication systems, improves the efficiency and accuracy
for the implantation of the base station in several different environments. This solution reflects the
decrease in operating costs in these scenarios. Therefore, the proposed technique can be considered
a useful tool for LTE and LTE-A wireless network engineers and has proven to be an efficient and
accurate modeling methodology.
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