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Abstract− The theory of multiconductor transmission lines is
based on the principle of superposition. According to this principle,
any electric or magnetic field can be represented as the sum of
individual electric or magnetic fields. This theory is used to analyze
and design electrical systems involving multiple conductors. In this
work, the procedures for analyzing electromagnetic transients in
3-conductor transmission lines are presented, which is the last step
for generalization in the case of lines to "n" conductors. The paper
presents elementary cases and a more general one to illustrate such
an approach.
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I. INTRODUCTION

The seminal work by Dommel [1] in the late 1960s fostered what was considered one of the
greatest revolutions in power system analysis. Both the high efficiency and robustness of the developed
methodology enabled the release of several high-performance power systems computational tools, such
as EMTP, ATP, PSCAD/EMTDC, and others. Such tools have promoted the retirement of the old
analog transient network analyzers and launched the power and control systems analysis in the digital
age. Dommel’s approach evaluates the step-by-step evolution of both voltages and currents through an
assembly of resistances and current sources network that take into account the history of these values
in the last computed step. The power of this formulation is that the linear equation system is stable
once the matrix is positive defined. This characteristic is suitable for applying several optimized and
fast-solver techniques [2], [3].

In [4] was proposed an approach that reaches the same goal as Dommel’s by evaluating the "incre-
ments" of both voltages and currents with an assembly of resistances and sources network that take
into account the "increment" history of these values in the last step. It presented a technique for the
treatment of transients in lossless transmission lines for two conductors.

Clayton Paul [5], which is a classic reference in this line of research, presents two techniques.
The first, called "Recursive Solution", use the Laplace transform, whose solution leads to a series
that can be solved by recursive replacement. The difficulty of this technique in the treatment of
networks with nonlinear characteristics, which do not adapt to the transformation of Laplace. The
second, called "Decoupling", very popular with developers of computational tools for this purpose,
replace the transmission line with "n" conductors, in a set of "n-1" lines with two conductors. In the
"Decoupling" mode, the obtaining of the disengaged lines is obtained from an elegant and complex
development of matrix differential equations, which requires obtaining the eigenvalues and eigenvectors
of the resulting matrix, which is still a considerable computational effort when it comes to lines with
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many conductive conductors. In both cases, some approximations need to be made, to accommodate
the solution to situations that require symmetric arrays. We’ll take care of that again in the next few
sections.

II. TRANSIENTS IN A 3-CONDUCTOR TRANSMISSION LINE

The case of the 3-conductor transmission line was the first step to generalizing the case of "n"
conductors. This choice was adopted to identify the mathematical difficulties involved and the ease of
the physical analysis of phenomena.
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Fig. 1. Equivalent circuit for a 3-conductors TL for an elementary stretch.

Figure 1 shows the equivalent circuit of an elementary stretch of a three-wire transmission line, and
we will apply the voltage and circuit equations for such a circuit.

A. Voltage equations

For conductor 1 the voltage balance provides us with:

v1 (x)− L1∆x
∂i1
∂t

−M∆x
∂i2
∂t

− v1 (x+∆x) = 0 (1)

which mathematically manipulated results in:

∂v1
∂x

= −L1
∂i1
∂t

−M
∂i2
∂t

(2)

Conductor 2, similarly, provides us with:

v2 (x)−M∆x
∂i1
∂t

− L2∆x
∂i2
∂t

− v2 (x+∆x) = 0 (3)

which can be rewritten as:
∂v2
∂x

= −M
∂i1
∂t

− L2
∂i2
∂t

(4)

B. Current equations

From the balance of the currents in conductor 1 we can write:

i1 (x)− C12∆x
∂(v1 − v2)

∂t
− C1∆x

∂v1
∂t

− i1 (x+∆x) = 0 (5)
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whose mathematical manipulation leads us to:

∂i1
∂x

= −C1eq
∂v1
∂t

+ C12
∂v2
∂t

(6)

and for conductor 2:

i2 (x) + C12∆x
∂(v1 − v2)

∂t
− C2∆x

∂v2
∂t

− i2 (x+∆x) = 0 (7)

which can be written as:
∂i2
∂x

= C12
∂v1
∂t

− C2eq
∂v2
∂t

(8)

In which: C1eq = C1 + C12 e C2eq = C2 + C12.

C. Voltage wave equations

The wave equation for this transmission line configuration is obtained according to a procedure
similar to that applied in the single-phase transmission line. Because we have four state variables, two
voltages, and two currents, an additional term will be inserted into the final result. The procedure begins
by deriving both members of (2) concerning "x" and both members of (6) and (8) concerning "t" and
making the appropriate substitutions so that it results:

∂2v1
∂x2

= A
∂2v1
∂t2

+B
∂2v2
∂t2

(9)

in which:
A = L1C1eq −MC12 (10)

B = −L1C12 +MC2eq (11)

Next, a similar procedure applies to the equations of conductor 2, so that it results:

∂2v2
∂x2

= C
∂2v1
∂t2

+D
∂2v2
∂t2

(12)

in which:
C = MC1eq − L2C12 (13)

D = L2C2eq −MC12 (14)

D. Current wave equations

Following the identical procedure with the equations (6) and (8) we obtain the wave equations for
the currents, which are given by:

∂2i1
∂x2

= A
∂2i1
∂t2

+ F
∂2i2
∂t2

(15)

∂2i2
∂x2

= G
∂2i1
∂t2

+D
∂2i2
∂t2

(16)

in which:
F = −L2C12 +MC1eq (17)

G = MC2eq − L1C12 (18)
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E. First solution of the wave equation

As it is a propagation phenomenon, the first solution set for the wave equations of voltages (9) and
(12) is of the type:

V1+ = f1

(
t− x

v1

)
(19)

V2+ = f2

(
t− x

v2

)
(20)

For the wave equations of the currents (15) and (16) the first solution set is given by:

I1+ = g1

(
t− x

v1

)
(21)

I2+ = g2

(
t− x

v2

)
(22)

The expressions (19) to (22) are representations of voltage and current waves that propagate in the
direction of x>0, with their respective velocities v1 and v2 to be determined. The terms corresponding
to the propagation speeds are identical two by two, because voltage and current waves from the same
conductor, which travel in the same direction, do so with the same speed.

F. Relationship between voltage and currents waves

By conveniently replacing the solution proposals from (19) to (22) in (2), results:

− 1

υ1
ḟ1 = −L1ġ1 −Mġ2 (23)

By the characteristics of the f ’s and g’s functions, this same relationship reproduces with the primary
functions, so we can write:

− 1

υ1
V1+ = −L1I1+ −MI2+ (24)

or even:
V1+ = Z11I1+ + Zm1I2+ (25)

By applying the same procedure, from (4), we obtain:

V2+ = Zm2I1+ + Z22I2+ (26)

in which:
Z11 = υ1L1 Z22 = υ2L2 Zm1 = υ1M Zm2 = υ2M (27)

are the characteristic impedances of the 3-conductor line.
It is appropriate to represent the equations (25) and (26), as follows:[

V1+

V2+

]
=

[
Z11 Zm1

Zm2 Z22

]
.

[
I1+

I2+

]
(28)

G. Second solution of the wave equation

The other set of solutions satisfying wave equations (9) and (12) is of the type:

V1− = h1

(
t+

x

v1

)
(29)
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V2− = h2

(
t+

x

v2

)
(30)

For the current wave equations (15) and (16), the second solution set is given by:

I1− = k1

(
t+

x

v1

)
(31)

I2− = k2

(
t+

x

v2

)
(32)

The expressions from (29) to (32) are representations of voltage and current waves that propagate
in the direction of x<0, with their respective speeds v1 and v2.

H. Relation between voltages and currents for the second solution

From (2) we can write:
1

υ1
ḣ1 = −L1k̇1 −Mk̇2 (33)

In view of the characteristics of the functions g’s and h’s this same relationship is reproduced with the
primary functions, that is:

1

υ1
V1− = −L1I1− −MI2− (34)

or also:
V1− = −Z11I1− − Zm1I2− (35)

Applying the same procedure, starting from (4), we obtain:

V2− = −Zm2I1− − Z22I2− (36)

Representing (35) and (36) in a matrix form:[
V1−

V2−

]
= −

[
Z11 Zm1

Zm2 Z22

]
.

[
I1−

I2−

]
(37)

The final solution is the sum of the two sets of solutions presented, so that the voltage at any point on
the transmission line is given by: [

V1

V2

]
=

[
V1+

V2+

]
+

[
V1−

V2−

]
(38)

or also: [
V1

V2

]
=

[
Z11 Zm1

Zm2 Z22

]
.

[
I1+

I2+

]
−

[
Z11 Zm1

Zm2 Z22

]
.

[
I1−

I2−

]
(39)

Simply, we can write:
[V ] = [Z0] . [I+]− [Z0] . [I−] (40)

For currents the development is similar. From (6), we get for the traveling wave:

1

υ1
ġ1 = −C1eqḟ1 + C12ḟ2 (41)

or also:
− 1

υ1
I1+ = −C1eqV1+ + C12V2+ (42)
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which can be expressed as:
I1+ = Y11V1+ − Y12V2+ (43)

Being the characteristic admittances of conductor 1:

Y11 = υ1C1eq

Y12 = υ1C12

For the traveling current wave for conductor 2, we obtain from (8):

− 1

υ2
I2+ = C12V1+ − C2eqV2+ (44)

or also:
I2+ = −Y12V1+ + Y22V2+ (45)

Being the characteristic admittances of the conductor 2.

Y22 = υ2C2eq

Y21 = υ2C12

Following the same procedure, a similar result is obtained for the regressive wave currents:

I1− = −Y11V1− + Y12V2− (46)

and
I2− = −Y21V1− − Y22V2− (47)

In a matrix, we can write: [
I1+

I2+

]
=

[
Y11 −Y12

−Y21 Y22

]
.

[
V1+

V2+

]
(48)

and [
I1−

I2−

]
=

[
−Y11 Y12

Y21 −Y22

]
.

[
V1−

V2−

]
(49)

So the complete solution results:[
I1

I2

]
=

[
Y11 −Y12

−Y21 Y22

]
.

[
V1+

V2+

]
−

[
Y11 −Y12

−Y21 Y22

]
.

[
V1−

V2−

]
(50)

or also:
[I] = [Y0] . [V+]− [Y0] . [V−] (51)

I. Propagation speeds

The propagation speed is a physical property of the Transmission Line. In the case of the multicon-
ductor line, this speed does not depend on the distribution of currents between its conductors, but on
its parameters. To evaluate the propagation speed of Line 1, it is enough to assume that only this line
is energized and the others are empty, as shown in Figure 2.
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Fig. 2. Three-conductor line with i1 ̸= 0 and i2 = 0 and equivalent single-phase line

The figure also shows the single-phase transmission line equivalent to this condition, in which:

C11 = C1 +
C2C12

C2 + C12
(52)

For a single-phase line with these parameters, the propagation speed will be given by:

υ1 =
1√

L1C11
(53)

To evaluate the propagation speed of Line 2, we assume that only this line is energized and the
others are empty, as shown in Figure 3.

Fig. 3. Three-conductor line with i1 = 0 and i2 ̸= 0 and equivalent single-phase line

For the case where the line is fed only through conductor 2, the characteristics of the equivalent
single-phase line result in a propagation speed given by:

υ2 =
1√

L2C22
(54)

in which:
C22 = C2 +

C1C12

C1 + C12
(55)

Substituting the propagation velocities in the expressions of the characteristic impedances results:

Z11 =

√
L1

C11
Z22 =

√
L1

C22
Zm1 =

M√
L1C11

Zm2 =
M√
L2C22

(56)

Being:

• Z11: Characteristic impedance of conductor 1
• Z22: Characteristic impedance of conductor 2
• Zm1: Characteristic mutual impedance of conductor 1
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• Zm2: Characteristic mutual impedance of conductor 2

III. ELEMENTARY CASES

A. Elementary Case 1

To understand the procedure, we will analyze the evolution of the voltage at the ends of a 3-conductor
transmission line, which is excited by a voltage step E0 with the other terminals open. The parameters
are indicated in Figure 4.

Fig. 4. Circuit for the Elementary’s Case 1

At the instant t = 0+ only the progressive solution is admitted, so we can write:[
V1+

V2+

]
=

[
Z11 Zm1

Zm2 Z22

]
.

[
I1+

I2+

]
(57)

Identifying the parameters and quantities with the problem data, we have at the first terminal the
imposed voltage, an open terminal for the load terminal.

V1+ = E0 I2+ = 0 Z11 = Z1 Z22 = Z2 Zm1 = Zm2 = Zm (58)

So the matrix system results: [
E0

V2+

]
=

[
Z1 Zm

Zm Z1

]
.

[
I1+

I2+

]
(59)

whose solution is given by:

I1+ = IG1(0) =
E0

Z1
and V2+ = VG2(0) =

Zm

Z1
E0

These voltage and current waves are launched towards the end of the line and propagate with speed
υ1 = υ2 = υ , so they will reach the end of the line at instant t = τ = l/υ. At this instant, the voltages
at the line terminals will be incremented with values, such as:[

V1+

V2+

]
−

[
Y11 −Y12

−Y21 Y22

]−1 [
∆IL1

∆IL2

]
=

[
∆VL1

∆VL2

]
Substituting the known quantities, we get:[

∆VL1

∆VL2

]
=

[
2E0

2Zm

Z1
E0

]
(60)
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or [
VL1(τ)

VL2(τ)

]
=

[
VL1(0)

VL2(0)

]
+

[
∆VL1

∆VL2

]
=

[
0

0

]
+

[
2E0

2Zm

Z1
E0

]
(61)

or also: [
VL1(τ)

VL2(τ)

]
=

[
2E0

2Zm

Z1
E0

]
(62)

At this instant, a regressive wave is generated, whose increment will be:

[∆V −] = [∆V L]− [V+] (63)

Which results:

[∆V−] =

[
2E0

2Zm

Z1
E0

]
−

[
E0

Zm

Z1
E0

]
=

[
E0

Zm

Z1
E0

]
(64)

This regressive wave will perturb the voltages at the generator terminals by introducing an increment
such that:

2[∆V−] + [Y0]
−1 [∆IG] = [∆VG] (65)

So it results: [
2E0

2Zm

Z1
E0

]
+

[
Y11 −Y12

−Y21 Y22

]−1

.

[
∆IG1

∆IG2

]
=

[
∆VG1

∆VG2

]
(66)

Since ∆IG2 = 0 (open terminal) and ∆VG1 = 0 (imposed voltage) we obtain ∆IG1 = −2E0

Z1
and

∆VG2 = 0. Thus, the new voltages and currents in the generator will be given by:[
VG1(2τ)

VG2(2τ)

]
=

[
VG1(0)

VG2(0)

]
+

[
∆VG1

∆VG2

]
(67)

or [
VG1 (2τ)

VG2 (2τ)

]
=

[
E0

Zm

Z1
E0

]
(68)

We can note that the voltages at the beginning of the line remain constant, since ∆VG1 (t = 2τ) =

∆VG2 (t = 2τ) = 0.[
IG1(2τ)

IG2(2τ)

]
=

[
IG1(0)

IG2(0)

]
+

[
∆IG1

∆IG2

]
=

[
E0

Z1

0

]
+

[
−2E0

Z1

0

]
(69)

or [
IG1(t = 2τ)

IG2(t = 2τ)

]
=

[
−E0

Z1

0

]
(70)

At this instant, new progressive waves are generated, which reach the end of the line at the instant
t = 3τ , such that:[

∆V1+

∆V2+

]
=

[
∆VG1(t = 2τ)

∆VG2(t = 2τ)

]
−

[
∆V1−

∆V2−

]
=

[
0

0

]
−

[
E0

Zm

Z1
E0

]
(71)

or [
∆V1+

∆V2+

]
= −

[
E0

Zm

Z1
E0

]
(72)
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The new voltages are obtained from:

−2

[
E0

Zm

Z1
E0

]
−

[
Y11 −Y12

−Y21 Y22

]−1 [
∆IL1

∆IL2

]
=

[
∆VL1

∆VL2

]
(73)

Remembering that, as the line is open, results:[
∆IL1

∆IL2

]
=

[
0

0

]
we get [

∆VL1

∆VL2

]
= −2

[
E0

Zm

Z1
E0

]
(74)

Thus, the new voltages at the end of the transmission line, at this instant, will be:[
VL1(3τ)

VL2(3τ)

]
=

[
VL1(τ)

VL2(τ)

]
+

[
∆VL1

∆VL2

]
=

[
0

0

]
(75)

The graphs in Figure 5 show the evolution of voltages at the source and at the end of the line. This
sequence is permanently maintained, as they are loss-free lines.

Fig. 5. Voltage at both ends for the line for the first elementary case.

One can see the coupling effect between both circuits and the similarity between the waveforms of
both active and passive circuits. Even when there is no generator at the second line, there is an induced
voltage originated from the first transmission line.
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B. Elementary Case 2

The second elementary case, although simple, is an example that has great practical application in
electrical grounding of electrical cable shields. In this case, an ideal source is connected to one of
the three-conductor transmission line conductors and another terminal, which may be a cable shield,
is grounded at this end. The objective is to determine the evolution of the voltages and currents in
both conductors at the other ends. In this elementary case there is no additional grounding resistance
for the shielding, so we can consider a simplification for the results concerning a very low grounding
resistance.

Fig. 6. Terminal grounded at one end

At the instant t = 0+ only the progressive solution is admitted, so we can write:[
V1+

V2+

]
=

[
Z11 Zm1

Zm2 Z22

]
.

[
I1+

I2+

]
(76)

Identifying the parameters and quantities with the problem data, we have V1+ = E0 (imposed voltage);
V2+ = 0 (short-circuited terminal); Z11 = Z1; Z22 = Z2 and Zm1 = Zm2 = Zm. So the matrix system
results: [

E0

0

]
=

[
Z1 Zm

Zm Z1

]
.

[
I1+

I2+

]
(77)

Whose solution is
I1+ = IG1(0) =

z1
Z2
1 − z2m

E0

and
I2+ = IG2 (0) = − zm

Z2
1 − z2m

E0

These voltage and current waves are launched towards the end of the line and propagate with speed
υ1 = υ2 = υ, so they will reach the end of the line at instant t = τ = l/υ. At this instant, the voltages
at the line terminals will be incremented with values, such as:

2

[
V1+

V2+

]
−

[
Y11 −Y12

−Y21 Y22

]−1 [
∆IL1

∆IL2

]
=

[
∆VL1

∆VL2

]
(78)

Substituting the known quantities, we get:[
∆VL1

∆VL2

]
=

[
2E0

0

]
(79)
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then: [
VL1(τ)

VL2(τ)

]
=

[
VL1(0)

VL2(0)

]
+

[
∆VL1

∆VL2

]
=

[
0

0

]
+

[
2E0

0

]
(80)

or also: [
VL1(τ)

VL2(τ)

]
=

[
2E0

0

]
(81)

At this instant, a regressive wave is generated, whose increment will be:

[∆V −] = [∆V L]− [V+] (82)

Which results:

[∆V −] =

[
2E0

0

]
−

[
E0

0

]
=

[
E0

0

]
(83)

This regressive wave will perturb the voltages at the generator terminals at t = 2τ by introducing an
increment such that:

2[∆V−] + [Y0]
−1 [∆IG] = [∆VG] (84)

So it results: [
2E0

0

]
+

[
Y11 −Y12

−Y21 Y22

]−1

.

[
∆IG1

∆IG2

]
=

[
0

0

]
(85)

Since ∆VG1 = ∆VG2 = 0, since the voltages at these terminals are imposed, so we get ∆IG1 = −2E0

Z1

and ∆VG2 = 0. Thus, the new voltages and currents in the generator will be given by:[
VG1(2τ)

VG2(2τ)

]
=

[
VG1(0)

VG2(0)

]
+

[
∆VG1

∆VG2

]
(86)

or [
VG1 (2τ)

VG2 (2τ)

]
=

[
E0

Zm

Z1
E0

]
(87)

We can note here that the voltages at the beginning of the line remain constant, since ∆VG1 (t = 2τ) =

∆VG2 (t = 2τ) = 0.[
IG1(2τ)

IG2(2τ)

]
=

[
IG1(0)

IG2(0)

]
+

[
∆IG1

∆IG2

]
=

[
E0

Z1

0

]
+

[
−2E0

Z1

0

]
(88)

or [
IG1(t = 2τ)

IG2(t = 2τ)

]
=

[
−E0

Z1

0

]
(89)

At this instant, new progressive waves are generated, which reach the end of the line at the instant
t = 3τ , such that:[

∆V1+

∆V2+

]
=

[
∆VG1(t = 2τ)

∆VG2(t = 2τ)

]
−

[
∆V1−

∆V2−

]
=

[
0

0

]
−

[
E0

Zm

Z1
E0

]
(90)

or [
∆V1+

∆V2+

]
= −

[
E0

Zm

Z1
E0

]
(91)

Brazilian Microwave and Optoelectronics Society-SBMO received 21 July 2022; for review 22 July 2022; accepted 23 Sept 2022

Brazilian Society of Electromagnetism-SBMag © 2022 SBMO/SBMag ISSN 2179-1074



Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 21, No. 4, December 2022
DOI: http://dx.doi.org/10.1590/2179-10742022v21i4268097 520

The new voltages are obtained from:

−2

[
E0

Zm

Z1
E0

]
−

[
Y11 −Y12

−Y21 Y22

]−1 [
∆IL1

∆IL2

]
=

[
∆VL1

∆VL2

]
(92)

Remembering that, as the line is open: [
∆IL1

∆IL2

]
=

[
0

0

]
so we have: [

∆VL1

∆VL2

]
= −2

[
E0

Zm

Z1
E0

]
(93)

Thus, the new voltages at the end of the transmission line, at this instant, will be:[
VL1(3τ)

VL2(3τ)

]
=

[
VL1(τ)

VL2(τ)

]
+

[
∆VL1

∆VL2

]
=

[
0

0

]
(94)

The graphs in Figure 7 show the evolution of the currents at the source and the voltage at the terminals
of conductor 1.

Fig. 7. Currents and voltage waveforms at both ends for the second elementary case.

IV. GENERAL CASE

Figure 8 shows a generic Three-conductor line connecting the source, fault location, to the load. The
modeled fault is an ideal short-circuit and it is further replaced by a generic impedance between the
same terminals. This can cause a device to malfunction or even fail because it can cause an electrical
current to take a path that it is not supposed to, which can lead to damage to equipment. A short circuit
is modeled as an ideal fault between node 1 and the reference as shown in the figure. The second
terminal can be open-circuited between the reference terminal or an impedance can be coupled as well.

A traveling wave is a wave that propagates through a medium, such as a transmission line. The
wave travels through the medium at a certain speed and its amplitude and phase change as it moves.
In this General Case, we first represent a zero-impedance defect which leads the traveling wave to be
fully reflected, and further a general impedance network. At the second terminal, we can observe the
coupling effect between the energized line and a passive one.

At the instant immediately after the fault, the progressive waves of voltage and current are [V+] and
[I+]. These quantities are imposed by the characteristics of the defect.
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Fig. 8. General three-conductor transmission line

After a transit time, that is, in t = τ , these waves reach the end of the line, when, due to electrical
discontinuity, the regressive waves are generated in such a way that:

[I+] + [I−] = [IL] (95)

In which [VL] and [IL] are the voltages and currents at the load. From (40) and (51), we can write:

[Y0] . [V+]− [Y0] . [V−] = [IL] (96)

or also:
[V+]− [V−] = [Y0]

−1 [IL] (97)

Adding these two expressions gives:

2 [V+]− [Y0]
−1 [IL] = [VL] (98)

We can associate this last result with a generalized electrical circuit, composed of a Thèvenin equivalent
generator connected to the load at the end of the line.

Fig. 9. Generalized equivalent Thévenin of LT in charge

The set of reflected voltages that return to the generator is such that:

[V−] = [VL]− [V+] (99)

This new set of voltages that act on the generator at the instant t = 2τ composes a new Thevenin
equivalent in the generator. This new set of voltages that act on the generator at the instant t = 2τ

composes a new Thevenin equivalent in the generator.
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Fig. 10. Generalized equivalent Thévenin of LT in generator

Deactivating the generators, the set of voltage increases at the generator terminals and the new set
of progressive voltages that return to the load are determined.

2 [V−] + [Y0]
−1 [IG] = [VG] (100)

[V+] = [VG]− [V−] (101)

A. Case Study

This is a typical case of impedance grounding of shields. In this case, a voltage step of 1000V
is applied to the terminals of one of the conductors, which, when propagating, induces voltages in
conductor 2. The objective is to observe the evolution of voltages and currents in the conductors in
the first moments of the transient. The parameters were chosen so that the propagation speeds of the
conductors are equal.

Fig. 11. Voltages and Currents at the ends of the lines

The line parameters are Z11 = 318Ω, Zm1 = 97.7Ω, Z22 = 294.3Ω, Zm2 = 106.5Ω and the
propagation speed is 2.38×10−8 m/s for both lines. The procedure begins by determining the voltages
and currents injected into the line that will compose the progressive waves that are directed towards
the load. As we only have traveling waves, we can write:[

V1+

V2+

]
=

[
Z11 Zm1

Zm2 Z22

]
.

[
I1+

I2+

]
therefore: [

V1+

V2+

]
=

[
318 97.7

106.5 294.3

]
.

[
I1+

I2+

]
(102)
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On the generator side, the relationship between these same quantities is extracted from the circuit in
Figure 14.

Fig. 12. Cálculo da tensão progressiva incial.

We can write: [
1000

0

]
−

[
100 0

0 100

]
.

[
I1+

I2+

]
=

[
V1+

V2+

]
(103)

From (102) and (103) we extract:[
I1+

I2+

]
=

[
2.553

−0.690

] [
V1+

V2+

]
=

[
744.645

68.971

]
The voltages and currents determined are also the voltages and currents at the beginning of the

transmission line, so we can write that:[
IG1(0)

IG2(0)

]
=

[
2.553

−0.690

] [
VG1(0)

VG2(0)

]
=

[
744.645

68, 971

]
At the instant t = τ these voltages and currents reach the load and will cause a disturbance in these

quantities such that:

2

[
V1+

V2+

]
−

[
Y11 −Y12

−Y21 Y22

]−1 [
∆IL1

∆IL2

]
=

[
∆VL1

∆VL2

]
that is

2

[
744.645

68.971

]
−

[
318 97.7

106.5 294.3

][
∆IL1

∆IL2

]
=

[
∆VL1

∆VL2

]
To calculate the current and voltage increments we Analyze the travelling wave load circuit.

Fig. 13. Load side circut viewed by the travelling wave.
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where the voltage and current increment is then calculated by such circuit.[
∆VL1

∆VL2

]
=

[
100 0

0 100

][
∆IL1

∆IL2

]
The regressive voltage and current waves generated at this instant are such that:[

∆V−(τ)

∆V−(τ)

]
=

[
∆VL1(τ)

∆VL2(τ)

]
−

[
V1+(0)

V2+(0)

]
Substituting their values gives: [

∆V−(τ)

∆V−(τ)

]
=

[
−373.075

−134.348

]
At 2τ these voltages and currents reach the generator, disturbing their magnitudes, so that applying the
principle of line-side superposition we can write:

2

[
∆V1−(τ)

∆V2−(τ)

]
+

[
Y11 −Y12

−Y21 Y22

]−1 [
∆IG1(2τ)

∆IG2(2τ)

]
=

[
∆VG1(2τ)

∆VG2(2τ)

]

Fig. 14. Illustration of the superposition principle applied to the problem.

Substituting the known quantities for their values, results:

2

[
−373.075

−134.348

]
+

[
318 97, 7

106, 5 294, 3

][
∆IG1(2τ)

∆IG2(2τ)

]
=

[
∆VG1(2τ)

∆VG2(2τ)

]
On the generator side it results:[

∆VG1(2τ)

∆VG2(2τ)

]
= −

[
100 0

0 100

][
∆IG1(2τ)

∆IG2(2τ)

]
Being the sources deactivated in for the superposition, we can apply the increments to the former
currents and voltages.[

IG1(2τ)

IG2(2τ)

]
=

[
IG1(0)

IG2(0)

]
+

[
∆IG1(2τ)

∆IG2(2τ)

] [
VG1(2τ)

VG2(2τ)

]
=

[
VG1(0)

VG2(0)

]
+

[
∆VG1(2τ)

∆VG2(2τ)

]
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The generator voltages at the time t = 2τ are then[
VG1(2τ)

VG2(2τ)

]
=

[
571.112

47.697

]
The new progressive wave is given by;[

V+1(2τ)

V+2(2τ)

]
=

[
∆VG1(2τ)

∆VG2(2τ)

]
−

[
∆V1−(τ)

∆V2−(τ)

]
=

[
199.542

113.074

]
At t = 3τ the disturbance generated at the beginning of the line reaches its terminals. Following the
same procedure adopted at the instant t = τ , we obtain:

2

[
199.542

113.074

]
−

[
318 97, 7

106, 5 294, 3

][
∆IL1(3τ)

∆IL2(3τ)

]
=

[
∆VL1(3τ)

∆VL2(3τ)

]
(104)

and [
100 0

0 100

][
∆IL1(3τ)

∆IL2(3τ)

]
=

[
∆VL1(3τ)

∆VL2(3τ)

]
(105)

Finally, from (104) and (105) we have:[
VL1(3τ)

VL2(3τ)

]
=

[
VL1(τ)

VL2(τ)

]
+

[
∆VL1(3τ)

∆VL2(3τ)

]
=

[
459.170

−65.376

]
The same procedure repeats, and we perform calculations until we achieve the steady state. As we

are dealing with a process that can be automatized, we developed a software to calculate the voltage
and currents for the Multiconductor Transmission Line. One can see in both Figures 15 and 16 the
generator and load voltages along several transit times. Such an automation facilitates to enable this
paper approach to be used in real world problems.
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Fig. 15. Voltage transients for Case Study’s line 1.

Brazilian Microwave and Optoelectronics Society-SBMO received 21 July 2022; for review 22 July 2022; accepted 23 Sept 2022

Brazilian Society of Electromagnetism-SBMag © 2022 SBMO/SBMag ISSN 2179-1074



Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 21, No. 4, December 2022
DOI: http://dx.doi.org/10.1590/2179-10742022v21i4268097 526

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Transit time ( )

60

40

20

0

20

40

60

Vo
lta

ge
 (V

)

Generator voltage - Line 2
Load voltage - Line 2

Fig. 16. Voltage transients for Case Study’s line 2.

CONCLUSION

The transmission line theory is a critical tool for understanding and designing electrical systems.
It can be used to predict and mitigate the effects of electromagnetic interference, and to optimize the
performance of electrical systems. We have studied in this paper the 3-conductor case, by an analytical
formulation and also generalizing such solution by a software.

We have also testes such procedure with adaptations to the single phase transmission line and the
results were in perfect agreement with the literature, such as [6]. This approach will make possible
to the "increment" transient analysis to include multiconductor transmission lines, being possible to
include capacitors and inductors as loads and to simulate non-linear loads.

This paper formulation was also used for a software to compute the transients automatically. We
intend to expand such software to analyze transients of a general form waveform, apply it to an n-
conductor line such as a printed circuit board. Another direct application of this paper is to evaluate
the grounding of shielded cables.
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