
Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 13

Analog Electronic Circuit Synthesis Using
Simulated Annealing and Geometric Circuit

Evolution
Leonardo Muttoni , Antônio C. P. Veiga

Universidade Federal de Uberlândia (UFU), Av. João Naves de Ávila, 2121, Uberlândia, MG, Brazil
muttoni@gmail.com, acpveiga@gmail.com

Abstract− This article presents the SANN-GCE algorithm, a spice
simulation driven meta-heuristic to design general discrete analog
electronic circuits automatically, both circuit topology and compo-
nent sizing. We introduce an encoding scheme called Geometric
Circuit Evolution (GCE) that works associated with the Simulated
Annealing algorithm and uses categorized degrees of freedom, that
allows distinct characteristics of a circuit to change with different
probabilities according to its type during the circuit evolution. We
show through a series of seven active test circuits that SANN-GCE,
compared to a benchmark, present a median fitness 15.88 times
better, with a median standard deviation 6.72 times lower between
runs. The median runtime found was 14.17 times lower.

Index Terms− Analog circuit synthesis, Automatic design, Computer Aided
Design, Metaheuristic

I. INTRODUCTION

The manual design of analog electronic circuits requires expert knowledge and many iterations of
testing and optimization until a circuit with the desired characteristics is obtained.

Electronic Design Automation (EDA) software tools are commonly used for schematic capture, circuit
simulation and layout, helping the designer to reach a good solution in less time. Circuit schematics
are typically created based on expert knowledge. Its increasingly stringent design requirements result
in more complex circuits, a problem that could be alleviated with an additional level of automation:
automatic circuit synthesis.

The problem of automatically constructing a circuit can be divided in two parts:

1) Topology synthesis: determines the quantity and types of electronic components in circuit, as well
their interconnections. It is a very difficult combinatorial problem, as the search space is huge and
a simple change of a single variable like the connection of a component terminal can completely
alter the circuit behavior.

2) Sizing: involves determining the parameters of all circuit components, e.g, the value of resistance
in resistors. They are usually continuous parameters of the components previously arranged in a
circuit. Some commercial EDA tools have the ability to automatically optimize the sizing based
on user specified desired performance target.

This subject is focus of several researches, specially the problem of topology synthesis. According to
the extensive survey done in [1], early works on this subject mainly used human and knowledge-based
topology selection [2], [3]. More recent works were categorized as being of type topology refinement

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

https://orcid.org/0000-0001-6190-882X
https://orcid.org/0000-0002-6818-012X

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 14

or topology generation. In the first one, the method modifies a given initial circuit to improve its
performance [4]. In the second, a topology is generated from scratch [5].

The contributions of [6] and [7] are considered a milestone for presenting a general technique to
approach the problem of analog electronic circuit synthesis. It used Genetic Programming (GP) to
evolve both topology and component values, creating an entire circuit from a high-level statement of
the circuit’s desired behavior.

In the following years, several techniques emerged in this matter, among which we cite the work
of [8], that showed an encoding inspired in biological genetic regulatory networks that can be used to
evolve analog circuits. It was tested in three analog circuit problems, using a genetic algorithm as the
search method.

The reference [9] presented a system that uses GP to create analog circuits using a large database
of trusted building blocks prepared previously by a human expert to tackle a specific problem.

Reference [10] used Grammatical Evolution (GE) [11] to express a candidate solution through a
Backus-Naur Form grammar definition. The solutions are then evolved using a genetic algorithm. In
another article, the authors presented the Multi Grammatical Evolution (MGE) [12]. It separated the
original problem into two distinct sub-problems: component sizing and circuit topology. The algorithm
was tested in seven use cases.

The authors in [13] proposed a technique that uses a connection matrix to represent the topology and
optimize it together with the component values by means of an evolutionary algorithm, with crossover
and mutation operations. It was demonstrated using three test circuits.

This paper presents Geometric Circuit Evolution (GCE), an encoding scheme that represents candidate
solutions to the analog circuit synthesis problem. GCE introduces the concept of categorized Degree
of Freedom (DOF) in the evolution of the circuit. In short, this allows different characteristics of a
circuit to mutate with different probabilities according to its type. The GCE was implemented together
with the classic search algorithm Simulated Annealing, that drives the evolution using the mutation of
DOFs. The composition of GCE with Simulated Annealing is referred to hereinafter in this article as
SANN-GCE.

The sole input of SANN-GCE is a formulation that specify the desired circuit behavior, and the
output is a circuit designed at the discrete component level, described as a netlist. During algorithm
execution, all candidate solutions are evaluated through Spice simulations.

As other algorithms that does not bound the search space, the circuits that can be automatically
designed in SANN-GCE can assume virtually any topology, enabling the creation of unusual projects
that may, by chance, be novel. This is in contrast to other techniques that uses expert information, like
databases of pre-selected circuits block.

The main contributions of this article are: (1) we show how this novel algorithm (GCE) combined
with classic simulated annealing can be used to successfully synthesize analog electronic circuits using
a simpler mutation-only approach, evolving one solution at time (in contrast with population based
algorithms, e.g. Genetic Algorithm); (2) its performance, when compared with a benchmark [12], has
significant advantages in some key metrics: (2.1) it is 14.17× faster; (2.2) the fitness of the best
synthesized circuits is 15.88× lower (better); (2.3) the fitness standard deviation of the best obtained
circuits is 6.72× lower.

The following sections are organized as follows: First, Section II explains the software framework

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 15

and its modular parts. Then the Section III presents the simulated annealing algorithm, followed by
Section IV that describes the Geometric Circuit Evolution, a proposed new solution representation that
encodes a candidate solution in a convenient format for the simulated annealing to work efficiently.
Next, the Sections V and VI shows how a problem should be designed in SANN-GCE and how its
spice simulation works. It is presented in Sections VII and VIII seven test circuits as use cases for
the algorithm, followed by a discussion of its results and some comparisons with other algorithms. In
Section IX the final remarks of this work was reported.

II. ANALOG ELECTRONIC CIRCUIT SYNTHESIS FRAMEWORK

A framework called circ_autoproj was built from scratch to run the optimizations. The software
was written in C++ using its object-oriented paradigm. The framework has a modular architecture, with
two main parts loaded at runtime as plugins according to a user configuration: 1) Search Algorithm
(SA); 2) Solution Representation (SR). These parts have a standardized interface that allows for a
seamless exchange of plugins, thus providing agility for comparing different algorithms.

The role of SR is to construct candidate solutions objects. Each object has a method to get its
fitness, and methods to modify it, like the mutation operator. The SR itself loads another plugin at
runtime: the problem. It contains specifications of the desired characteristics of the electronic circuit to
be automatically designed, such as the spice analysis type, the desired input/output relation, its fitness
function and the test fixture.

SA is normally a meta-heuristic algorithm that holds SR candidate solutions and evolve them over
time, invoking methods provided by the SR. This is the part that drives the optimization.

The framework asks SA periodically to get the best solution found so far, and record this along with
various statistics in an output file. This modular construction allow decoupling the parts, and helps the
developer to improve one independently of the other.

In this article, the circ_autoproj has been configured to use a simulated annealing algorithm
as the SA, and the GCE as the SR.

III. SEARCH ALGORITHM: THE SIMULATED ANNEALING

Simulated Annealing [14] is a well known classic meta-heuristic for global optimization that operates
on one candidate solution at a time (in contrast with population based algorithms, like Genetic Algo-
rithm). It is suitable for applications where objective function evaluation is complex and not explicitly
known (black box problems). Its main advantages are simplicity and low memory usage, as it operates
on one candidate solution at a time [15].

Its operation is based on an analogy with the annealing process in solids, which comprises heating
the material and then slow cooling it in a controlled way. This process allows the material domains to
be reorganized into a low energy state. The statistical mechanics unveil the theory behind this physical
process, and it states that the probability of the solid being in an energy state Es = E is given by (1),
where Z(T) is a normalization factor, T is the temperature and kB is the Boltzmann constant [16].

P (Es = E) =
1

Z(T)
e
− E

kBT (1)

The Simulated Annealing uses the Metropolis criterion [17] to evolve its solution. This states the
probability of accepting a new solution according to its fitness difference from the current solution

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 16

(∆F = Fnew − Fcurr). If the new solution is better, keep it. If it is worse, it will be accepted with a
probability of e−∆F/T , otherwise the current solution is maintained. This probability of acceptance is
based on Boltzmann distribution, related to aforementioned physical annealing process [18].

The Simulated Annealing algorithm used in this work is shown in the Algorithm 1. It starts with a
higher temperature T = T0 and a random candidate solution S0. At each iteration a neighbor solution
S1 is created from a mutation from S0. If S1 is better than S0, makes the S1 the current solution,
decrease the temperature T by a factor α and proceed to the next iteration. If it is worse, uses the
aforementioned Metropolis criterion to decide its acceptance.

Note that the higher the temperature (present in the start of the run), more likely a worse solution
will be accepted. As the iterations advances, this probability fall as the temperature decreases. When
T approaches zero, the Simulated Annealing becomes similar to the Monte Carlo algorithm [15].

The cooling schedule used in Algorithm 1 was the geometric cooling rule, given by Tnew = αTold,
where 0 < α < 1 is a constant called cooling factor usually very close to 1. Additionally, when the
temperature drops below the reheating threshold Tr, the temperature is adjusted back to the initial
temperature T0.

In order to keep the best candidate solution found along the evolution process, elitism was included
in the Algorithm 1. It compares the fitness at each iteration and stores the best solution in a side
variable SB , which is returned at the end of the run.

In this work, the stopping condition of the algorithm was set as a maximum number of fitness
function evaluations, detailed in Section VII.

IV. SOLUTION REPRESENTATION: INTRODUCING THE GEOMETRIC CIRCUIT EVOLUTION

The Solution Representation (SR) encodes a candidate solution in a convenient format for the SA
to work efficiently. In this work, a SR called Geometric Circuit Evolution (GCE) was developed. The
main objects of an electronic circuit E in GCE are: B – the board and C = {c0, c1, . . . , cn} – an array
of components.

The board represents a matrix of fixed dimensions M ×N . Each position are circuit-equivalent as
electrical contacts – pads – insulated from each other, resembling somewhat a rectangular perforated
circuit board. A board position can have zero or more component terminals associated with it. The
Fig. 1 shows an example of a GCE board filled with some components.

0,0 0,1 0,2 0,3

1,0 1,1
1,2

1,3

2,0 2,1 2,2 2,3

Vcc

GND

OUTIN

Fig. 1. GCE board example. The gray squares are the board pads and the dotted areas point to the external nodes. Multiple
pads inside the same external node are short-circuited.

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 17

Algorithm 1 Simulated Annealing algorithm

Require: SR: class that represent a candidate solution (See Section IV). This class must implement the methods new(),
mutation() and get_fitness().

Require: R(): generates a uniform distributed random number 0 ≤ x ≤ 1
Input: T0: Initial temperature
Input: Tr: Reheating threshold
Input: α: Cooling factor. Must be a positive number less than 1, typically very close to 1.

1: function sann(T0, Tr , α)
2: T = T0

3: S0 ← SR.new() ▷ Instantiate a new candidate solution
4: SB ← S0 ▷ Store the best solution (elitism)
5: while stopping condition not met do
6: S1 ← S0 ▷ Create a working copy of S0

7: S1.mutation()
8: F0 ← S0.get_fitness()
9: F1 ← S1.get_fitness()

10: if F0 < F1 then ▷ Compare the fitness: Less is better
11: SB ← S0

12: else
13: SB ← S1

14: end if
15: ∆F ← F1 − F0 ▷ ∆F < 0 means that S1 is better than S0

16: A← false ▷ A: mutation acceptance
17: if ∆F = 0 then
18: A← false
19: else if ∆F < 0 then
20: A← true
21: else
22: p = e−∆F/T

23: if R() < p then
24: A← true
25: end if
26: end if
27: if A then
28: S0 ← S1

29: end if
30: T ← T · α
31: if T ≤ Tr then ▷ if below a threshold...
32: T = T0 ▷ ...apply reheating
33: end if
34: end while
35: return SB ▷ return the best solution found
36: end function

A board, as an object, stores:

• number of components in the circuit (n);
• an array of n component objects;
• Ω = {ωn0, . . . , ωnx, . . . , ωnp}, a set of sets, each containing a fixed node nx attributed to some

external pads. For example, the set ωn0 = {(2, 0), (2, 1), (2, 2), (2, 3)} indicates that those four
pads are associated with the external node 0, the GND in the spice simulation. These external
nodes are depicted as dotted areas in Fig. 1.

Each component c in GCE stores:

• Its type (for example: resistor, transistor, etc.);
• The position for each of its terminals on the board;
• Its parameters (for example: electrical resistance, model of a BJT transistor, channel width in

a FET transistor), stored as an array of variant data type (integer, float or string depending on
parameter type).

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 18

Each object in the GCE may have some chosen variables that can be perturbed from the outside.
Those variables are called here degrees of freedom (DOF), a correspondence with mechanical systems.
When a DOF is perturbed, it calls its own specific generator routine to (possibly) generate a new value
and then optionally call a listener routine to act on the value changed. For example, the parameter n

of the board (the number of components of the circuit) are a DOF that, when perturbed, generates a
uniform distributed random number in a range [min,max] and then creates or destroys a number of
components to hold exactly n components in memory.

TABLE I. LIST OF DEGREES OF FREEDOM IN GCE

Variable Object Type Description Possible values Generator/Listener

n Board Structure The number of
components in the
circuit

n ∈ N+, nmin ≤ n ≤ nmax .
Configured in each problem.

Uniform distributed random number
in the prescribed range. Listener rou-
tine: Creates or destroys a number of
components to hold exactly n compo-
nents in memory

ct Component Structure The type of the
component

ct ∈ {R,Q,Ma}, where R is a resis-
tor, Q is a bipolar junction transistor
(BJT) and Ma is a MOSFET with
fixed channel length of 10 µm

Choose randomly from the prescribed
set of discrete values, with speci-
fied individual weights. Listener rou-
tine: Regenerate all specific compo-
nent DOFs

crta,
crtb

Component
ct=R

Terminal The position of
each of the two
terminals of the
resistor

(x, y); 0 ≤ x ≤ M − 1; 0 ≤ y ≤
N − 1

In the first generation, a uniform dis-
tributed random integer within the al-
lowable range is returned. Later gen-
erations increment each axis indepen-
dently by -1, 0 or 1 (random choice)

crr Component
ct=R

Continuous The resistor elec-
trical resistance in
Ω

1 ≤ crr ≤ 60× 106 crr = a × 10b, where a are a
uniform random number from the in-
terval [1, 10] and b are a random
integer from the interval [0, 6] cho-
sen with weights [5/135, 20/135,
30/135, 40/135, 25/135, 10/135,
5/135]

cqte,
cqtb,
cqtc

Component
ct=Q

Terminal The position of the
emitter, base and
collector terminals
of the transistor

(x, y) : 0 ≤ x ≤ M − 1; 0 ≤ y ≤
N − 1

In the first generation, a uniform dis-
tributed random integer within the al-
lowable range is returned. Later gen-
erations increment each axis indepen-
dently by -1, 0 or 1 (random choice)

cqm Component
ct=Q

Discrete The spice model
for the transistor

cqm ∈ {M0,M1, . . . ,Mn−1},
where M are the spice model name
(string). Configured in each problem.
Example: cqm ∈ {2N3904, 2N3906}

Choose randomly from the prescribed
set of strings, with equal weight

cmatg ,
cmatd,
cmats

Component
ct=Ma

Terminal The position of
the gate, drain and
source terminals
of the MOSFET

(x, y); 0 ≤ x ≤ M − 1; 0 ≤ y ≤
N − 1

In the first generation, a uniform dis-
tributed random integer within the al-
lowable range is returned. Later gen-
erations increment each axis indepen-
dently by -1, 0 or 1 (random choice)

cmam Component
ct=Ma

Discrete The spice model
for the MOSFET

cmam ∈ {M0, M1, . . . ,
Mn−1}, where M are the spice
model name (string). Configured
in each problem. Example:
cmam ∈ {NMOS1, PMOS1}

Choose randomly from the prescribed
set of strings, with equal weight

cmaw Component
ct=Ma

Continuous Mosfet channel
width, in µm

cmaw ∈ N+, wmin ≤ n ≤ wmax .
Configured in each problem.

Uniform distributed random number
in the prescribed range

All DOFs have an associated type T , which can be one of the following:

• Terminal: represents where a terminal of a component is connected in the circuit. Its change may
have great variation in circuit response;

• Continuous: defines a continuous variable (e.g. resistance of a resistor). Its change may have
smooth impact in circuit response;

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 19

• Discrete: defines a discrete variable (e.g. the spice model of a transistor, chosen from a list of
options). Its change may imply in moderated variation in circuit response;

• Structure: control the structure of the circuit (e.g. the number of components). Its change may
cause great variation in circuit response, and can alter the number of DOFs.

Table I lists all DOFs used in GCE, along with its type, their pertaining object, its description, the
possible values it can take, generator and listener details.

The main interface between GCE and the SA is the mutation procedure, invoked by SA in GCE.
No crossover operator was used. The mutation acts in the GCE’s DOFs according to the Algorithm 2.

The procedure obtains all the DOFs and visit them one by one. In a visit the DOF may be perturbed
(i.e. mutated). Note that structure type DOFs are processed first in a special way, because when perturbed
it can create or destroy other DOFs. The mutation occurs with a probability pm = pmg · ps(T), where
pmg is a general mutation probability and ps(T) is a specific mutation probability for the DOF type
T . Both pmg and ps(T) are configurable parameters.

The discrimination of ps(T) for different T allows the mutation to be less frequent for the types
of DOFs that, when perturbed, can cause disruptive variations in the circuit response. In this way, the
search algorithm can explore the problem space more efficiently.

Algorithm 2 GCE mutation algorithm

Require: get_dofs(): get a current list of all DOFs
Require: R(): generates a uniform distributed random number 0 ≤ x ≤ 1
Input: pmg: general mutation probability, 0 ≤ pmg ≤ 1
Input: ps[T]: specific mutation probability for the DOF type T , 0 ≤ ps[T] ≤ 1, ∀ T

1: procedure mutation(pmg , ps)
2: D ← get_dofs()
3: for all d ∈ D do ▷ 1st iteration: only structure DOF
4: T ← d.type() ▷ get the DOF d type
5: if T = structure then
6: if R() ≤ pmg · ps[T] then
7: d.perturb()
8: D ← get_dofs() ▷ get all DOFs again, because they may have been

changed
9: end if

10: end if
11: end for
12: D ← get_dofs()
13: for all d ∈ D do ▷ 2nd iteration: other DOF types
14: T ← d.type()
15: if T ̸= structure then
16: if R() ≤ pmg · ps[T] then
17: d.perturb()
18: end if
19: end if
20: end for
21: end procedure

A candidate solution creation starts with a board object with its only DOF (n, the number of
components, structure type) set to zero. This DOF is perturbed, which causes n to assume a positive
random value nmin ≤ n ≤ nmax . Its listener routine acts on value changed, creating n component
objects (each one adding DOFs to the candidate solution). Each component in turn will have its DOFs
perturbed, starting by the structure type DOF ct (component type), which will define the component
type and create its specific DOFs. Then, all the remaining components DOFs are perturbed, resulting
in a random electronic circuit.

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 20

All the information needed to express it as a spice netlist are contained inside the object’s DOFs.
This operation are called translation, and are depicted in Algorithm 3. The candidate solution netlist
are then sent to the spice simulator in order to get its performance. Section VI presents the details of
this step.

Algorithm 3 GCE translation to spice netlist

Require: Each component type must implement the method get_netlist().
Require: START_NODE: integer that states the first node number to use in the internal nodes
Require: get_external_node(P): function that return the external node number (≥ 0) for the board position P or −1 if P

does not have an external node number assigned
Input: C: array of component objects

1: function translation(C)
2: S ← ‘’ ▷ Empty string initialization
3: for all c ∈ C do
4: s← c.get_netlist()
5: S ← S + s + ‘\n’ ▷ Concatenate and add new line
6: end for
7: return S ▷ The circuit’s spice netlist
8: end function
9: function Q.get_netlist() ▷ Example for BJT

10: return ‘Q ’ + pos2node(cqtc) + ‘ ’ + pos2node(cqtb) +
‘ ’ + pos2node(cqte) + ‘ ’ + cqm

11: end function
12: function pos2node(P) ▷ Get node number from board position P = (x, y)
13: static M ← map[] ▷ Create map data type that keep its contents

between function calls
14: static c← START_NODE ▷ Counter that retain memory between function

calls
15: e← get_external_node(P)
16: if e ≥ 0 then
17: n← e
18: else
19: if P ∈ M then
20: n←M [P]
21: else
22: n← c
23: M .add[P]
24: M [P]← n
25: c← c+ 1
26: end if
27: end if
28: return n ▷ return the node number
29: end function

V. PROBLEM FORMULATION

The circuit to be synthesized in SANN-GCE must be prescribed through a problem formulation,
which involves the following steps:

• Defining a test fixture (TF), that is a fixed circuit that supply power and tests the circuit that will
be created – called here evolved circuit (EC). The interface between TF and EC are the external
nodes;

• Specifying the manipulated variable(s) (MV). This is the TF circuit parameters that are changed
in order to test the EC;

• Prescribing the responding variable(s) (RV). This is usually voltage or current in TF node(s) that
indicates the EC response to the stimulus given by the MVs;

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 21

• Writing the spice script that drives the simulation, based on the previous items of this list. The script
must contain the type of analysis to run and the variables to be saved for the fitness calculation.
It may contain component models and simulation options;

• Writing the fitness calculation function. Its input is the spice simulation output, normally a
collection of arrays. This will be compared with a desired reference output, giving a real number
representing a fitness of the EC. The lower the fitness, the better the circuit. This is the primary
metric, the only that drives the meta-heuristic optimization;

• Writing secondary metric functions. This is optional, and is also calculated comparing the spice
simulation output with a desired reference, but using other formulas. This is just to be logged and
is not used in the meta-heuristic optimization.

VI. CIRCUIT SIMULATION

The candidate solutions are assessed in order to get some performance metrics of each one. The
main metric that drives the evolutionary process is fitness f , which the smaller the better. Thus, the
objective of the meta-heuristic is to optimize the circuit, minimizing f . The calculation of fitness is
obtained through the following steps:

1) Obtain the raw spice netlist S′ from the candidate solution E, using the Algorithm 3;
2) Pre-process S′. This comprises: sequentially numbering the components and removing components

that have all their terminals short-circuited. The result are saved in S;
3) Run spice simulator with netlist S as input. The result are θ, a data structure that contains vectors

for the voltages and/or currents requested for some or all circuit nodes over time, frequency or
temperature, depending on the type of spice analysis requested;

4) Process θ to obtain f and some other metrics, using the problem’s objective function P ().

The spice simulator used in this work was the Ngspice [19], an open source and multi platform
circuit simulator compatible with PSPICE and LTSPICE.

VII. TEST CIRCUITS

In order to test the SANN-GCE, it was selected seven problems (test circuits) as use cases for the
algorithm. These test circuits are the same as in [10] and [12], because they presented seven different
use cases with detailed results, and all tests were run 50 times, which allowed us to make a robust
comparison.

The test circuits was divided in two sets: 1) Non-computational circuits, which comprises a temper-
ature sensor circuit, a Gaussian function and a voltage reference; 2) Computational circuits: squaring,
square root, cubing, and cube root.

Table IV shows the SANN-GCE parameters used in each test circuit. These parameters were chosen
after preliminary runs with different values for each parameter. The best combination found experi-
mentally are used in each test circuit. The experimental nature of the parameter tuning is typical in
metaheuristics algorithms [20]. Fine-tuning each parameter for each test circuit was outside the scope
of this work.

Each candidate solution is accessed to get its primary and secondary metrics. Equation (2) calculates
the fitness value f , the primary metric that drives the optimization algorithm.

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 22

f =

Np−1∑
i=0

wiei (2)

where Np is the number of points in the result of the spice simulation, and ei is the absolute error
between the circuit responding (output) variable Xi and the desired (reference) value X̃i, calculated as
follows:

ei = |Xi − X̃i| (3)

The wi is a weight factor that increases the penalty to the fitness f when fitting points has an error
above a predefined threshold Xth:

wi =

wb ei ≤ Xth

10 · wb otherwise
(4)

The wb is a base weight that can be configured in each test circuit. Other metric calculated is the
Mean Average Error (MAE), a secondary one, obtained as the following:

MAE =
1

Np

Np−1∑
i=0

ei (5)

Other secondary metric was the hits %. This calculates the percentage of fitting points that has an
error below the threshold Xth:

hits% =
1

Np

Np−1∑
i=0

[ei ≤ Xth] (6)

Table II presents the values of some of the variables referenced in the above equations for each test
circuit and the following Sections describe each test circuit in detail.

TABLE II. PARAMETERS FOR CALCULATING THE METRICS FOR TEST CIRCUITS

Circuit Np Xth wb

Temperature sensor 21 0.1 1
Gaussian function 101 5× 10−9 106

Voltage reference 105 0.02 1
Squaring 21 0.05× 0.252 1
Square root 21 0.05×

√
0.5 1

Cubing 21 0.05× 0.253 1
Cube root 21 0.05× 3

√
0.25 1

A. Temperature sensor

The temperature sensor problem aims to automatically design an analog electronic circuit that
generates an output voltage proportional to the circuit temperature. See Fig. 2 for the test fixture
used in this problem. The spice simulator changes the circuit temperature following the sequence
T = [0, 5, 10, . . . , 100], resulting in Np = 21 simulation points. The circuit output is the voltage in

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 23

node #3, denoted as Xi, where i is the corresponding point in the input vector T . The desired output
is given by X̃i = Ti/10.

1 k�

15V

15V

(1)

(2)

(3)

(0)

Evolved

Circuit

[Vout]

⟨Temperature⟩

Fig. 2. Test fixture for the temperature sensor circuit. External node numbers are between parenthesis. Manipulated variables
are between angle brackets and responding variables are between square brackets.

B. Gaussian function

The Gaussian function circuit tries to make its output current approximate a Gaussian curve as a
function of the input voltage. The Fig. 3 presents the test fixture used in this circuit. The input source
change its voltage linearly as V in = [2, 2.01, 2.02, . . . , 3], resulting in Np = 101 simulation points.
The output Xi is the current flowing out to node #3. The desired output for the i-th input is given by
the Equation (7), where a = 80 × 10−9 is the peak value of the function, b = 2.5 is the distribution
average value and c = 0.1 is the standard deviation.

X̃i = a exp

(
− (V ini − b)2

2c2

)
(7)

(2) (3)

(0)

Evolved

Circuit

[Iout]

1 �

⟨Vin⟩

2.5 V

5 V

(1)

Vsrc

Fig. 3. Test fixture for the Gaussian function circuit. External node numbers are between parenthesis. Manipulated variables
are between angle brackets and responding variables are between square brackets.

C. Voltage reference

The voltage reference circuit tries to keep its output voltage constant when subjected to variations in
supply voltage and circuit temperature. Its test fixture is depicted in Fig. 4. The temperature changes
according to T = [0, 25, 50, 75, 100] and for each temperature, the supply voltage changes following
the sequence V in = [4, 4.1, 4.2, . . . , 6], thus totaling 5× 21 = 105 simulation points. The output Xi is

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 24

the voltage of node #2, referenced to ground. The desired output X̃i is 2 volts for all the 105 simulation
points, whatever the input.

10 k�

(1) (2)

(0)

Evolved

Circuit

[Vout]

1 k�

Vsrc

⟨Temperature⟩⟨Vin⟩

Fig. 4. Test fixture for the voltage reference circuit. External node numbers are between parenthesis. Manipulated variables
are between angle brackets and responding variables are between square brackets.

D. Computational circuits

The four computational circuits tries to approximate a particular mathematical curve. Fig. 5 shows
the test fixture used in this class of problem. The input source V in changes its voltage in a linear ramp
sampled in Np = 21 points according to the limits given in Table III. The output Xi is the voltage of
node #4. The desired output voltage X̃i is also given in the aforementioned table.

1 k�

1 k�

Vsrc

15V

15V

(1)

(2)

(3) (4)

(0)

Evolved

Circuit

⟨Vin⟩ [Vout]

Fig. 5. Test fixture for the four computational circuits (squaring, square root, cubing, and cube root). External node numbers
are between parenthesis. Manipulated variables are between angle brackets and responding variables are between square

brackets.

TABLE III. INPUT VOLTAGE RANGE AND THE DESIRED OUTPUT VOLTAGE FOR EACH OF THE COMPUTATIONAL CIRCUITS

Circuit V in range X̃i

Squaring [−0.25, 0.25] V in2

Square root [0, 0.5]
√
V in

Cubing [−0.25, 0.25] V in3

Cube root [−0.25, 0.25] 3
√
V in

VIII. RESULTS AND DISCUSSION

Each test circuit described in Section VII was executed 50 times in SANN-GCE algorithm, using
parameters given in Table IV. The runs were set to stop when they reach 3 × 106 fitness function
evaluations, a value equal to the number of times a spice simulation is called.

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 25

The choice of this stopping criterion was made to make the comparison between different algorithms
fairer, as the simulation is the most time-consuming step in each algorithm cycle, and the number of
cycles (or generations, in population-based meta-heuristics) may not correctly indicate the amount of
work performed by the spice simulator.

The results of the ACID-GE [10] and ACID-MGE [12] algorithms were used to compare with those
in this work, with a focus in the ACID-MGE that presents a better performance. Data from the results
of these two algorithms were obtained from tables 4, 5 and 7 of [12].

Figs. 7 and 8 shows the performance curves for the best circuit found in each problem using
the SANN-GCE. Each plot contains a reference and the actual circuit response. Table V shows the
comparison for results of SANN-GCE, ACID-MGE and ACID-GE, in various metrics. The meaning
of the columns in the table are:

• SR%: Success Ratio: Relative number of successful runs. A successful run is one that achieves
100 % hits;

• BF: Best Fitness, calculated for the best solution found in each run, according Equation (2);
• MAE: Mean Average Error, calculated according Equation (5);
• Hits %: Percentage of fitting points with an error below a threshold, calculated according Equa-

tion (6);
• #Gen success: Number of generations where success (100 % hits) was achieved. In SANN-GCE

this is not a directly counted value, but an equivalent value (because it does not use generations like
those based on genetic algorithms). This equivalent number of generations is the count of fitness
function evaluations divided by the population count in the compared algorithm. This divisor is
1000 in the referred ACID-MGE and ACID-GE;

• NCBC: Number of Components for the Best Circuit. It counts only the components in the evolved
circuit, not those from the test fixture.

• Runtime: Normalized time to complete 50 runs. ACID-MGE used a cluster of 8 computers,
ACID-GE used a cluster of 5 computers and SANN-GCE used one computer. To allow for a
reasonable comparison of run-times between these different algorithms, we performed the following
normalization: in ACID-GE and ACID-MGE the time shown are an estimate to execute 50 runs of
3000 generations each in just one computer. In SANN-GCE, the time shown was the actual time
to execute 50 runs, each run stopped after 3 million evaluations of the fitness function (equivalent
to 3000 generations of a population with 1000 candidate solutions, as used by ACID-MGE and
ACID-GE).

The data for MAE in the non-computing circuits are not available for the ACID-GE and ACID-MGE,
as the source article does not report these values. Also, MAEmin is not available for ACID-GE in all
test circuits.

All metrics shown in Table V are less is better, except those marked with an asterisk in the header
(SR% and Hitsmean), where greater values mean better results. With that, in order to ease the comparison
of a metric M between SANN-GCE and another algorithm α, we define RM,α – the SANN-GCE
performance ratio – as the following:

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 26

RM,α =

MSANN-GCE

Mα
if bigger M means better, or

Mα

MSANN-GCE
if smaller M means better

(8)

Therefore, R < 1 and R > 1 means, respectively, a worse and a better result for SANN-GCE,
regardless of whether a particular metric follows the logic of smaller is better or greater is better.

The SANN-GCE performance ratio regarding ACID-MGE was calculated individually for each metric
in all test circuits. Then these data were grouped by metric and shown in Fig. 6 as a boxplot, to facilitate
comparison between SANN-GCE and ACID-MGE.

1 10 100
R (SANN-GCE performance ratio)

SR%

MAEmean

MAESD

MAEmin

BFmean

BFSD

BFmin

Hitsmean

HitsSD

Genmean

GenSD

NCBC

Runtime

1.50

0.73

0.62

0.81

6.72

15.88

0.91

1.06

3.77

1.06

0.86

1.20

14.17

Fig. 6. Performance ratio between SANN-GCE and ACID-MGE in each metric. The statistics for each metric was
calculated over all test circuits. Values > 1 denotes SANN-GCE better. The numbers above each box are the median.

It can be seen in Table V that SANN-GCE have a consistent performance advantage in various
metrics, such as in SR%, BF (mean and standard deviation), hits (mean and standard deviation) which
are better in 100% of test circuits when compared to both ACID-MGE and ACID-GE.

Fig. 6 presents that, compared to ACID-MGE, SANN-GCE has a median performance ratio for SR%
equal to 1.5, calculated over all the test circuits. For BFmean it was 6.72. In BFSD the median was
15.88. Hitsmean and Genmean was both 1.06, HitsSD was 3.77. NCBC was 1.2 and Runtime was 14.17.

Continuing with the same analysis method described above, SANN-GCE was worse than ACID-
MGE in the MAE (mean, standard deviation, min), BFmin and GenSD metrics, with a median of R

equal to 0.73, 0.62, 0.81, 0.91, 0.86, respectively.
These results shown that the SANN-GCE have a notable performance, specially lower variability

between runs (BFSD) and also good mean value (BFmean) for the primary metric.
The runtime also stands out, with a median 14.17 times faster than the ACID-MGE. This result must

be taken with care due to the inherent differences of hardware and software, but we can say that the

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 27

simplicity of Simulated Annealing played an important role in this regard. As stated before, it uses
only the mutation operation to modify a candidate solution, unlike others algorithms that also uses the
crossover operator, such as ACID-GE/MGE which are based on genetic algorithms.

We attribute the two favorable results in the primary metric to the slow and incremental nature of
the SANN-GCE algorithm for using mutation only, compared to the more disruptive crossover operator
used in ACID-MGE. This may also explain the slightly less favorable BFmin obtained in our algorithm:
the higher level of search space exploration done in ACID-MGE by its crossover operator might be
able to more easily achieve a better fitness during optimization.

IX. CONCLUSION

In this paper we presented GCE, a new solution representation for simulation based analog electronic
circuits, working together with simulated annealing, a classic meta-heuristic for global optimization.
The GCE internally represents a candidate solution as a collection of objects, with components placed
geometrically on a board similar to a physical perforated board.

It was demonstrated that our algorithm can be used to successfully design analog electronic circuits
automatically using a mutation-only approach, using only one candidate solution in each generation.

Using only the mutation operator made the algorithm simpler and resulted in low resource usage, as
it operates on one candidate solution at a time. This may explain the fact that the median runtime was
14.17 times faster on SANN-GCE when compared to ACID-MGE.

SANN-GCE was tested with seven test circuits, and for each one, 13 metrics was collected and
discussed. The results showed good performance in various metrics, specially consistent performance
between runs, showing lower standard deviation than the others algorithms compared (e.g. in median,
SANN-GCE have the standard deviation of BF 15.88× lower than ACID-MGE. For Hits it was 3.77×
lower). In real use this means that we could get a circuit with reasonable performance with fewer runs.
Also, for metrics SR%, BF (mean and standard deviation) and hits (mean and standard deviation),
SANN-GCE was better in all circuits tested.

The algorithm parameters used in this work were chosen experimentally after few trials and was
not investigated in details. Their influence on algorithm performance needs further investigation and is
planned as a future work.

APPENDIX 1 - PARAMETERS AND RESULTS

In this appendix we show Fig. 7 and Fig.8 with the performance curves of the best circuit found
in each problem. We also present Table IV and Table V, one showing the parameters used in the test
circuits and the other containing the results.

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 28

0 20 40 60 80 100
Temperature (°C)

0

2

4

6

8

10

Ou
tp
ut
 v
ol
ta
ge

 (V
)

reference
result

(a)

2.0 2.2 2.4 2.6 2.8 3.0
Input voltage (V)

0

1

2

3

4

5

6

7

8

Ou
tp
ut
 c
ur
re
nt
 (A

)

1e−8
reference
result

(b)

4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00
Input voltage (V)

1.985

1.990

1.995

2.000

2.005

2.010

Ou
tp
ut
 v
ol
ta
ge

 (V
)

reference
0°C
25°C
50°C
75°C
100°C

(c)

Fig. 7. Performance of the best non-computing circuits obtained with the SANN-GCE algorithm. (a) Temperature sensor, (b)
Gaussian function, (c) Voltage reference.

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 29

−0.2 −0.1 0.0 0.1 0.2
Input voltage (V)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ou
tp
ut
 v
ol
ta
ge

 (V
)

reference
result

(a)

0.0 0.1 0.2 0.3 0.4 0.5
Input voltage (V)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ou
tp
ut
 v
ol
ta
ge

 (V
)

reference
result

(b)

−0.2 −0.1 0.0 0.1 0.2
Input voltage (V)

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

Ou
tp
ut
 v
ol
ta
ge

 (V
)

reference
result

(c)

−0.2 −0.1 0.0 0.1 0.2
Input voltage (V)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Ou
tp
ut
 v
ol
ta
ge

 (V
)

reference
result

(d)

Fig. 8. Performance of the best computational circuits obtained with the SANN-GCE algorithm. (a) Squaring, (b) Square
root, (c) Cubing, (d) Cube root.

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 30

TABLE IV. PARAMETERS USED IN THE TEST CIRCUITS

Parameter Test circuit

Temp.
sensor

Gaussian
function

Voltage
reference

Squaring Square
root

Cubing Cube root

Stopping condition 3× 106 fitness function evaluations (1:1 relation with number of spice simulations)

T0 100

Tr 1× 10−9

α 0.9999

pmg 0.015

ps[T] Structure 7→ 0.25; Others 7→ 1.0

Test fixture See Figs. 2 to 5

nmin , nmax 7, 42

M ×N 4× 4 4× 4 4× 4 4× 4 4× 4 5× 5 6× 6

External nodes map (0, 1) 7→ 0
(0, 2) 7→ 1
(2, 3) 7→ 3
(3, 1) 7→ 2
(3, 2) 7→ 0

(0, 1) 7→ 1
(0, 2) 7→ 1
(1, 0) 7→ 2
(2, 3) 7→ 3
(3, 1) 7→ 0
(3, 2) 7→ 0

(1, 0) 7→ 1
(1, 3) 7→ 2
(3, 1) 7→ 0
(3, 2) 7→ 0

(0, 1) 7→ 0
(0, 2) 7→ 1
(1, 0) 7→ 3
(2, 3) 7→ 4
(3, 1) 7→ 2
(3, 2) 7→ 0

(0, 1) 7→ 0
(0, 2) 7→ 1
(1, 0) 7→ 3
(2, 3) 7→ 4
(3, 1) 7→ 2
(3, 2) 7→ 0

(0, 1) 7→ 0
(0, 2) 7→ 1
(2, 0) 7→ 3
(2, 4) 7→ 4
(4, 2) 7→ 2
(4, 3) 7→ 0

(0, 2) 7→ 0
(0, 3) 7→ 1
(2, 0) 7→ 3
(3, 5) 7→ 4
(5, 2) 7→ 2
(5, 3) 7→ 0

Component types and
weights

R 7→ 70%
Q 7→ 30%

R 7→ 50%
Ma 7→ 50%

R 7→ 70%
Q 7→ 30%

R 7→ 70%
Q 7→ 30%

R 7→ 70%
Q 7→ 30%

R 7→ 70%
Q 7→ 30%

R 7→ 70%
Q 7→ 30%

cqm {2N3904,
2N3906}

N.A. {2N3904,
2N3906}

{2N3904,
2N3906}

{2N3904,
2N3906}

{2N3904,
2N3906}

{2N3904,
2N3906}

cmam N.A. {NMOS,
PMOS}

N.A. N.A. N.A. N.A. N.A.

wmin , wmax N.A. 10, 199 N.A. N.A. N.A. N.A. N.A.

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 31

TABLE V. RESULTS OF THE SANN-GCE ALGORITHM COMPARED TO ACID-MGE AND ACID-GE. LESS IS BETTER FOR
ALL METRICS, EXCEPT THOSE MARKED WITH AN ASTERISK (*). THE BEST RESULTS FOR A METRIC IN EACH TEST

CIRCUIT ARE IN BOLD.

PART 1:

Test Circuit Algorithm SR (%)∗ MAE (mV) NCBC Runtime
Mean ± SD min

Temperature Sensor
ACID-MGE 70.0 NA NA NA 42 433h
ACID-GE 42.0 NA NA NA 28 312h

SANN-GCE 100.0 14.4 5.4 0.6 41 17h59m

Gaussian function
ACID-MGE 58.0 NA NA NA 37 433h
ACID-GE 24.0 NA NA NA 41 312h

SANN-GCE 88.0 9.53E-07 5.91E-07 3.00E-07 29 18h54m

Voltage reference
ACID-MGE 8.0 NA NA NA 42 433h
ACID-GE 8.0 NA NA NA 32 312h

SANN-GCE 12.0 11.0 3.7 2.8 35 87h47m

Squaring
ACID-MGE 84.0 0.53 0.24 0.08 42 433h
ACID-GE 52.0 0.93 0.41 NA 28 312h

SANN-GCE 98.0 0.61 0.31 0.12 35 25h05m

Square root
ACID-MGE 66.0 4.01 2.47 0.23 44 433h
ACID-GE 44.0 5.55 4.32 NA 35 312h

SANN-GCE 100.0 3.61 2.73 0.53 38 30h33m

Cubing
ACID-MGE 84.0 0.10 0.04 0.05 47 433h
ACID-GE 76.0 0.18 0.07 NA 40 312h

SANN-GCE 98.0 0.19 0.10 0.05 37 46h52m

Cube root
ACID-MGE 22.0 7.13 3.70 2.04 57 433h
ACID-GE 2.0 10.81 0.00 NA 41 312h

SANN-GCE 66.0 11.88 7.92 0.96 41 87h45m

PART 2:

Test Circuit Algorithm BF Hits (%) #Gen success

Mean ± SD min Mean∗ ± SD Mean ± SD

Temperature Sensor
ACID-MGE 2.13 3.34 0.033 97.1 5.3 711.2 726.2
ACID-GE 5.29 6.53 0.169 93.0 7.9 1278.9 884.6

SANN-GCE 0.30 0.11 0.012 100.0 0.0 492.0 407.8

Gaussian function
ACID-MGE 1.00 1.75 0.028 94.1 9.8 1023.2 719.6
ACID-GE 6.70 6.78 0.040 77.3 17.6 1367.4 688.5

SANN-GCE 0.15 0.26 0.030 99.3 2.6 961.4 832.1

Voltage reference
ACID-MGE 19.35 14.04 0.053 64.2 23.3 1205.0 863.3
ACID-GE 26.57 16.23 0.112 53.8 25.0 1581.0 917.0

SANN-GCE 4.63 3.18 0.298 90.4 7.0 1583.3 1018.9

Squaring
ACID-MGE 0.06 0.14 0.002 97.7 6.5 671.5 574.9
ACID-GE 0.73 1.17 0.009 81.0 28.5 1176.9 828.3

SANN-GCE 0.015 0.019 0.003 99.8 1.3 706.1 634.5

Square root
ACID-MGE 2.71 5.78 0.003 89.0 24.2 1154.9 655.0
ACID-GE 6.25 7.61 0.028 74.0 32.3 1329.3 797.3

SANN-GCE 0.08 0.06 0.011 100.0 0.0 816.0 671.8

Cubing
ACID-MGE 0.03 0.08 0.001 95.7 13.7 539.8 361.7
ACID-GE 0.05 0.12 0.002 92.2 19.3 1008.0 703.6

SANN-GCE 0.004 0.005 0.001 99.8 1.3 1200.0 787.7

Cube root
ACID-MGE 13.87 25.02 0.036 70.2 29.4 1561.1 587.8
ACID-GE 76.95 23.74 0.227 11.5 20.2 1885.0 0.0

SANN-GCE 0.79 1.17 0.020 95.5 7.8 1297.0 918.3

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 22, No. 1, March 2023
DOI: http://dx.doi.org/10.1590/2179-10742023v22i1265775 32

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
– Brasil (CAPES) – Finance Code 001.

REFERENCES

[1] S. E. Sorkhabi and L. Zhang, “Automated topology synthesis of analog and RF integrated circuits: A survey,” Integration
- the VLSI Journal, vol. 56, pp. 128–138, JAN 2017.

[2] R. Harjani, R. Rutenbar, and L. Carley, “OASYS: a framework for analog circuit synthesis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 8, no. 12, pp. 1247–1266, 1989.

[3] H. Koh, C. Sequin, and P. Gray, “OPASYN: a compiler for CMOS operational amplifiers,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 9, no. 2, pp. 113–125, 1990.

[4] F. Jiao and A. Doboli, “Three learning methods for reasoning-based synthesis of novel analog circuits,” in 2016 IEEE
International Symposium on Circuits and Systems (ISCAS), p. 2411–2414, 2016.

[5] M. Meissner and L. Hedrich, “FEATS: Framework for explorative analog topology synthesis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 2, pp. 213 – 226, 2015.

[6] J. Koza, F. Bennett III, D. Andre, and M. Keane, “Synthesis of topology and sizing of analog electrical circuits by means
of genetic programming,” Computer Methods in Applied Mechanics and Engineering, vol. 186, no. 2, pp. 459–482, 2000.

[7] J. R. Koza, D. Andre, M. A. Keane, and F. H. Bennett III, Genetic programming III: Darwinian invention and problem
solving. San Francisco: Morgan Kaufmann, 1999, vol. 3.

[8] C. Mattiussi and D. Floreano, “Analog genetic encoding for the evolution of circuits and networks,” IEEE Transactions
on Evolutionary Computation, vol. 11, no. 5, pp. 596–607, 2007.

[9] T. McConaghy, P. Palmers, M. Steyaert, and G. G. E. Gielen, “Trustworthy genetic programming-based synthesis
of analog circuit topologies using hierarchical domain-specific building blocks,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 4, pp. 557–570, 2011.

[10] F. Castejón and E. J. Carmona, “Automatic design of analog electronic circuits using grammatical evolution,” Applied
Soft Computing, vol. 62, pp. 1003–1018, jan 2018.

[11] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Transactions on Evolutionary Computation, vol. 5, no. 4, pp.
349–358, Aug 2001.

[12] F. Castejón and E. J. Carmona, “Introducing modularity and homology in grammatical evolution to address the analog
electronic circuit design problem,” IEEE Access, vol. 8, pp. 137 275–137 292, aug 2020.

[13] Z. Rojec, A. Burmen, and I. Fajfar, “Analog circuit topology synthesis by means of evolutionary computation,”
Engineering Applications of Artificial Intelligence, vol. 80, pp. 48–65, APR 2019.

[14] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp.
671–680, 1983. [Online]. Available: http://www.jstor.org/stable/1690046

[15] D. Delahaye, S. Chaimatanan, and M. Mongeau, Simulated Annealing: From Basics to Applications. Cham: Springer
International Publishing, 2019, pp. 1–35.

[16] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated annealing. Dordrecht: Springer Netherlands, 1987, pp. 7–15.
[17] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast

computing machines,” The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.
[18] D. T. Pham and D. Karaboga, Intelligent optimisation techniques : genetic algorithms, tabu search, simulated annealing

and neural networks. Springer London, 2000.
[19] Ngspice. (2021) Ngspice, the open source spice circuit simulator. [Online]. Available: http://ngspice.sourceforge.net/
[20] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. Springer Berlin Heidelberg, 2003.

Brazilian Microwave and Optoelectronics Society-SBMO received 7 July 2022; for review 11 July 2022; accepted 5 Jan 2023

Brazilian Society of Electromagnetism-SBMag © 2023 SBMO/SBMag ISSN 2179-1074

http://www.jstor.org/stable/1690046
http://ngspice.sourceforge.net/

	Introduction
	Analog Electronic Circuit Synthesis Framework
	Search Algorithm: the Simulated Annealing
	Solution Representation: introducing the Geometric Circuit Evolution
	Problem formulation
	Circuit simulation
	Test circuits
	Temperature sensor
	Gaussian function
	Voltage reference
	Computational circuits

	Results and Discussion
	Conclusion
	References

