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ABSTRACT. In this paper we proved the exponential decay of the energy of a numerical scheme in finite

difference applied to a coupled system of diffusion equations. At the continuous level, it is well-known that

the energy is decreasing and stable in the exponential sense. We present in detail the numerical analysis of

exponential decay to numerical energy since holds the stability criterion.
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1 INTRODUCTION

In this work we consider the numerical solutions in finite difference applied to the following

coupled system of diffusion equations:

φt − D1φxx + α(φ − ψ) = 0, �× (0, T ), (1.1)

ψt − D2ψxx + α(ψ − φ) = 0, �× (0, T ), (1.2)

φ(0, t) = φ(L , t) = ψ(0, t) = ψ(L , t) = 0, t > 0, (1.3)

φ(x, 0) = φ0(x), ψ(x, 0) = ψ0(x), ∀x ∈ �, (1.4)

where � = (0, L), D1 > 0 and D2 > 0 are the diffusion coefficients and α > 0 is the cou-

pling parameter. The initial-boundary value problem (1.1)-(1.4) appears in dispersion processes
between species. To more detail see Murray [5].

An important non-linear functional concerning to the system system (1.1)-(1.4) is its energy. It
is given by

E(t) := 1

2

∫ L

0

[
|φ(x, t)|2 + |ψ(x, t)|2

]
dx, ∀t ≥ 0. (1.5)
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Naturally, in diffusion problems, one has

E(t) ≤ E(0), ∀t ≥ 0. (1.6)

Moreover, the energy (1.5) suggests that the system (1.1)-(1.4) is well-posed in Hilbert space
H = L2(0, L)× L2(0, L). That is to say, for initial data (φ0, ψ0) ∈H there exists a unique so-
lution (φ, ψ) ∈ C([0, T ]; L2(0, L))∩ C1([0, T ]; L2(0, L)). Then, the existence and uniqueness

of solutions can be assured by using the semigroups theory (see [4]).

Another important property concerning to the energy E(t) is its decay to zero as t → ∞ (see
Murray [5]). In that direction, we focus on numerical analysis of the energy properties of a
numerical scheme in finite difference applied to the system (1.1)-(1.4).

The rest of the paper is organized as follows: In section 2, we proved the energy dissipation

property. In section 3, we derived the numerical scheme in finite difference and its numerical
energy. In particular, we showed that this numerical energy preserves the exponential decay such
as continuous case. In section 4, we present some numerical results. In section 5, we finished

with the conclusions.

2 ENERGY PROPERTIES

In this section, we showed that E(t) obeys the energy dissipation law. Indeed, we have the

following Theorem:

Theorem 2.1 (Energy dissipation). The energy E(t) in (1.5) satisfies the energy dissipation law.
More precisely, one has

E(t) ≤ E(0), ∀t ≥ 0.

Proof. Multiplying (1.1) by φ and integrating on (0, L), we get∫ L

0
φtφdx − D1

∫ L

0
φxxφdx + α

∫ L

0
(φ −ψ)φdx = 0. (2.1)

Taking into account the homogeneous Dirichlet boundary conditions (1.3), it follows that

1

2

d

dt

∫ L

0
|φ|2dx + D1

∫ L

0
|φx |2dx + α

∫ L

0
(φ − ψ)φdx = 0. (2.2)

Analogously, we obtain

1

2

d

dt

∫ L

0
|ψ |2dx + D2

∫ L

0
|ψx |2dx + α

∫ L

0
(ψ − φ)ψdx = 0. (2.3)

Adding up (2.2) and (2.3), we obtain

1

2

d

dt

∫ L

0

[
|φ|2 + |ψ |2

]
dx = −

∫ L

0

[
D1|φx |2 + D2|ψx |2 + α|φ − ψ |2

]
dx, (2.4)

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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from where we have
d

dt
E(t) ≤ 0, ∀t ≥ 0,

since α > 0, Di > 0, i = 1, 2. Therefore,

E(t) ≤ E(0), ∀t ≥ 0. �

Theorem (2.1) shows that E(t) is decreasing along time t . Moreover, to questions on exponential
decay, we refer the readers to Murray [5]. Next, we will apply the finite difference method to the

system (1.1)-(1.4).

3 NUMERICAL FORMULATION IN FINITE DIFFERENCE

In this section, we use the standard finite difference method to analyze the qualitative properties
of system (1.1)-(1.4).

Given J, N ∈ N we set h = �x = L
J+1 and �t = T

N+1 and we introduce the nets

0 = x0 < x1 < · · · < x j = j�x < · · · < xJ < xJ+1 = L , (3.1)

0 = t0 < t1 < · · · < tn = n�t < · · · < tN < tN+1 = T, (3.2)

where x j = j�x and tn = n�t for j = 0, 1, 2, . . . , J + 1 and n = 0, 1, 2, . . . , N + 1.

We assume the standard numerical operators applied to diffusion problems. We use the following

operators in finite difference to the function u:

∂x∂x un
j := un

j+1 − un
j + un

j−1

�x2
, ∂t u

n
j := un+1

j − un
j

�t
. (3.3)

Our problem consists in to find φn
j e ψn

j satisfying

∂tφ
n
j − D1∂x∂xφ

n
j + α(φn

j − ψn
j ) = 0, ∀ j, 1 ≤ j ≤ J (3.4)

∂tψ
n
j − D2∂x∂xψ

n
j + α(ψn

j − φn
j ) = 0, ∀ j, 1 ≤ j ≤ J (3.5)

φn
0 = φn

J+1 = 0, ψn
0 = ψn

J+1 = 0 = 0, ∀n, 0 ≤ n ≤ N , (3.6)

φ0
j = φ(x j , 0), ψ0

j = ψ(x j , 0) ∀ j, 0 ≤ j ≤ J. (3.7)

The choice of forward Euler relies in the questions of numerical stability. Indeed, it is well-
known that the numerical solutions obtained for classical diffusion equations (single diffusion
equation) converge if r := �t/�x2 ≤ 1/2.

It is easy to see that system (3.4)-(3.7) is consistent and the truncation error isO(�t, �x2). Being

consistent and stable, it follows by Theorem of Lax [2, 3, 6] the respective convergence. Next,
we use energy arguments to identify the stability criterion to the system (3.4)-(3.7).

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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3.1 Numerical Energy

In this section, we obtain the numerical energy concerning to the numerical equations (3.4)-(3.7).
We will show that it is given by

En := �x
J∑

j=0

[
|φn

j |2 + |ψn
j |2

]
, ∀n = 0, 1, . . . , N , N + 1. (3.8)

Note that En is composed by norms in the space l2. Moreover, it is the numerical counterpart of

energy in (1.5). In Theorem we used the energy method to show that the solutions of (1.1)-(1.4)
are limited by initial data. An analysis similar can be made to numerical solutions of (3.4)-(3.7).

For the sake of simplicity, we assume the particular case D1 = D2 = 1. Making this, we obtain
two systems from (3.4)-(3.7). The first of them is given by

∂tω
n
j − ∂x∂xω

n
j = 0, ∀ j, 1 ≤ j ≤ J (3.9)

ωn
0 = ωn

J+1 = 0, ∀n, 0 ≤ n ≤ N (3.10)

ω0
j = ω(x j , 0), ∀ j, 0 ≤ j ≤ J, (3.11)

and the other one is

∂tθ
n
j − ∂x∂xθ

n
j + 2αθn

j = 0, ∀ j, 1 ≤ j ≤ J (3.12)

θn
0 = θn

J+1 = 0, ∀n, 0 ≤ n ≤ N (3.13)

θ0
j = θ(x j , 0), ∀ j, 0 ≤ j ≤ J, (3.14)

where ωn
j = φn

j + ψn
j and θn

j = φn
j −ψn

j . The energies are given by

En := �x
J∑

j=0

|ωn
j |2 and Ẽn := �x

J∑
j=0

|θn
j |2. (3.15)

respectively. Then, we have

En := En + Ẽn

2
, ∀n = 0, 1, . . . , N , N + 1. (3.16)

Our first result concerning to the numerical energy is given by following Theorem:

Theorem 3.1. For 1 − 2r − 2α�t ≥ 0 where r := �t/�x2 ≤ 1/2, holds

En ≤ E0, ∀ n = 1, 2, . . . , N , N + 1.

Proof. First, we note that

Ẽn+1 − Ẽn = �x
J∑

j=0

(|θn+1
j |2 − |θn

j |2) = �x
J∑

j=0

(θn+1
j + θn

j )(θ
n+1
j − θn

j ), (3.17)

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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and for r = �t/�x2 we obtain from (3.12)

θn+1
j − θn

j = r(θn
j+1 − 2θn

j + θn
j−1)− 2α�tθn

j . (3.18)

Substituting (3.18) into (3.17) we obtain

Ẽn+1 − Ẽn = �x
J∑

j=0

(θn+1
j + θn

j )

[
r(θn

j+1 − 2θn
j + θn

j−1)− 2α�tθn
j

]

= r�x
J∑

j=0

(θn+1
j + θn

j )(θ
n
j+1 − 2θn

j + θn
j−1)

− 2α�t�x
J∑

j=0

θn
j (θ

n+1
j + θn

j )

= r�x
J∑

j=0

θn
j (θ

n
j+1 − 2θn

j + θn
j−1)+ r�x

J∑
j=0

θn+1
j (θn

j+1 + θn
j−1)

− 2(r + α�t)�x
J∑

j=0

θn+1
j θn

j − 2α�t�x
J∑

j=0

|θn
j |2. (3.19)

Now, having in mind the homogeneous Dirichlet boundary conditions (3.13), we have the fol-
lowing identities:

J∑
j=0

θn
j (θ

n
j+1 − 2θn

j + θn
j−1) = −

J∑
j=0

|θn
j+1 − θn

j |2; (3.20)

J∑
j=0

θn+1
j θn

j =
J∑

j=0

[
θn

j + r(θn
j+1 − 2θn

j + θn
j−1)− 2α�tθn

j

]
θn

j

=
J∑

j=0

[
|θn

j |2 + rθn
j (θ

n
j+1 − 2θn

j + θn
j−1)− 2α�t |θn

j |2
]

= (1 − 2α�t)
J∑

j=0

|θn
j |2 − r

J∑
j=0

|θn
j+1 − θn

j |2.

(3.21)

Moreover, taking into account the inequality ab ≤ (a2 + b2)/2, we have

J∑
j=0

θn+1
j (θn

j+1 + θn
j−1) ≤ 1

2

J∑
j=0

(|θn+1
j |2 + |θn

j+1 + θn
j−1|2)

≤
J∑

j=0

(|θn+1
j |2 + |θn

j |2).
(3.22)

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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Substituting (3.20)-(3.22) into (3.19), we obtain

Ẽn+1 − Ẽn ≤ − r�x
J∑

j=0

|θn
j+1 − θn

j |2 + r�x
J∑

j=0

(|θn+1
j |2 + |θn

j |2)

− 2(r + α�t)(1 − 2α�t)�x
J∑

j=0

|θn
j |2 − 2α�t�x

J∑
j=0

|θn
j |2

+ r(2r + 2α�t)�x
J∑

j=0

|θn
j+1 − θn

j |2,

and then

(1 − r)(Ẽn+1 − Ẽn) ≤ − 4α�t (1 − r − α�t)Ẽn

− r(1 − 2r − 2α�t)�x
J∑

j=0

|θn
j+1 − θn

j |2.

Taking 1 − 2r − 2α�t ≥ 0 we choose γ := 1 − r − α�t ≥ 0 and then

(1 − r)(Ẽn+1 − Ẽn) ≤ −4αγ�t Ẽn ⇒ Ẽn+1 ≤
(

1 − 4αγ�t

1 − r

)
Ẽn,

since r < 1. Therefore

Ẽn ≤
(

1 − 4αγ�t

1 − r

)n

Ẽ0, n = 0, 1, 2, . . . , N , N + 1, (3.23)

assuring that Ẽn is decreasing for γ = 1 − r − α�t ≥ 0. Finally, we can written

2En = Ẽn + En ≤
(

1 − 4αγ�t

1 − r

)n

Ẽ0 + E0 ≤ Ẽ0 + E0 ≤ 2E0,

from where we have

En ≤ E0, ∀ n = 1, 2, . . . , N , N + 1. �

3.2 Uniform Exponential Decay

In this section, we present a result on exponential decay to the energy of the system (3.4)-(3.7).
We assure that numerical scheme preserves the important property on exponential decay such as

continuous case. Here, we consider the case D1 = D2 = 1.

Theorem 3.2. If 1 − 2r − 2α�t ≥ 0 then En is exponentially stable. More precisely,

En ≤ E0e
−
[

8
�x2 sin2

(
π�x

2

)
�t

]
n
.

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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Proof. We consider the uncoupled systems (3.9)-(3.11) and (3.12)-(3.14). The first of them is

exponentially stable, i.e.,

En ≤ E0e−2nλ1�t , (3.24)

where λ1 = 4
�x2 sin2 (

π�x
2

)
(see [1]).

For the other one, we assume the decomposition given by θn
j = X j T n , j = 1, 2, ..., J +1, n ≥ 0

and we obtain

θn
j = [1 − (λk + 2α)�t ]n sin(kπx j ), ∀ k, j = 1, 2, . . . , J + 1, (3.25)

where λk = 4
�x2 sin2

(
kπ�x

2

)
, k = 1, 2, . . . , J .

Now, it follows immediately that

Ẽn = |1 − (λk + 2α)�t |2n�x
J∑

j=0

sin2(kπx j ) = π

2
|1 − (λk + 2α)�t |2n,

and then

Ẽn = Ẽ0|1 − (λk + 2α)�t |2n ≤ Ẽ0|1 − (λ1 + 2α)�t |2n ≈ Ẽ0e−2n(λ1+2α)�t , (3.26)

since 1 − 2r − 2α�t ≥ 0. Finally, to obtain the estimative of exponential decay, we take the
inequalities (3.24) and (3.26), from where we have

2En = En + Ẽn ≤ e−2nλ1�t E0 + e−2n�t (λ1+2α) Ẽ0

≤ (E0 + Ẽ0)e−2nλ1�t = 2E0e−2nλ1�t .

Therefore, we obtain
En ≤ E0e−2nλ1�t . �

4 NUMERICAL EXPERIMENTS

In this section, we present numerical results obtained with the scheme (3.4)-(3.7). We use the

following data: L = 1, T = 0.045s and 20 divisions in space and 38 in time. To initial data
we use φ(x j , 0) = sin(πx j ), ψ(x j , 0) = 3 sin(3πx j ). According stability restrictions given by
Theorems (3.1) and (3.2) result α < 0, 444 · 103.

In Figures 1 and 2 we see the correct behavior of the solutions φn
j and ψn

j . That is to say, they

are increasing and free of numerical oscillations because the stability criterion is obeys. On the
other hand, significative changes are showed in Figures 3 and 4 for α takes of order 103.

Finally, looking to the Figure 5, we note that En is stable in the exponential sense since that sta-
bility criterion (see Theorem 3.2) prevails. Otherwise, numerical instabilities occur (see Fig. 6).

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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Figure 1: α = 0, 444 · 101

0
0.01

0.02
0.03

0.04
0.05

0

0.5

1
−3

−2

−1

0

1

2

3

 t
n

 Numerical solution:  ψ
j
n

 x
j

 ψ
j
n

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 2: α = 0, 444 · 101

0
0.01

0.02
0.03

0.04
0.05

0

0.5

1
−4

−2

0

2

4

 t
n

 Numerical solution:  φ
j
n

 x
j

 φ
j
n

−2

−1

0

1

2

3

Figure 3: α = 0, 765 · 103
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Figure 6: α = 0, 765 · 103
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5 CONCLUSION

In this paper we showed in detail the numerical analysis of exponential decay of the solutions of
a numerical scheme in finite difference applied to coupled systems of diffusion equations. This

scheme preserves the exponential decay since holds the stability criterion. We illustrated this
property by means of some numerical experiments. Another numerical schemes can be used in
order to obtain the exponential decay. For example, it is well-known that implicit schemes are

free of stability criterion (unconditionally stable). Therefore, implicit schemes can be used in this
context to preserve the exponential decay.

RESUMO. Neste trabalho, nós provamos a propriedade de decaimento exponencial da ener-

gia numérica associada a um particular esquema numérico em diferenças finitas aplicado a um

sistema acoplado de equações de difusão. Ao nı́vel da dinâmica do contı́nuo, é bem conhecido

que a energia do sistema é decrescente e exponencialmente estável. Aqui nós apresentamos

em detalhes a análise numérica de decaimento exponencial da energia numérica desde que

obedecido o critério de estabilidade.

Palavras-chave: equações de difusão; diferenças finitas; decaimento exponencial numérico.
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