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for the Weierstrass functions with (min, +)-wavelets

M. GONDRAN1 and A. KENOUFI2*

Received on November 9, 2013 / Accepted on August 29, 2014

ABSTRACT. One reminds for all function f : Rn → R the so-called (min,+)-wavelets which are
lower and upper hulls build from (min,+) analysis [12, 13]. One shows that this analysis can be applied
numerically to the Weierstrass and Weierstrass-Mandelbrot functions, and that one recovers their theoreti-
cal Hölder exponents and fractal dimensions.
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1 INTRODUCTION

Genesis of wavelets theory started in 1946 with D. Gabor [9], who introduced the Windowed
Fourier Transform (WFT)

f̂ (ω, τ ) =
∫ ∞

−∞
exp(−ıωt) f (t)g(t − τ)dt (1.1)

for the local spectral analysis of radar signals. The localization is reached due to fast decay-

ing window function g(x)
|x|→∞→ 0. Even if WFT exhibits many powerful and practical fea-

tures, there are some defects compared to Fourier Transform. The transform (1.1) can not re-
solve efficiently wavelengths longer than the window g(x) width. Conversely, for signal with

high frequencies, short decomposition needs a broad window with a large number of periods.
Thus, signal reconstruction in this case adds a large number of terms with comparable ampli-
tudes and hence becomes numerically unstable. Finally, one needs a scheme with a wide window
for low frequency signals and a narrow window for high frequency ones. Such a scheme, was

independently suggested as a tool for geophysical studies by several authors at the beginning of
1980s [19, 23]. Wavelets Theory (WT) word was introduced in analysis by J. Morlet [17, 11].
It is considered nowadays as a preferable alternative to the Fourier analysis, used where and
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when the signals are random and comprised of fluctuations of different scales, such as in turbu-

lence phenomena [3]. WT has been immediately followed by several applications in science and
engineering, such as signal processing and detection, fractals, self-similar objects, self-similar
random processes, like turbulence and Brownian motion [2]. WT was then mathematically for-

malized by Grossman & Morlet [11], Goupillaud et al. [10], Daubechies [6] and some other
authors. Practically, WT is a separate convolution of the signal in question with a family of
functions obtained from some basic one, the basic wavelet called mother wavelet or analysing

function, by shifts τ and dilatations a:

Wψ(τ, a) f =
∫ ∞

−∞
1√
a
ψ̄

(
t − τ

a

)
f (t)dt . (1.2)

An interesting point of view is to consider WT as a realization of a function decomposition with

respect to the representation of the affine group [2]: x �→ ax + b.

We refer the reader to useful and interesting articles [1, 8, 20, 4, 7, 5] and both theoretical and
practical book [2].

Nevertheless, wavelets decompositions are limited by their linear features. This present article

aims to apply for pathological functions such as Weierstrass functions, a non-linear transform,
called (min,+) transform, which has been already defined within (min,+) analysis [12, 13,
18]. This one consists to replace in the scalar product definition of two real-valued functions

f and g defined on a domain X , the real number field (R,+,×) with the (min,+) dioid (R ∪
{+∞},min,+). The classical scalar product 〈 f, g〉 = ∫

x∈X f (x)g(x)dx becomes then the
(min,+) scalar product [12]:

〈 f, g〉(min,+) = inf
x∈X

{ f (x) + g(x)}.
The demonstration that it is a scalar product within the (min,+) dioid is straightforward and
easy excepted for its linearity.

One has to show that 〈 f, g〉min + is distributive according to min, which means

〈 f,min{g1, g2)〉(min,+) = min{〈 f, g1〉(min,+), 〈 f, g2〉(min,+)},
and linear according to the addition of a scalar λ : 〈 f (x), λ + g(x)〉(min,+) = λ + 〈 f, g〉(min,+).
The linearity is obvious since infx∈X { f (x)+λ+g(x)} = λ+infx∈X { f (x)+g(x)}. Distributivity
is obtained in two steps. One has first to prove this equality with mean of two inequalities.
We start first with the simple relations:

〈 f, g1〉(min,+) � f (x)+ g1(x), and 〈 f, g2〉(min,+) � f (x) + g2(x), ∀x .

This gives min{〈 f, g1〉(min,+), 〈 f, g2〉(min,+)} � min{ f (x)+g1(x), f (x)+g2(x)} ∀x . And since

min{ f (x)+ g1(x), f (x) + g2(x)} = f (x) + min{g1(x), g2(x)},
one has min{〈 f, g1〉(min,+), 〈 f, g2〉(min,+)} � f (x) + min{g1(x), g2(x)} ∀x , which yields to the
inequality

min{〈 f, g1〉(min,+), 〈 f, g2〉(min,+)} � 〈 f,min{g1, g2}〉(min,+). (1.3)

Tend. Mat. Apl. Comput., 15, N. 3 (2014)
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In a second step, one can write

〈 f,min{g1, g2}〉(min,+) � f (x)+ min{g1(x), g2(x)} � f (x)+ g1(x) ∀x,

which becomes
〈 f,min{g1, g2}〉(min,+) � 〈 f, g1〉(min,+). (1.4)

and in the same manner

〈 f,min{g1, g2}〉(min,+) � f (x)+ min{g1(x), g2(x)} � f (x)+ g2(x) ∀x,

giving now

〈 f,min{g1, g2}〉(min,+) � 〈 f, g2〉(min,+), (1.5)

and then from (1.4) and (1.5)

〈 f,min{g1, g2}〉(min,+) � min{〈 f, g1〉(min,+), 〈 f, g2〉(min,+)}. (1.6)

From relations (1.3) and (1.6), one deduces finally the equality and thus the distributivity.

With this (min,+) scalar product, one obtains a distribution-like theory : the operator is linear
and continuous according the dioid structure (R ∪ {+∞},min,+), non-linear and continuous
according to the classical structure (R,+,×). The non-linear distribution δmin(x) defined as

δ(min,+)(x) = {0 if x = 0,+∞ else}

is similar in (min,+) analysis to the classical Dirac distribution. Then, one has

〈δ(min,+), f 〉(min,+) = min
x∈X

{δ(min,+)(x)+ f (x)} = min{ f (0),+∞} = f (0).

In (min,+) analysis, the Legendre-Fenchel transform which permits to get Hamiltonian from
Lagrangian and which has an important role in physics is similar in (min,+) analysis to the
Fourier transform in the classical one [18].

In this article, we explore how (min,+)-wavelets decomposition and reconstruction could be an

interesting signal processing tool, since (min,+) transforms can be applied to a larger class of
functions than the functions treated with classical wavelet transforms, especially to lower semi-
continuous functions [12], such as

(
x �→ g(x) · Floor(x)

)
for instance, where g is a continuous

function.

In this paper, one focus on Weierstrass and Weierstrass-Mandelbrot functions which are classical
examples of functions continuous everywhere but differentiable nowhere [22].

One introduces in the following Section 2, the (min,+)-wavelets decomposition and reconstruc-
tion of a signal with mean of (min,+) scalar product. in Section 3, we show how the (min,+)-
wavelets allow a characterisation of Hölder functions. in Section 4, we apply these results to
numerical calculations of Hölder exponents of Weierstrass-like functions and compare them to
the theoretical values [21]. This permits to deduce immediately their fractal dimensions.

Tend. Mat. Apl. Comput., 15, N. 3 (2014)
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2 (min,+)-WAVELETS

The usual wavelet transform of a function f from R
n to R is a linear transform defined for all

scales a ∈ R+ and points b ∈ Rn , which can be computed according to the equation (1.2):

T f (a, b) = a−n
∫ +∞

−∞
f (x)�

( x − b

a

)
dx,

where � is a function called mother wavelet or analysing function. It has to be zero average and
exhibiting oscillations until a certain order p. This can be written as

∫ ∞

−∞
xm�(x)dx = 0, ∀m, 1 ≤ m ≤ p. (2.7)

In (min,+) analysis, a set of non-linear transforms has been introduced for lower semi-conti-
nuous functions [12, 18], the so-called (min,+)-wavelets transforms which are defined for a

function f : Rn → R and for all a ∈ R+ and b ∈ Rn such as:

T −
f (a, b) = inf

x∈Rn

{
f (x) + h

( x − b

a

)}
, (2.8)

where h is a basis analysing function (upper semi-continuous and inf-compact verifying h(0) =
0), like the following functions:

hα(x) = 1

α
|x|α with α > 1 and h∞(x) = {0 if |x| < 1,+∞ else}.

Since T −
f (a, x) ≤ f (x) for all a > 0, T −

f (a, x) is a lower hull of f (x). For any lower bounded
and lower semi-continuous function, one has a reconstruction formula like in the linear wavelets
theory [2]:

f (x) = sup
a∈R+,b∈Rn

{
T −

f (a, b)− h
( x − b

a

)}
, (2.9)

which can be simplified within the (min,+) theory in

f (x) = sup
a∈R+

T −
f (a, x). (2.10)

The (min,+)-wavelets analysis will be based on simultaneous analysis of lower hulls T −
f (a, b),

and upper hulls of f represented by T +
f (a, b) defined by:

T +
f (a, b) = sup

x∈Rn

{
f (x) − h

(x − b

a

)}
. (2.11)

For the upper hulls T +
f (a, b), we have a reconstruction formula which is symmetric to lower

hulls T −
f (a, b) (2.9, 2.8):

f (x) = inf
a∈R+,b∈Rn

{
T +

f (a, b)+ h
( x − b

a

)}
, (2.12)

Tend. Mat. Apl. Comput., 15, N. 3 (2014)
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which simplifies as well as:

f (x) = inf
a∈R+ T +

f (a, x). (2.13)

For each analysing function h, one has [13]:

T −
f (a, x) ≤ f∗(x) ≤ f (x) ≤ f ∗(x) ≤ T +

f (a, x), (2.14)

because T −
f (a, x) (respectively T +

f (a, x)) are functions decreasing with scales (respectively in-
creasing) and converging to f∗(x) (respectively f ∗(x)), the lower semi-continuous closure of f

(respectively upper semi-continuous closure) when the scale tends to 0.

Remark 1. We use the word “wavelet” by analogy with linear wavelets since the decomposition
and reconstruction formula are very similar and since one just replaces the usual real number
field (R,+,×) with the (min,+) dioid (R ∪ {+∞},min,+). Another name can be (min,+)
pen or (min,+) hulls.

Remark 2. The shift and scale parameters have the same meaning as in Linear Wavelet Theory:
for high frequencies, one needs small scales, and the inverse as well. But the relation between
them is not simply proportionally inverse as in linear theory, because it depends on the choice of

analyzing function hα, and this introduces non-linear dependency between scale and frequency.
This leads to a relation such as ν = γ (a, α), where ν, and a are respectively the frequency and
the scale, and γ a non-linear function decreasing with a.

Definition 1. (min,+)-wavelet is defined as the couple {T −
f (a, x), T +

f (a, x)}. For all R+, the
a-oscillation of f is defined:

�T f (a, x) = T +
f (a, x)− T −

f (a, x). (2.15)

In the case of analysing function h∞, one has

T +
f (a, x) = sup

|x−y|≤a
f (y), T −

f (a, x) = inf|x−y|≤a
f (y)

and �T f (a, x) = sup|x−y|≤a f (y) − inf|x−z|≤a f (z) corresponds to the a-oscillation defined in
one dimension by Tricot [21]: osca f (x) = supy,z∈[x−a,x+a][ f (y)− f (z)].

3 CHARACTERISATION OF HÖLDERIAN FUNCTIONS WITH
(min,+)-WAVELETS ANALYSIS

The calculations of oscillations according to the analysing function and the scale will permit to
study the global and local regularity of a function.

First, let’s start with the case of global regularity of a Hölderian function for which it exists H
(0 < H ≤ 1) and a constant K such as

| f (x) − f (y)| ≤ K |x − y|H ∀ x, y ∈ Rn . (3.16)

Tend. Mat. Apl. Comput., 15, N. 3 (2014)
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It is a sufficient but not necessary condition for a function to be continuous. In the case of fractal

function, K is related to its fractal dimension.

Theorem 1. The function f is Hölderian with exponent H , 0 < H ≤ 1, if and only if it exists a
constant C such as for all a, one of the following condition is verified:

�T f (a, x) ≤ CaH if h = h∞, (3.17)

�T f (a, x) ≤ Ca
αH
α−H if h = hα and α > 1. (3.18)

Demonstration:

• Demonstration for the case of analysing function h∞ is classic [21]: if f verifies (3.17),
let’s consider some x and y in Rn . One can assume that f (x) ≥ f (y). Then, one has

a = |x − y|, sup
|x−z|≤a

f (z) ≥ f (x) ≥ f (y) ≥ inf|x−z|≤a
f (z),

this yields to

| f (x) − f (y)| ≤ �T f (a, x) ≤ K aH ≤ K |x − y|H .

Conversely, let’s assume that | f (x) − f (y)| ≤ K |x − y|H for all y. Let y1 such as
f (y1) = sup|x−z|≤a f (z) and y2 such as f (y2) = inf|x−z|≤a f (z). One has then

�T f (a, x) = f (y1)− f (y2) = f (y1)− f (y)+ f (y) − f (y2),

which yields to

�T f (a, x) ≤ | f (y1)− f (y)| + | f (y)− f (y2)| ≤ 2K aH .

In the case of analysing functions hα, α > 1, let’s suppose first that f verifies (3.18). We
consider x and y in Rn with f (x) ≥ f (y). Reconstruction equation (2.12) of f (x) can be
written as

f (x) = inf
a∈R+,b∈Rn

{
T +

f (a, b)+ h
( x − b

a

)}
,

and the equation of reconstuction for f (y) (2.8)

f (y) = sup
a∈R+

T −
f (a, y).

One deduces

f (x)− f (y) = inf
a∈R+,b∈Rn

{
(T +

f (a, b)+ h
( x − b

a

)
− T −

f (a, y)
}
,

Tend. Mat. Apl. Comput., 15, N. 3 (2014)
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thus

f (x) − f (y) ≤ inf
a∈R+

{
T +

f (a, y)+ h
( x − y

a

)
− T −

f (a, y)
}

≤ inf
a∈R+

{
Ca

αH
α−H + h

(x − y

a

)}

and the optimisation on the scale a implies that it exists K such as | f (x) − f (y)| ≤
K |x − y|H .

Conversely, let’s assume that | f (x)− f (y)| ≤ K |x − y|H for all x and y. Using (2.8) and
(2.11), one has

�T f (a, b) = sup
x,y

{
f (x)− f (y) − h

( x − b

a

)
− h

( y − b

a

)}
.

We deduce that

�T f (a, b) ≤ sup
x,y

{
K |x − y|H − h

( x − b

a

)
− h

( y − b

a

)}
,

whose optimisation gives (3.18). �

Let’s consider now the case of local irregularity at x0 where the function is Hölderian: it exists
H (0 < H ≤ 1) and a constant K such as

| f (x)− f (x0)| ≤ K |x − x0|H ∀ x ∈ Rn. (3.19)

Theorem 2. The function f is Hölderian at point x0, with exponent H , 0 < H ≤ 1, if and only if
it exists a constant C such as for all a, one has one of the following conditions:

�T f (a, x) ≤ C(aH + |x − x0|H ), if h = h∞. (3.20)

�T f (a, x) ≤ C(a
αH
α−H + |x − x0|H ), if h = hα and α > H. (3.21)

Demonstration:

• In the case of the analysing function h∞, if f verifies (3.20) for all x , let a = |x −
x0|. One has then inequations sup|x−x0|≤a f (z) ≥ f (x) ≥ f (x0) ≥ inf|x−z|≤a f (z) or

sup|x−x0 |≤a f (z) ≥ f (x0) ≥ f (x) ≥ inf|x−z|≤a f (z). In both cases one gets

| f (x) − f (x0)| ≤ �T f (a, x) ≤ 2C|x − x0|H .

Conversely, let suppose | f (x) − f (x0)| ≤ K |x − x0|H for all x , and y1 such as f (y1) =
sup|x−z|≤a f (z) and y2 such as f (y2) = inf|x−z|≤a f (z); One has then

�T f (a, x) = f (y1)− f (y2)

= f (y1)− f (x0)+ f (x0)− f (y2)

≤ K (|y1 − x0|H + |y2 − x0|H ),

Tend. Mat. Apl. Comput., 15, N. 3 (2014)
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that means

�T f (a, x) ≤ K (|y1 − x|H + |x − x0|H + |y2 − x|H + |x − x0|H ),

this yields to
�T f (a, x) ≤ 2K (aH + |x − x0|H ).

• For analysing functions hα, α > 1, we assume first that f verifies (3.21). Let’s consider
x in Rn and the two cases, f (x) ≥ f (x0), and f (x) ≤ f (x0). In the first case, one uses

the reconstruction equations

f (x) = inf
a∈R+,b∈Rn

{
T +

f (a, b)+ h
( x − b

a

)}
, (3.22)

and
f (x0) = sup

a∈R+
T −

f (a, x0).

For the second case, one uses a symmetric reconstruction method. This yields to

f (x) = inf
a∈R+,b∈Rn

{
T +

f (a, b)+ h
( x − b

a

)
− T −

f (a, x0)
}
, (3.23)

which gives

| f (x)− f (x0)| ≤ inf
a∈R+

{
T +

f (a, x0)+ h
( x − x0

a

)
− T −

f (a, x0)
}
,

| f (x)− f (x0)| ≤ inf
a∈R+

{
Ca

αH
α−H + C|x − x0|H + h

(x − x0

a

)}
.

This implies that it exists a constant K such as

| f (x)− f (x0)| ≤ K |x − x0|H .

Conversely, let suppose that | f (x) − f (x0)| ≤ K |x − x0|H for all x . With mean of (2.8)
and (2.11), one has

�T f (a, b) = sup
x,y

{
f (x)− f (y) − h

(x − b

a

)}
.

Since

f (x)− f (y) = f (x) − f (x0)+ f (x0)− f (y),

one deduces

�T f (a, b) ≤ sup
x,y

{
K |x − x0|H + K |y − x0|H − h

( x − b

a

)
− h

( y − b

a

)}
,

which yields to

�T f (a, b) ≤ 2 sup
x

{
K |x − x0|H − h

( x − b

a

)}

≤ 2 sup
x

{
K |x − b|H + K |b − x0|H − h

( x − b

a

)}
.

whose optimisation gives (3.21). �

One gets here a reciprocal relation which is not fully obtained with linear wavelets [15].

Tend. Mat. Apl. Comput., 15, N. 3 (2014)
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4 HÖLDER EXPONENTS CALCULATION FOR WEIERSTRASS FUNCTIONS

We exhibit an application of the (min,+)-wavelets analysis to the Weierstrass function in order
to compute its Hölder exponent H and its fractal dimension D. This one is a typical example of

function continuous everywhere but nowhere differentiable [22]. One consider the general form
of Weierstrass functions on [0, 2π]

W (t) =
∞∑

m=0

(ω−H )m cos(ωmt + ϕm), (4.24)

with ωH > 1 and {ϕm }m≥0, constant or randomly distributed variable.

Those functions are Hölderian (and anti-Hölderian) with coefficient H and fractal dimension

[16, 14]:

D = 2 + logω−H

logω
= 2 − H. (4.25)

One calculates for all scales s = k · scalemin with k an integer from 1 to 10 and scalemin = 10−2,
the following function of scale for h2 and h∞

�T f (s) =
∫
T
�T f (s, t)dt .

For the Weierstrass function, the upper bound of the sum is replaced with a finite constant

M = 15 which is sufficient for our tests. Thus, the truncated Weierstrass function can be written
as

W (t) =
15∑

m=0

2− m
2 cos(2mt + ϕm),

and is represented with its (min,+)-wavelets decomposition on Figure 1 for ϕm = 0.

We made numerical calculations to determine Hölder exponents. The fractal dimension is then
directly given by equation (4.25). Computations were performed for H ∈ {1

2 ,
1
4 }, ω = 2, for

analysing functions h∞ and h2, for both cases of zero and random ϕm with a uniform probability

measure in [0, 2π].
The slope of the linear part of curves for small scales gives the value of Hölder exponent.

Hölder exponents calculations for random phase Weierstrass functions are summarized on Ta-
bles 1 and 2. According to equations (3.17, 3.18), the slopes and Hölder exponents are very
close to the theoretical value H = 1

2 for h∞ and 2H
2−H = 2

3 for h2 [21, 14]. The fractal dimension

is then given by D = 2 − H = 3
2 . Same result for H = 1

4 with a slope of H = 1
4 for h∞ and

2
7 for h2. They confirm that the Hölder exponents and fractal dimensions of Weierstrass function
remain the same in the case of a uniform random phase [16, 14].

The Weierstrass function W (t) =
∞∑

m=0
(ω−H )m cos(ωmt), verifies

W (ωt) = ωH {W (t)− cos(t)}, (4.26)

Tend. Mat. Apl. Comput., 15, N. 3 (2014)
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Figure 1: (min,+)-wavelets decomposition for the Weierstrass truncated function W (t) =
15∑

m=0
2− m

2 cos(2mt) with the analysing function h2 for scales k · 10−1 with k from 1 to 10.

Table 1: Numerical results for random phase Weierstrass function with

ω = 2 and (min,+)-wavelets decomposition performed with h∞.

Theoretical Hölder exponent H 1
4 = 0.250 1

2 = 0.500

Theoretical slope 1
4 = 0.250 1

2 = 0.500

Numerical Hölder exponent H 0.253 0.507

Numerical slope 0.253 0.507

Slope relative error (%) 1.2 1.4

Table 2: Numerical results for random phase Weierstrass function with
ω = 2 and (min,+)-wavelets decomposition performed with h2.

Theoretical Hölder exponent H 1
4 = 0.250 1

2 = 0.500

Theoretical slope 2
7 � 0.286 2

3 � 0.667

Numerical Hölder exponent H 0.246 0.497

Numerical slope 0.280 0.661

Slope relative error (%) 2.0 0.9
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which is not a scaling invariance property [21]. In order to circumvent that, one can build the

Weierstrass-Mandelbrot function

W M(t) =
∞∑

m=−∞
(ω−H )m{1 − cos(ωmt)}. (4.27)

Since

W M(ωt) =
∞∑

m=−∞
(ω−H )m{1 − cos(ωm+1t)},

the change of variable m′ = m+1 leads to W M(ωt) = ωH W M(t), which has scaling invariance

property. Hölder exponents calculations for a truncated version of this function are exhibited on
Figures 2 and 3, confirming thus the validity of (min,+)-wavelets decomposition for its Hölder
exponents computation.

Figure 2: Logarithm of �T W M (s) according to scale logarithm with h∞ decomposition of the
Weierstrass-Mandelbrot function, H = 1

2 , ω = 2. The slope is obtained with mean of linear

regression and its value is 0.496. The theoretical value is 1
2 . That is a relative error of 0.5%.

5 CONCLUSION AND PERSPECTIVES

We have presented in this article a promising tool to determine numerically Hölder exponents of
Weierstrass-like functions which are exhibiting fractal properties. It is based on (min,+) analysis

Tend. Mat. Apl. Comput., 15, N. 3 (2014)
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Figure 3: Logarithm of �T W M (s) according to scale logarithm with h2 decomposition of the

Weierstrass-Mandelbrot function, H = 1
2 , ω = 2. The slope is obtained with mean of linear

regression and its value is 0.655. The theoretical value is 2
3 . That is a relative error of 1.8%.

and proposes a signal decomposition using the (min,+) scalar product. By analogy with Linear
Wavelet Theory, this permits to define (min,+)-wavelets , which are lower and upper hulls of a

signal at a certain scale.
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RESUMO. Lembrando que para todas as funções f : Rn → R, as chamadas (min,+)-
wavelets são construções do fecho inferior e superior, vindos da análise (min,+) [12, 13].

Mostra-se que esta análise pode ser aplicada numericamente às funções de Weierstrass e

Weierstrass-Mandelbrot, e que recupera-se os seus expoentes de Hölder teóricos e dimensões

fractais.

Palavras-chave: (min,+)-wavelets , expoentes de Hölder, funções de Weierstrass.
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