
�

�

“main” — 2018/2/2 — 17:19 — page 419 — #1
�

�

�

�

�

�

Tema
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ABSTRACT. A problem of a voltage division circuit is modeled in order to determine the values of the
resistors centered, in a way that the impedance of the resistance voltage divider is minimal. This problem
is equivalent to maximizing the admittance, associated to the resistance, which is defined as the quotient of
the electric current and its voltage, measured in Siemens. Three cases are analyzed for the components of
the linear programming: real numbers, fuzzy numbers of type-1, and fuzzy sets of type-2. The first case is
considered in order to validate the other two cases. The optimal solution in the fuzzy linear programming of
type-1 is obtained through a linear defuzzification function, defined in the trapezoidal fuzzy numbers sub-
space of fuzzy numbers vector space, which allows to solve the corresponding linear programming problem
with real components. A study upon the parameter for linear defuzzification is accomplished to determine
the best representative of the family of parameters. The α−levels representation theorem is the method to
obtain the optimal solution of type-2. For each α−level is solved a fuzzy linear programming problem of
type-1, using the previous methodology. Numerical simulations illustrate the results in the three cases.

Keywords: electrical circuit model, linear programming, fuzzy linear programming, fuzzy sets of type-1,
fuzzy sets of type-2.

1 INTRODUCTION

Being one of the most important field of Operational Research, Linear Programming (LP) con-

cerns to models that optimize linear objective function and constraints on the decision variables.
Efficient algorithms has been developed for LP, among which we point out the interior point [12],
and the simplex algorithm [3].

One of the important issues of LP is that the modeling needs well-defined and precise data, which
in general involves high information costs. Indeed, this is a task almost impossible to accomplish
in many cases, due to risk or uncertainty in some data [9]. This problem of the classical LP
can be contoured with the use of fuzzy numbers. Fuzzy Linear Programming (FLP) explains the

mathematical model in a more realistic way [11]. Basically, considering some of the components
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of a LP as fuzzy numbers, a constraint violation is allowed, and the degree of satisfaction of a

constraint is defined as the membership function of the constraint [9].

One of the basic references in the area of FLP is due to Bellman and Zadeh [2]. The type of FLP
that has been considered for this research is the possibilistic programming, that recognizes uncer-
tainties in the objective function coefficients, as well as in constraint coefficients. The member-

ship function is used to represent the degree of satisfaction of constraints, the decision-maker’s
expectations about the objective function level, and the range of uncertainty of coefficients [9].

Based in the great success of the FLP, the approach is applied to a voltage divider model. In fact,
an electrical circuit has components characterized by diverse parameters, each one associated to

a tolerance, given by the product manufacturer. For example, a resistance of 48 ohms can have
± 10% tolerance, due to temperature, time of use, among other reasons [10]. This gradualness
motivated this study to use the fuzzy linear programming approach for a problem of a voltage

divider. The value given by the electric appliance manufacturer is called the centered value. The
tolerances and the centered values allow better control over the limits under which the circuit
keeps operating and, thereby, optimize its performance. The model use for this research was

built by Salazar in [10]. The objective of this research is to study three cases for the components
of the LP. The first case is for real numbers components we proposed of validating the other
two results. The second case refers to trapezoidal fuzzy number of type-1 as a components of

LP system. The optimal solution is obtained through a total linear order defuzzification function,
defined in the trapezoidal fuzzy numbers subspace of fuzzy numbers vector space. The third case
extends the second case for type-2 independent LP components. The α−levels representation
theorem is the method to obtain the optimal solution of type-2. For the numerical simulation for

all cases it is use the classical interior point method [12], using the linear programming algorithm
linprog of the software Matlab R©, and an algorithm that reproduces the representation theorem.

This work is organized into six sections. Section 1 is the introduction to this study. In Section 2

the mathematical model of the electrical circuit is explained. In Section 3 a fuzzy background
for the electrical circuit is detailed. In Section 4 the fuzzy linear programming method for the
model is developed. The numerical results are shown in Section 5, and conclusions are drawn in
Section 6.

2 MATHEMATICAL MODEL OF THE ELECTRICAL CIRCUIT

The voltage divider circuit shown in [10], illustrated in Figure 1(a), is the model to be built in
this section.

In this circuit are considered two voltage generators, each producing an electromotive force,

E1 and E2, measured in volts. Suppose that E1 > E2 for the circuit shown in Figure 1(a),
the current in the direction indicated by the arrows. It is assumed that the tolerances associated
with respective potential have a minimum value E−

1 , and maximum E+
1 , with respect to E1.

Analogously, there exist minimum value E−
2 , and maximum E+

2 , with respect to E2. The goal of
this model is determine the centered values of the resistors, R1 and R2, so that the impedance of

Tend. Mat. Apl. Comput., 18, N. 3 (2017)



�

�

“main” — 2018/2/2 — 17:19 — page 421 — #3
�

�

�

�

�

�

BERTONE, JAFELICE and CÂMARA 421

(a) The circuit model of voltage divider (b) Parallel circuit model of voltage divider

Figure 1: Equivalente basic circuit of voltage divider.

the resistant voltage divider is minimal. Further, as restrictions, the output potential, V0, belongs
to the interval [V m

0 , V M
0 ], where the exponent m stands for the minimum value, and M , for the

maximum. The current, I0, is in the range [I m
0 , I M

0 ]. The tolerances verify the inequalities

E−
1 ≥ V M

0 ≥ V m
0 ≥ E+

2 . (2.1)

The total impedance of the resistant voltage divider is given by the formula

R0 = R1 R2

R1 + R2
,

due to the fact that the two resistors are in parallel. In order to obtain a linear model, the variable

resistors are replaced by the associated admittance, which are given by the inverse of the values
Gi = 1/Ri , i = 0, 1, 2. With this notation, total admittance divider G0 = G1 + G2. As a
consequence, the objective function of the problem is given by

G−
0 = G−

1 + G−
2 ,

which it will be maximized. Denoting by G1 and G2 the centered values of the admittance G1

and G2, respectively, then we have

G−
1 = (1 − ε1)G1 and G−

2 = (1 − ε2)G2,

where ε1 and ε2 are two known tolerances. Thus, the proposed linear programming problem is
given by

max (H (G1,G2)) , where H (G1,G2) = (1 − ε1)G1 + (1 − ε2)G2. (2.2)

Tend. Mat. Apl. Comput., 18, N. 3 (2017)



�

�

“main” — 2018/2/2 — 17:19 — page 422 — #4
�

�

�

�

�

�

422 FUZZY LINEAR PROGRAMMING: OPTIMIZATION OF AN ELECTRIC CIRCUIT MODEL

In order to express the constraints on the variables G1 and G2, we observe, based in Figure 1(b),

that
I = I1 + I2 + I0.

Consequently, we get

G1 E1 + G2 E2 = V0

R1
+ V0

R2
+ I0.

Hence,

G1 E1 + G2 E2 = V0

(
1

R1
+ 1

R2

)
+ I0,

from where, it is obtained

G1 E1 + G2 E2 − I0 = V0(G1 + G2).

Therefore,

V0 = E1G1 + E2G2 − I0

G1 + G2
.

Analyzing the behavior of V0 in relation to the variations of G1, G2, and I0, we have:

(I) Calculating the partial derivative of V0 with respect to G1, we obtain

∂V0

∂G1
= E1(G1 + G2) − (E1G1 + E2G2 − I0)

(G1 + G2)2

= E1G1 + E1G2 − E1G1 − E2G2 + I0

(G1 + G2)2

= (E1 − E2)G2 + I0

(G1 + G2)2

> 0,

(2.3)

due to the fact that E1 > E2. As a conclusion, we get that V0 decreases as G1 decreases.

(II) Calculating the partial derivative of V0 with respect to G2, we have

∂V0

∂G2
= (E2 − E1)G1 + I0

(G1 + G2)2
< 0, (2.4)

since I = I1 + I2 + I0 so that

I0 = I − I1 − I2 = G1 E1 + G2 E2 − V0G1 − V0G2.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Thus,
∂V0

∂G2
= (E2 − E1)G1 + I0

(G1 + G2)2

= G1 E2 − G1 E1 + G1 E1 + G2 E2 − V0G1 − V0G2

(G1 + G2)2

= E2(G1 + G2) − V0(G1 + G2)

(G1 + G2)2

= E2 − V0

G1 + G2
.

Since we have E−
1 ≥ V M

0 ≥ V m
0 ≥ E+

2 , then E2 < V0, therefore E2 − V0 < 0. This
implies that

∂V0

∂G2
< 0,

meaning that V0 decreases as G2 increases.

(III) From the fact that G1 + G2 > 0, we conclude

∂V0

∂ I0
= −1

G1 + G2
< 0

which yields V0 decreases as I0 increases.

Consequently, V0 will assume its lowest value, which it is desired to be not less than V m
0 , when

G1 assumes its lowest value G−
1 . Besides, G2 assumes its highest value, G+

2 , and the current
obtained I0 is I M

0 .

Therefore, the constraint V m
0 ≤ V0 is equivalent to

V m
0 ≤ E−

1 G−
1 + E−

2 G+
2 − I M

0

G−
1 + G+

2

or, alternatively,

V m
0 ≤ E−

1 (1 − ε1)G1 + E−
2 (1 + ε2)G2 − I M

0

(1 − ε1)G1 + (1 + ε2)G2
,

that is,
(1 − ε1)(E−

1 − V m
0 )G1 + (1 + ε2)(E−

2 − V m
0 )G2≥I M

0 .

Similarly, the constraint V0≤V M
0 is equivalent to

(1 + ε1)(E+
1 − V M

0 )G1 + (1 − ε2)(E+
2 − V M

0 )G2≤I m
0 .

Consequently, the mathematical model for the linear programming for the problem of the voltage

divider is given by

max H (G1,G2) = [(1 − ε1)G1 + (1 − ε2)G2]
(1 − ε1)(E−

1 − V m
0 )G1 + (1 + ε2)(E−

2 − V m
0 )G2≥I M

0

(1 + ε1)(E+
1 − V M

0 )G1 + (1 − ε2)(E+
2 − V M

0 )G2≤I m
0

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Using the notations

ε =
(

1 − ε1

1 − ε2

)
, G =

(
G1

G2

)
, ϒ =

(
−I M

0
I m
0

)
, O =

(
0
0

)
,

and

� =
(

(1 − ε1)(V m
0 − E−

1 ) (1 + ε2)(V m
0 − E−

2 )

(1 + ε1)(E+
1 − V M

0 ) (1 − ε2)(E+
2 − V M

0 )

)
we have the PL system translate to the matrix form

max H (G) = εTG
�G≤ϒ

G ≥ O.

(2.5)

3 FUZZY BACKGROUND FOR THE ELECTRIC CIRCUIT MODEL

In this section, we sumarize the relevant concepts of fuzzy sets of type-1, and fuzzy sets of
type-2, which details can be found in [2, 5, 6]. Given a universe set, X , the set

A = {(x, μA (x)), x ∈ X },

where μA a function is a fuzzy set of type-1 over X , corresponding to the membership function
μA . The assembly of all fuzzy sets of type-1 is denoted by F(X). Given a number α ∈ [0, 1], the
α−level of the fuzzy set A is the set defined by

[A]α = {x ∈ X, μA(x) ≥ α}.

Considering the set
supp(A) = {x ∈ X, μA(x) > 0},

which is, by definition, the support of the set A, the zero level of A is the closure of supp(A),
denoted by supp(A).

Any fuzzy set can be regarded as a family of fuzzy sets. This is the essence of an identity principle
known as the representation theorem. The representation theorem states that any fuzzy set A can

be decomposed into a series of its α−level [7].

The fuzzy set of type-1, A, is called a fuzzy number when X = R, there is x ∈ X such that
μA(x) = 1, all α-levels are not empty and are closed intervals, and A has bounded support.
In this study is considered the fuzzy numbers defined as singleton of type-1, given through the

membership function

μr (x) =
{

1 if x = r
0, if x �= r,

known as the characteristic function of the set {r}. We denote this fuzzy number by r .

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Another type of fuzzy number considered is the trapezoidal fuzzy number defined by the mem-

bership function

μA(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − a

m − a
, if x ∈ [a, m]

1, if x ∈ [m, n]
b − x

b − n
, if x ∈ [n, b]

0, otherwise,

denoted by A = (a, m, n, b). The interval [m, n] is known as the kernel of the trapezoidal fuzzy
number A.

A fuzzy set of type-2, Ã, on X is the set

Ã = {(x, u); μÃ ((x, u)), (x, u) ∈ X × [0, 1]},

where μÃ : X × [0, 1] → [0, 1] is the associated membership of the fuzzy set Ã. The secondary
membership function of x ′ ∈ X is the fuzzy set of type-1 which universe is the set

Ux′ = {u ∈ [0, 1], μÃ(x ′, u) > 0}

and its membership is giving by μÃ(x ′, u), with u ∈ Ux′ . Geometrically, this fuzzy set is obtained
by the vertical cut with the parallel plane to the axis u passing through x = x ′.

The so called superior primary membership function of type-1 denoted by μÃ(x), and the inferior

primary membership function of type-1, μ
Ã
(x), x ∈ X , are defined by

μ Ã(x) = sup{u ∈ [0, 1], μÃ(x, u) > 0}, (3.1)

μ
Ã
(x) = inf{u ∈ [0, 1], μÃ(x, u) > 0}. (3.2)

A fuzzy set of type-2 that verifies μÃ((x, u)) = 1 for all (x, u) ∈ X × [0, 1] is called an interval

fuzzy set of type-2. When these type of sets have μ
Ã

= μ Ã(x) for all x ∈ X , known as singleton
of type-2.

We define the operation of addition between trapezoidal fuzzy numbers. Indeed, let Ai =
(ai , mi , ni , bi), i = 1, 2, two trapezoidal fuzzy numbers. By definition, we have

A1 + A2 = (a1 + a2, m1 + m2, n1 + n2, b1 + b2).

An external product given α ∈ R+ is defined by

α · A1 = α(a1, m1, n1, b1) = (α · a1, α · m1, α · n1, α · b1).

In the case that α ∈ R−, the definition is

α · A1 = α(a1, m1, n1, b1) = (α · b1, α · n1, α · m1, α · a1).

Tend. Mat. Apl. Comput., 18, N. 3 (2017)



�

�

“main” — 2018/2/2 — 17:19 — page 426 — #8
�

�

�

�

�

�

426 FUZZY LINEAR PROGRAMMING: OPTIMIZATION OF AN ELECTRIC CIRCUIT MODEL

With these definitions, the set of trapezoidal fuzzy numbers is a vector subspace of F(R),

which we denote by Trap(R).

Several proposals for an order relation, not necessarily a total order, over the set Trap(R) can
be found in the literature [1, 4, 8]. In this study, it is proposed a novel total order in a particular
vector subspace of Trap(R), composed by the fuzzy numbers

{A = (a, a, n, b), a, n, b ∈ R}. (3.3)

The set described in (3.3) it is denoted as T rap Right(R). It is easy to proved that the set

T rap Right(R) is, in fact, a subspace of Trap(R).

Let A ∈ Trap Right(R), the new total order relation is constructed through the so call defuzzifi-
cation function associated to the order [1], given by

gγ (A) = b + γ (n − b), γ ∈ [0, 1], (3.4)

where γ is a parameter in the interval [0, 1] that we defined as parameter of defuzzification of g.
Defining a equivalence relation in T rap Right(R) as

A is equivalent to B if and only if g(A) = g(B), for all A, B ∈ T rap Right(R), (3.5)

and the order relation

A is related to B if and only if g(A) > g(B), for all A, B ∈ T rap Right(R), (3.6)

it is clear that this relation is a total order (3.6) upon T rap Right(R), along with the equivalence
relation (3.5), determines a total order in this set, denoted by “	”. The total order (3.6) is used in
next section in order to transform a fuzzy linear programming in a classical one to obtain a fuzzy

solution of the model (2.5).

4 FUZZY LINEAR PROGRAMMING METHODS FOR THE ELECTRICAL
CIRCUIT MODEL

In this section, we consider the LP problem described in Section 2, which is given by the matrix
form (2.5). The objective to use the FLP approach is to allow a constraint violation. This exten-

sion of the model is made through the coefficients of the objective function, and the constraints,
using fuzzy numbers for its coefficients. Therefore, we consider the elements of LP components
H , �, and ϒ in three cases:

1. real numbers (classical LP). In order to validate the proposed methods;

2. fuzzy numbers (FLP of type-1). The coefficients of H , and the entries of � are elements
of Trap Right(R). The vector ϒ = (I M

0 , I m
0 ), where I M

0 and I m
0 ∈ R;

3. fuzzy sets of type-2 (FLP of type-2). The coefficients of H and the entries of � are single-
ton of type-2, whose projections in the plane (x, u) belongs to Trap Right(R).

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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The first component of the vector ϒ is a fuzzy set of type-2 defined by the membership

function

μI m
0

(x, u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α, if x ∈ [I m

0 − δL , I m
0 ],

ux = x − I m
0 + δL(1 − α)

δL(1 − α) − I m
0

, for α ∈ [0, 1],

where I m
0 − δL is the minimum of level zero.

The second component of the vector ϒ is a fuzzy set of type-2 defined by the membership
function

μI M
0

(x, u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α, if x ∈ [I M

0 , I M
0 + δR],

ux = I M
0 + δR(1 − α) − x

I M
0 + δR(1 − α)

, for α ∈ [0, 1],

where I M
0 + δR is the maximum of level zero.

The graphics of these fuzzy sets of type-2 are shown in Figure 2 for the independent
constraint I m

0 , and in Figure 3 for I M
0 .

Figure 2: The fuzzy set of type-2 correspond-
ing to the independent term of the second con-

straint.

Figure 3: The fuzzy set of type-2 correspond-
ing to the independent term of the first con-

straint.

The motivation to study the third case comes again, to allow a constraint violation in terms of the
interval [I m

0 , I M
0 ]. Extending this interval to [I m

0 − δL , I M
0 + δR], for chosen values of δL and

δR for which the PL has solution, induces to a feasible region, that we called the fuzzy feasible
region, to be included in the crisp feasible region. Indeed, the PL constraint associated to the
fuzzy feasible region is given by

(1 − ε1)(E−
1 − V m

0 )G1 + (1 + ε2)(E−
2 − V m

0 )G2 ≥ I M
0 + δR

(1 + ε1)(E+
1 − V M

0 )G1 + (1 − ε2)(E+
2 − V M

0 )G2 ≤ I m
0 − δL

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Figure 4: The crisp and fuzzy feasible regions for the values δL = 0.03 and δR = 0.05.

which yields in the set shown in Figure 4.

The extreme values, for which the PL has solution, δL and δR are

0 ≤ δL < 0.335 and 0 ≤ δR < 0.207.

For the numerical simulations of Section 5, the values chosen are δL = 0.03 and δR = 0.05.

On the order hand, the resolution method applied in the case of the classical LP is the interior
point [12], using the linear programming algorithm linprog of the software Matlab R©.

For case 2, it is applied the defuzzification order gγ on the fuzzy coefficients of the objective
function, and the constraints, in order to calculate the optimum point through the case 1 method.

For case 3, it is defined a parametric family indexed by α of PL problems of type-1, obtained by
the cuts of the vector ϒ at the α−level. It is solved for each α a PL problem of type-1, the method
used in case 2. The solution is obtained by applying the representation theorem of α−levels of
the sets of type-2 [6].

5 NUMERICAL RESULTS

In the case of the classical linear programming, it is considered

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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H (G1,G2) = 0.6 G1 + 0.9 G2, � =
(

−1.2 1.1
0.7 −0.18

)
and ϒ =

(
−0.64
0.58

)
,

where ε1 is ±40%, and ε2 is ±10%. The optimal solution obtained is H (0.9437, 0.4477) =
0.9691.

For case 2, the components considered are:

H (G1,G2) = (0.4, 0.6, 1, 1) G1 + (0.6, 0.9, 1, 1) G2,

� =
(

(−2, −2, −1.2, −0.8) (1, 1, 1.1, 1.4)

(0.5, 0.5, 0.7, 0.8) (−0.2, −0.2, −0.18, −0.12)

)
and ϒ =

(
−0.64

0.58

)
.

The fuzzy trapezoidal numbers ε1 and ε2 used to construct the coefficients of the objective func-

tion H , and the entries of the matrix � are shown in Figure 5 and Figure 6.

Figure 5: The fuzzy trapezoidal number ε1

used to construct the coefficients of the objec-
tive function H .

Figure 6: The fuzzy trapezoidal number ε2

used to construct the coefficients of the objec-
tive function H .

The graphics of the coefficients, 1 − ε1 and 1 − ε2 for the objective function H , are shown in

Figure 7 and Figure 8.

The entries of the matrix � are shown in Figure 9 and Figure 10 (first row), and in Figure 11 and
Figure 12 (second row).

We consider γ ∈ [0.3, 1] since that values lesser than 0.3 cause the linear programming to fail
in encounter optimal solutions. For the value γ = 1 we have gγ (A) = n. As a consequence, the

optimum point of the case 2 coincides with the case 1, and the optimum value is the minimum of
level 1 of optimum fuzzy number:

H (0.9437, 0.4477) = (0.5517, 0.9691, 1.3913, 1.3913).

Other values of γ yields in solutions that are shown in Figure 13.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Figure 7: Coefficient 1 − ε1 of the objective
function H .

Figure 8: Coefficient 1 − ε2 of the objective
function H .

Figure 9: Entry A11 of the matrix �. Figure 10: Entry A12 of the matrix �.

Figure 11: Entry A21 of the matrix �. Figure 12: Entry A22 of the matrix �.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Figure 13: The optimal points corresponding to different values of γ .

For each γ , defuzzification parameter in the interval [0.3, 1], the optimum point is a fuzzy num-

ber of type-1, because for each level we get an optimum point (crisp), and a corresponding trape-
zoid optimal solution at this point. Thus, the optimum point has the fuzzy universe determined
by the optimum level zero and level one, which in Figure 14 is represented by the black points.

The membership function is the line determined by the points in space, whose first two coordi-
nates are the coordinates of the optimum point level zero, and level one. The third coordinate is
zero and one, respectively.
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Figure 14: The optimal points and its membership degrees.
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In Figure 15, it is shown the graph of the optimal solution of type-2 obtained from each optimum

point of Figure 14, and its corresponding optimal fuzzy solution. The gradient of gray colors in
both the figures are corresponding and represent the levels from 0 to 1.

Figure 15: The fuzzy solution of type-2.

It is shown in Figure 16 the optimal points, and in Figure 17 the fuzzy solution of type-2 for
values of γ in the interval [0.7, 1].

6 CONCLUSION

Emphasizing the existent uncertainty in the tolerances of an electrical circuit suggested by the
device manufacturer, it is proposed in this study a fuzzy linear programming problem. In order to

validate the results obtained, it is solved the classical linear programming problem. The optimal
solution of fuzzy type-1 is obtained using the an order through defuzzification that can transform
the fuzzy problem into a classical linear programming. In order to build an optimal order, various

defuzzification functions are defined over the subspace of oneside trapezoidal membership. The
chosen order on these sets depends on real numbers between zero and one. Considering the
defuzzification function corresponding to the parameters of defuzzification equal to one, it is
obtained the same optimum point of the classical problem. Completing the study of a fuzzy linear

programming model, the independent member of the constrains is considered as a fuzzy set of
type-2. The solution is obtained by the representation theorem of α-levels, solving, for each level,
a linear programming problem of type-1. In this case, we use the same defuzzification function

for ordering the subspace of oneside trapezoidal memberships with parameters near one, getting
as optimum fuzzy point of relevance very close to the classic point.
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Figure 16: The optimal points corresponding to values of γ ∈ [0.7, 1], and its membership

degrees.

Figure 17: The fuzzy solution of type-2 corresponding to values of γ ∈ [0.7, 1].

RESUMO. Um problema de divisão de tensão de um circuito é modelado com o objetivo

de determinar os valores centrados das resistências, de maneira que a impedância resistiva

do divisor de tensão seja mı́nima. Este problema é equivalente a maximizar as admitâncias,

associadas às resistências, que são definidas como a razão entre a corrente elétrica e sua vol-
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tagem, medida em Siemens. Três casos são analisados para os componentes de programação

linear: números reais, números fuzzy do tipo 1 e conjuntos fuzzy do tipo 2. O primeiro caso

é considerado para a validação dos outros dois casos. A solução ótima na programação linear

fuzzy do tipo 1 é obtida através de uma função de defuzzificação linear, definida no subespaço

dos números fuzzy trapezoidais do espaço vetorial dos números fuzzy, o que permite resolver

o correspondente problema de programação linear com componentes reais. Um estudo sobre

o parâmetro para a defuzzificação linear é realizado para determinar o melhor representante

da famı́lia de parâmetros. O teorema de representação dos α-nı́veis é o método para obter a

solução ótima do tipo 2. Para cada α-nı́vel é resolvido um problema de programação linear

fuzzy do tipo 1 utilizando a metodologia anterior. Simulações numéricas ilustram os resulta-

dos nos três casos.

Palavras-chave: modelo de circuito elétrico, programação linear, programação linear fuzzy,

conjuntos fuzzy do tipo 1, conjuntos fuzzy do tipo 2.
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